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Abstract—Correlated interval representations of range uncer-
tainty offer an attractive solution to approximating computations
on statistical quantities. The key idea is to use finite intervals to ap-
proximate the essential mass of a probability density function (pdf)
as it moves through numerical operators; the resulting compact
interval-valued solution can be easily interpreted as a statistical
distribution and efficiently sampled. This paper first describes
improved interval-valued algorithms for asymptotic wave evalu-
ation (AWE)/passive reduced-order interconnect macromodeling
algorithm (PRIMA) model order reduction for tree-structured
interconnect circuits with correlated resistance, inductance, and
capacitance (RLC) parameter variations. By moving to a much
faster interval-valued linear solver based on path-tracing ideas,
and making more optimal tradeoffs between interval- and scalar-
valued computations, the delay statistics roughly 10× faster than
classical Monte Carlo (MC) simulation, with accuracy to within
5% can be extracted. This improved interval analysis strategy
is further applied in order to build statistical effective capaci-
tance (Ceff ) models for variational interconnect, and show how
to extract statistics of Ceff over 100× faster than classical MC
simulation, with errors less than 4%.

Index Terms—Affine arithmetic, effective capacitance, intercon-
nect, modeling, statistical analysis.

I. INTRODUCTION

A T 90-nm technology and below, it is no longer realistic to
regard device or interconnect parameters as deterministic.

The increasingly atomic scale of manufacturing means that all
important design parameters are statistically distributed with
complex correlations. The new problem is how to efficiently
analyze critical devices, interconnects, and layouts in this new
regime. We see the first practical solutions in recent progress on
statistical static timing tools [1]–[5]. By representing all circuit
delays and arrival times as correlated Gaussian distributions,
it is possible to perform delay analysis by “pushing” these
statistics through the machinery of static timing. The problem is
that static timing requires only a very limited portfolio of basic
operations: addition and maximum/minimum of two distribu-
tions. We cannot apply the statistical ideas successful in this
application to other, arbitrary problems which require richer
palettes of computations; e.g., if our interest is in interconnect
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analysis, these ideas do not tell how to invert a matrix of
Gaussians, or find its statistically distributed eigenvalues.

Statistical modeling of resistance, inductance, and capac-
itance (RLC) interconnects in particular, and of circuits in
general, is a vigorous new research area. The most common
approach is Monte Carlo (MC) sampling/simulation, which
is general, flexible, straightforward, and widely trusted. It
provides the maximum accuracy, but at an unattractive cost
for large designs and large numbers of random parameters.
Other approaches are specifically developed and tailored for
statistical linear-interconnect analysis, and can be further cat-
egorized as through: 1) model order reduction [6]–[9] and
2) performance parameter (e.g., delay) extraction [10]–[12].
Lee et al. [6] calculated the sensitivities of poles and zeros
found by asymptotic wave evaluation (AWE) [13] with respect
to variational circuit elements. The analysis is tightly coupled
with the original AWE algorithm, and does not handle explicit
correlations among the random process parameters, which may
lead to overpessimism in estimating delay impact. Liu et al. [7]
showed how the pole analysis via congruence transforma-
tions (PACT) [14] and passive reduced-order interconnect
macromodeling algorithm (PRIMA) [15] interconnect model
reduction methods can be rendered in variational forms via
modest sampling. The goal of the multiparameter moment-
matching algorithm proposed in [8] was to synthesize com-
pact “parameterized” model that predicts interconnect effects
from wire structures with geometry one does not know yet.
Wang et al. [9] built an explicit stochastic circuit model and
solved it via a Galerkin technique in an appropriate Hilbert
space. It is unclear, however, how complex correlations are
handled in this framework, for circuits larger than a few tens
of nodes. In [10], the random parameters are represented in
a linear form and are used to derive low-order analytical for-
mulas for variational delay metrics. Li et al. [11] proposed an
asymptotic probability extraction methodology for nonnormal
distributions of circuit performance (e.g., delay) via high-order
moment matching. Finally, Harkness et al. [12] used classical
intervals on the real line to approximate each uncertain circuit
parameter as a range. The idea is appealing, but has yet to be
shown to be practical. Classical interval calculations are noto-
riously pessimistic, and attempts to date have been restricted to
simplistic Elmore-style models that have a small closed-form.

Our interest is to find more general and flexible techniques
for representing correlated statistics “inside” a wide range of
algorithms. We believe that recent advances in correlated inter-
val representations of range uncertainty [16] offer an attractive
solution that can offer not only a workable level of numerical
accuracy, but also more importantly, the flexibility we seek to
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allow us to deploy these techniques in a wide range of appli-
cations. Our idea, first proposed in [17] and [18], is to approx-
imate each input range uncertainty as a finite interval, and to
use an appropriate algebra of interval arithmetic to replace each
conventional floating-point calculation (hereafter referred to as
scalar calculation, to distinguish from interval-valued calcula-
tions) in a given numerical algorithm. The essential assumption
is that the mechanics of range calculation for each finite interval
are a reasonable—though clearly imperfect—surrogate of how
statistics actually move through the same computations.

In [17] and [18], we showed how the complete numerical
algorithms for AWE [13] and PRIMA [15] linear model order
reduction could be recast in this interval-valued form, and used
to predict variational interconnect delay with errors between
5%–10% for correlated RLC parameter variations up to 35%.
In this new paper, we extend on our ideas from [19] and show
first how to improve upon our earlier results to build a new
interval-valued model order reduction strategy (for statistical
delay estimation) that is: 1) 10× faster than our tools from [17]
and [18] for the common case of tree-structured interconnect
and 2) accurate to within 5% of classical MC simulation-based
analysis.

The first key idea is to understand that intervals, like floating-
point representations, inevitably accrue more errors as they
push through deep chains of calculation. Thus, we replace
the interval-valued modified-nodal analysis (MNA) formula-
tion and lower-upper-triangular-matrix (LU) decomposition of
[17] and [18] with interval-valued versions of the standard
path-tracing algorithms [20] for (orthonormalized) moment
computation, which significantly reduces both the number of
operations and the overall estimation error.

The second key idea is to recognize that it is not essential to
employ intervals in every step of our algorithms. In [17] and
[18], we used intervals pervasively—from RLC circuit inputs to
pole/residue outputs—to prove the feasibility of our approach.
In this paper, we switch from interval-based computation to
scalar-valued MC sampling right after the original variational
system is reduced to a low-order model, but before the reduced
system requires further nonlinear solves (e.g., root finding
and/or eigendecomposition) for poles and residues. The right
tradeoff between interval- and scalar-valued computations is a
new degree of freedom in these algorithms; we show how to
exploit this to make the best tradeoff between accuracy and
efficiency.

Furthermore, as an obvious next step of this improved
interval-valued interconnect model reduction strategy, we build
interval-valued statistical “effective capacitance” (Ceff) models
for variational interconnect. The standard scalar-valued Ceff

model [21] has been crucial for both static gate and interconnect
timing analysis. We demonstrate how to retarget two different
scalar-valued Ceff modeling algorithms [21], [22] to extract
statistics of Ceff with over 100× speedup and less than 4%
errors compared to classical MC simulation.

This paper is organized as follows. Section II reviews the in-
terval model we use to represent correlated statistical variations.
Section III describes our statistical AWE and PRIMA algo-
rithms based on interval-valued path tracing. Section IV applies
the improved interval-valued interconnect modeling strategy to

build statistical Ceff models. Section V shows experimental
results comparing our interval methods against conventional
MC analysis using a fast linear-interconnect simulator (rapid
interconnect circuit evaluation (RICE) [20], [23]) in the loop.
Concluding remarks are offered in Section VI.

II. BACKGROUND

A. Basics of Affine Intervals and Arithmetic

For clarity, we review here the basic derivation of the affine
interval ideas from [17] and [18]. This is the starting point
for our statistical interpretation of the affine interval idea.
Classical-interval arithmetic was invented by Moore [24] to
solve range estimation problems in the presence of uncertain-
ties. The uncertainty of a variable x is represented by an interval
x = [x.lo, x.hi]. The true value of x is only known to satisfy
x.lo � x � x.hi. Basic arithmetic is redefined to yield interval
solutions from interval operands. However, due to the lack of
information about operand dependencies, a serious problem is
overestimation. For instance, suppose x = [−1, 1], y = [−1, 1],
and that x and y have the relationship as y = −x. If we compute
z = x + y, we can only obtain z = [−2, 2], while in reality
z = x + y = 0. This is a classical example of range explosion,
when interval computations are pushed through long chains of
calculations.

This situation was not improved until a novel range arith-
metic model—affine arithmetic—was proposed by Stolfi and
de Figueiredo [16] to preserve first-order correlations among
uncertainties. In this model, the uncertainty of a variable x is
represented as a range in an affine form x̂, given by

x̂ = x0 + x1ε1 + x2ε2 + · · · + xnεn

(−1 � εi � 1, i = 1, 2, . . . , n). (1)

Each uncertainty symbol εi stands for an independent com-
ponent of the total uncertainties of the variable x; the
corresponding coefficient xi gives the magnitude of that
component. In contrast to traditional interval methods de-
fined by their endpoints, affine intervals are defined by their
central point x0, and a set of symmetric excursions about
this point. For affine addition, if x̂ = x0 + x1ε1 + x2ε2 and
ŷ = y0 + y1ε1 + y3ε3

ẑ = x̂ + ŷ = (x0 + y0) + (x1 + y1)ε1 + x2ε2 + y3ε3 (2)

which is again in an affine form. One symbol εi may con-
tribute to the uncertainties of two or more variables, indicating
dependence among them. When these variables are combined,
uncertainty terms may actually be canceled.

Returning to the previous example, suppose that x and y have
affine forms x̂ = 0 + 1ε and ŷ = −x̂ = 0 − 1ε. In this case, the
affine form of the sum ẑ = x̂ + ŷ = 0 perfectly coincides with
the actual range of the variable z. This is the unique feature
of the model, and its central advantage over earlier interval
methods.
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Multiplication of affine intervals x̂ and ŷ gives the product

ẑ = x̂ŷ

=

(
x0+

n∑
i=1

xiεi

)(
y0+

n∑
i=1

yiεi

)

= x0y0+
n∑

i=1

(y0xi+x0yi)εi+

(
n∑

i=1

xiεi

)(
n∑

i=1

yiεi

)
(3)

which is not in affine form. It can still be approximated in an
affine form

ẑ ≈x0y0 +
n∑

i=1

(y0xi + x0yi)εi

+

[
R

(
n∑

i=1

xiεi

)][
R

(
n∑

i=1

yiεi

)]
ζ

= z0 +
n∑

i=1

ziεi + R(x̂ŷ)ζ (4)

where ζ is a new uncertainty symbol that is also in [−1, 1], but
distinct from all the other uncertainty symbols ε1, ε2, . . . , εn

that have already appeared in the same computation. R is
the “radius operator,” defined as R(

∑n
i=1 xiεi) =

∑n
i=1 |xi|,

which computes the upper error bound of an affine variable.
Note that the substitution of R(x̂ ŷ)ζ for the quadratic terms
implies a loss of information because ζ is assumed to be
independent from ε1, ε2, . . . , εn, while it is in fact a function
of them. Equation (4) is a conservative approximation in the
sense that it always bounds the original true affine product
given by (3).

The twin goals of the fundamental work in [16] were:
1) to create a practical set of interval arithmetic operators with
which to replace their scalar counterparts in standard numerical
codes and 2) to guarantee conservative bounding for the range
uncertainty represented by each affine interval computation. In
our paper, we use 1), but we need to abandon 2) to move from
intervals to statistics.

B. From Intervals to Statistics

As we introduced in [17] and [18], the essential idea is
to use intervals to model the range uncertainty that results
from each atomic arithmetic calculation. We cannot afford the
expense necessary to calculate the exact statistics resulting from
arbitrary arithmetic operations, but the same computations on
intervals can be done quite efficiently as long as we have some
mapping from the finite intervals we use during computations,
to the statistics we seek at the end of the process.

In their traditional development, the uncertainty symbols
ε1, ε2, . . . , εn are independent and arbitrarily distributed within
[−1, 1], thus creating a set of (random) excursions about each
interval’s midpoint. Following [17] and [18], we reinterpret
each εi as a normal random variable with µ = 0 and σ = 1.
That is, an algorithm computes with interval-valued operators
and delivers its outputs in the form ẑ = z0 +

∑n
i=1 ziεi. We

interpret this as a symbolic form combining a set of independent
zero-mean unit-variance normal random variables. We assume
that the careful mechanics of bound estimation, computed for
each affine interval operation, can serve as a workable stand in
for how the statistics would actually move through the same
computations, i.e., how the essential bulk of the distribution
moves through these computations. Note that, while our cal-
culations are done on conservative finite ranges, we evaluate
the final interval-valued formula by sampling it with values
that may actually extend outside each of these ranges. In other
words, we have abandoned the idea that any range uncertainty
has finite support, but adopt a heuristic interpretation that the
uncertainty terms each model the important contributing mass
of an infinite, continuous distribution, between ±σ. In general,
we must also note that this is not the only statistical interpreta-
tion of the affine form that one can choose. In this paper, we:
1) use a simple statistical interpretation that emphasizes speed
over accuracy and 2) explore carefully the boundary for where
to stop interval calculation, and proceed forward with standard
MC sampling of a compact interval-valued intermediate result.
It is also possible to alter the fundamental calculation and
interpretation of the affine uncertainty terms to produce more
accurate interval results, with a more elaborate model of the
relationship between interval ranges and the statistics of the εi

uncertainty terms, at the cost of additional CPU time. This is
not the focus of this paper; see [25] for details.

C. New Affine Arithmetic Formulation

We do need to mention one important new way in which
the work described here diverges from the classical bounding
formulation for the affine model, and from the interval-valued
methods implemented in [17] and [18]. Refer again to the multi-
plication example [see (3) and (4)]. Observe that any operation
other than addition/subtraction will create a new “linearized”
uncertainty term ζ to account for the higher order combinations
of uncertainty symbols we cannot represent in affine form.
Large problems need to create and manage a large number of
these linearized uncertainty terms, which is inefficient. Can we
do this faster?

The answer is “yes,” and to do this we take some inspiration
from statistical static timing methods [3], [4] which “match
variance” across a fixed set of normal random variables as
delay is computed gate by gate. Thus, our idea is not to create
the standard lumped linearized uncertainty ζ, but instead, to
distribute its “effect” across the existing uncertainty symbols.
Returning to the multiplication example of (4), we still compute
the coefficient R(x̂ŷ) of ζ, but distribute its effect proportion-
ally among the original ε1, ε2, . . . , εn. Specifically

ẑ ≈ z0 +
n∑

i=1

zi

[
1 +

zi∑n
i=1 |zi|R(x̂ŷ)

]
εi (5)

which is also a conservative approximation that always bounds
the true range of ẑ. Moreover, this new formulation also offers
the advantage that at the end of any computation, the final
affine form can be immediately interpreted as a nominal value
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Fig. 1. Comparison of the joint distributions of (x1, x2) solution points in false color shading among (a) MC simulation, (b) affine interval linear solution as in
this paper (average error: 12.1%), and (c) affine interval linear solution as in [18] (average error: 10.8%).

plus a set of first-order “sensitivities” to the original, principal
uncertainty sources with which we have modeled the problem.

If R(x̂ŷ) is much less than
∑n

i=1 |zi|, we can simply truncate
the quadratic terms in (3) and obtain the most efficient approx-
imation of affine multiplication as below

ẑ ≈ z0 +
n∑

i=1

ziεi. (6)

In reality, a threshold ratio of R(x̂ŷ) over
∑n

i=1 |zi| can be set
to determine whether to use (6). Note that this approximation
is no longer conservative and does not always bound the true
range of ẑ. However, since our own statistical interpretation
does not require perfect conservatism on the bounds, and
abandons the finite support assumption altogether, this turns
out to be an attractive tradeoff. We have implemented similar
simplifications for division and for the other useful nonlinear
operations we need to perform on our intervals.

D. Concrete Example of Interval-Valued Computation

It is useful at this point to show a concrete example of
interval-valued computation based on our new model. We
revisit the simple example of solving three interval-valued
linear equations in [18], but unlike that earlier example, we
no longer introduce any new uncertainty symbol as a result of
each basic nonaffine arithmetic operation. The matrix linear-
solve problem and its solution via interval-valued backward-
substitutions appear in (7)

 3 + ε1 + ε2 0 4 − ε1 + 2ε3

0 2 + ε1 3 + ε1 − ε3

0 0 −4 + ε1 − ε3

 x̂1

x̂2

x̂3

 =

 −1
−10
16


 x̂1

x̂2

x̂3

 =

 5 − 2.4ε1 − 2.4ε2 + 1.9ε3

1 + 3.7ε1 + 0.8ε3

−4 − ε1 + ε3

 . (7)

We compare the joint distributions of (x1, x2) between MC
simulation and the affine interval-valued linear solve. For MC
simulation, we randomly sample over the uncertainty symbols

in the affine interval-valued coefficient matrix in (7), assuming
normal distributions with zero mean and unit variance for the
symbols. For each sample, we solve the resultant three scalar-
valued linear equations. Fig. 1(a) shows the real joint distribu-
tion of solution points on the x1−x2 plane using false color
shading, and 1000 samples are used. More (x1, x2) solution
points are distributed in darker regions. For the affine interval-
valued linear solve, we randomly, normally sample 1000 times
over the uncertainty symbols ε1 to ε3 of the affine interval-
valued solutions in (7) directly, and plot the joint distribution
of (x1, x2) in Fig. 1(b). To compare, Fig. 1(c) shows the
joint distribution of (x1, x2) obtained in [18], i.e., using the
affine arithmetic that introduces (and later samples over) new
uncertainty symbols. To quantify the accuracy of affine interval
linear solve, we first define the “distribution error” for a grid as
the difference between the number of solution points in the grid
obtained by affine interval linear solve and that obtained by MC
simulation. Then, the average error of the affine interval linear
solve is the square root of the sum of the squared distribution
errors over all the grids, divided by the total number of samples.
It is 12.1% for the affine interval linear solve as in this paper
[Fig. 1(b)] and 10.8% for the affine interval linear solve as in
[18] [Fig. 1(c)]. We can see that both sets of affine arithmetic
do a workable job of modeling the most likely part of the real
distribution. As explained in Section II-B, however, the new
affine arithmetic is more efficient to compute and maintains the
first-order sensitivity information of the final affine result with
respect to the original uncertainties.

E. Modeling RLC Parameter Variations

Similar to [17] and [18], we classify the variations into two
categories: global variation and local variation [7], [26]. Global
variations can be assumed to affect all the devices and intercon-
nects in a similar way within the same chip. Local variations
often exhibit spatial correlations, i.e., the device and intercon-
nect parameters are affected similarly by a common source of
variation when these physical elements are close enough to each
other. This paper also considers a linear-interconnect circuit
where the input-driver voltage source is assumed to be scalar
and deterministic, and the resistance (Ri), capacitance (Ci),
and inductance (Li) are subject to linear combinations of global



714 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

Fig. 2. (a) RLC interconnect circuit example. (b) Equivalent dc circuit for first moment generation. (c) Equivalent dc circuit with source values changed for
second moment generation.

and local variations with correlations in the basic affine forms
introduced earlier

Ri = Ri,0 +
l∑

j=1

∆Ri,jεj +
m∑

j=l+1

∆Ri,jεj +
n∑

j=m+1

∆Ri,jεj

(8)

Ci = Ci,0 +
l∑

j=1

∆Ci,jεj +
m∑

j=l+1

∆Ci,jεj −
n∑

j=m+1

∆Ci,jεj

(9)

Li = Li,0 +
l∑

j=1

∆Li,jεj −
m∑

j=l+1

∆Li,jεj −
n∑

j=m+1

∆Li,jεj .

(10)

Ri,0, Ci,0, and Li,0 are the nominal parameter values. Each
unique source of global or local variation is modeled by an
uncertainty symbol εj . ∆Ri,j , ∆Ci,j , and ∆Li,j are the magni-
tude of the linearized parameter variations due to εj , a particular
source of variation [27]. Any individual source of uncertainty
may contribute to more than one parameter and thus lead
to direct correlations among these parameters. The equations
shown above simply emphasize the fact that any uncertainty
symbol εj can appear with positive or negative proportional
impact in any of the linearized formulas for any R, C, and
L. For example, when metal width increases from its nominal
value, the metal ground capacitance may be increased while
the metal resistance is decreased. This is a simple model, but
it can capture global and local variations and correlations, and
it maps perfectly onto our preferred affine interval model of
computation.

III. FAST INTERVAL-VALUED STATISTICAL

INTERCONNECT MODEL REDUCTION

In this section, we develop efficient interval-valued ver-
sions of the standard path-tracing algorithms [20], [23] for
(orthonormalized) moment computation. We represent varia-
tional circuit element values as affine intervals, in the forms
of (8)–(10), and then replace the entire “recipe” of the path-
tracing algorithm by pushing these interval values through
the computation steps. The result is a reduced, small set of
either interval-valued moments (for interval AWE [13]) or
interval-valued reduced system matrices and vector (for in-
terval PRIMA [15], to be defined later on), compared with

the large number of parameters in the original, unreduced
circuits. Then, we statistically sample these “reduced” intervals
to complete each model-order-reduction algorithm and produce
an estimate of the delay distribution for the original variational
interconnect.

A. Interval-Valued Path Tracing for Moment Generation

In [17] and [18], we started with an interval-valued MNA
formulation for variational interconnect circuits of general
topologies, and the interval-valued moments were computed
by interval-valued LU decomposition. This speaks well for
the general utility of the interval approach. However, MNA
formulation and LU decomposition for moment generation is
not the preferred approach for one extremely important class
of circuits: tree-structured circuits. For such circuits, the mo-
ment computation can be realized by a much more efficient
algorithm: path tracing [20]. Indeed, the fastest state-of-the-
art AWE/PRIMA implementations (most notably RICE 4 [20]
and RICE 5 [23]) achieve some of their speedup by using
path tracing for treelike interconnects. Our goal is to create an
interval-valued counterpart of path tracing.1

In principle, the interval-valued moments are computed
through successive dc analyses of the interconnect circuit
where capacitors are substituted with interval-valued dc current
sources and inductors with interval-valued dc voltage sources
[20]. The dc analyses are based on a sequence of reverse and
forward depth-first search (DFS). Initially, the input driver is set
to a dc source of its final (deterministic) value, all the capacitors
to zero-valued current sources, and all the inductors to zero-
valued voltage sources. After the first dc analysis, the resultant
interval-valued voltages across each capacitor-current source
form the first generation of interval-valued capacitor moments,
and the interval-valued currents through each inductor-voltage
source form the first generation of interval-valued inductor mo-
ments. The succeeding generations of interval-valued moments
are computed by setting the driver to 0 and replacing each
capacitor or inductor source with the product of its previous
interval-valued moment and respective interval value of capaci-
tance or inductance. Fig. 2(b) and (c) illustrate how to compute
the first two generations of interval-valued moments of a simple
interconnect circuit example shown in Fig. 2(a).

1Ratzlaff and Pillage [20] and Odabasioglu and Pileggi [23] also showed how
to attack nontree circuits using these ideas; we restrict ourselves here to treelike
circuits.
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Fig. 3. Fast interval-valued AWE algorithm.

The above “path tracing” procedure is stopped when the
required number of interval-valued moments is obtained.2 Note
that the topology of an interconnect circuit does not change over
successive moment computations. Therefore, the DFS of the
circuit tree needs only to be performed once, and the tree ele-
ments can be “remembered” in the proper computational order,
which makes all path-tracing algorithms very fast. Furthermore,
just as in the scalar case, interval-valued path tracing requires
many fewer (interval valued) calculations than a full LU step,
and is thus both faster and more accurate.

B. Fast Interval-Valued AWE

In [17] and [18], affine interval arithmetic was employed
exclusively, that is, from RLC variational circuit elements, all
the way through until a final, reduced set of interval valued
poles/residues was obtained. Let us revisit the assumption
that we must use the interval mechanics exclusively. Consider
stopping the interval calculation as soon as we have generated
the required 2q + s interval-valued moments. At this point, we
randomly, normally (µ = 0 and σ = 1) sample the interval-
valued moments. Then, each set of scalar-valued moment sam-
ples is used to construct the scalar-valued transfer function and
compute the corresponding scalar-valued poles and residues,
just like a standard AWE algorithm [13]. The scalar-valued
interconnect circuit delay can be obtained via time-domain
transient analysis. Enough random samples produce a delay
distribution for the variational interconnect. MC sampling over
moment intervals is also quite efficient, since it primarily in-
volves scalar computations for the reduced interconnect model.
Fig. 3 describes the overall fast interval-valued AWE algorithm
with path tracing. It will become more clear in Section III-D
why we push affine interval arithmetic only to interval-valued
moments rather than interval-valued poles and residues, a later
step in the chain of numerical computations.

2For AWE, if q is the order of the reduced interconnect model, 2q + s
moments are needed, where s is the order of moment shifting, as in the scalar
case [20].

C. Fast Interval-Valued PRIMA

For clarity, we shall reserve the “̂ ” symbol for interval-
valued quantities. In [17] and [18], the interval-valued PRIMA
algorithm started with an interval-valued MNA formulation

(Ĝ + sĈ)x̂ = b (11)

where the interval-valued conductance matrix Ĝ, interval-
valued susceptance matrix Ĉ, and scalar-valued excitation
vector b are defined as

Ĝ =
[

N̂ E
−ET 0

]
, Ĉ =

[
Q̂ 0
0 Ĥ

]
, b = −

[
i
v

]
.

(12)

N̂ , Q̂, and Ĥ are the interval-valued matrices containing
the stamps for variational resistors, capacitors, and inductors,
respectively. E consists of constants ones, negative ones, and
zeros, which correspond to the variables of current induced
by inductance and voltage source. The interval-valued solution
vector x̂ contains node voltages appended by inductance and
voltage source current. The output-selecting vector is denoted
as l̂. Interval-valued LU decomposition was used to construct an
orthonormal interval-valued matrix X̂ that spans the interval-
valued Krylov subspace defined as

Kr(Â, r̂, q) = colsp(r̂, Âr̂, Â
2
r̂, . . . , Â

q−1
r̂) (13)

where Â = −Ĝ
−1

Ĉ and r̂ = −Ĝ
−1

b̂. Then, the original-
variational-interconnect system (characterized by Ĝ, Ĉ, and
b) is projected into a reduced-order interval-valued system

(characterized by Ĝ
′
, Ĉ

′
, and b̂

′
) in the interval-valued Krylov

subspace spanned by X̂ via congruence transformation: Ĝ
′
=

X̂
T
ĜX̂ , Ĉ

′
= X̂

T
ĈX̂ , and b̂

′
= X̂

T
b.

Again, instead of interval-valued LU factorization, a much
faster interval-valued version of the standard path-tracing algo-
rithm in [23] can be used to successively generate the interval-
valued moment vectors x̂k (k = 0, 1, . . . , q − 1), and filling in
the columns of X̂ while maintaining its orthonormality (by
Gram–Schmidt Orthonormalization). According to [23], the
interval-valued path-tracing algorithm in Section III-A can be
augmented, only minimally, to implicitly compute the interval-
valued reduced system without any explicit matrix construction
or manipulation. And the congruence transformation is per-
formed concurrently with interval-valued moment generation
and orthonormalization. See [19] and [23] for details. Most
of the computations here are matrix-vector operations, easily
handled by basic affine interval arithmetic.

For fast interval-valued PRIMA, we again normally sample
(µ = 0 and σ = 1) each uncertainty symbol of the interval-

valued elements of Ĝ
′
, Ĉ

′
, and b̂

′
to produce a scalar-valued

reduced system (in terms of G′, C ′, and b′). Then, a stan-
dard version of the PRIMA algorithm [15] can be applied
to eigendecompose this scalar-valued reduced system, extract
the poles and residues, and finally analyze the interconnect
circuit delay. Fig. 4 gives the details of the fast interval-valued
PRIMA algorithm.
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Fig. 4. Fast interval-valued PRIMA algorithm.

D. Interval/Scalar Tradeoffs

Fig. 5(a) and (c) summarize the flows of the interval-valued
AWE and PRIMA algorithms, respectively, presented in [17]
and [18]. Fig. 5(b) and (d) summarize the flows of the fast
interval-valued AWE and PRIMA algorithms, respectively, pre-
sented in Section III of this paper. Compared to our earlier
approaches proposed in [17] and [18], faster basic interval
operations (that avoid new uncertainty terms), and replacing
MNA formulation and LU decomposition with tree path tracing
provide much of the speed improvement. But the other source
of improvement for better accuracy is the use of a hybrid
interval/scalar computation strategy.

To understand why, recall first that approximation of interval
endpoints and correlations creates errors rather like floating-
point roundoff errors, but more macroscopic and not so easy
to “ignore.” Also, as with basic floating-point calculations,
the longer the chain of computation is, the more errors may
be accrued. Therefore, replacing LU decomposition with path
tracing for (orthonormalized) moment computation increases
not only efficiency but also accuracy, by greatly reducing the
number of operations that need approximate affine interval
arithmetic, e.g., multiplication. Replacing scalar-valued LU
decomposition by scalar-valued path tracing does not have this
significant accuracy boost as an additional considerable benefit.

Second, it is not essential to employ intervals in every step
of our algorithms. The right “boundary” between interval- and
scalar-valued computations is a new degree freedom in these
algorithms. Recall that the affine model is fundamentally a
linear model defined by each interval’s midpoint, and a sta-
tistical interpretation on the uncertainty symbols creates a set
of symmetric excursions about each interval’s central point.
A pair of correlated affine intervals by construction define a

range bounded by a two-dimensional “central-symmetric con-
vex polytope” [16]. This turns out to be an efficient approxima-
tion to uncertainties moving through numerical computations,
and does an excellent job for computations dominated by linear
operations—additions and subtractions. This may provide a
more pessimistic overestimation on the bound, however, if the
computation is highly nonlinear and the real distribution is
asymmetric. For example, the root locus of a polynomial with
correlated varying coefficients can have too high a degree of
curvature for any central-symmetric convex polytope to bound
tightly (see [17]). Thus, one remedial tradeoff is stopping the
interval-valued computations as soon as the resulting “inter-
mediate” problem representation is small enough that stan-
dard, scalar MC sampling can be done efficiently to prevent
more interval estimation errors. This is especially attractive for
AWE/PRIMA-style interconnect reduction algorithms, which
employ a “front-end” of large-scale, near-linear matrix com-
putations, and a “back-end” of small-scale, yet more nonlinear
operations (e.g., root finding, eigendecomposition) on reduced
representations of the problem. Thus, in the development of
the algorithms for fast interval-valued AWE and PRIMA in
Section III, we made the following tradeoffs.

1) As shown in Fig. 5(b), for fast interval-valued AWE,
conduct interval-valued computations to reduce the orig-
inal large variational system to a much smaller set of
interval-valued moments; stop interval-valued computa-
tion here, and switch to scalar-valued MC sampling over
the moments to avoid the errors of affine approximation
of nonlinear polynomial root finding for poles (Step 4.3
in Fig. 3).

2) As shown in Fig. 5(d), for fast interval-valued PRIMA,
conduct interval-valued computations to reduce the orig-
inal large variational system to a much smaller set of
interval-valued system matrices and vector; stop interval-
valued computation here, and switch to scalar-valued MC
sampling over the reduced system to minimize the errors
of affine approximation of nonlinear eigendecomposition
(Step 4.1 in Fig. 4).

IV. FAST INTERVAL-VALUED STATISTICAL EFFECTIVE

CAPACITANCE MODELING

Having developed fast interval-valued interconnect model
reduction algorithms, we study in this section the next obvious
problem: effective capacitance (Ceff) models for interconnect.
We first briefly review the idea of Ceff modeling for intercon-
nect with driving gate,3 and then apply the proposed interval-
valued computation strategy to build two statistical Ceff models.

A. From Interconnect to Effective Capacitance

It is not adequate any more to compute gate delay assuming
the total interconnect capacitance for the load. It is crucial for
a successful static timing analysis tool, deterministic or statisti-
cal, to accurately handle the interactions between the gate and

3For simplicity, we assume a single CMOS inverter for the driving gate.



MA AND RUTENBAR: FAST STATISTICAL MODELING OF INTERCONNECT AND EFFECTIVE CAPACITANCE 717

Fig. 5. Flow of (a) interval-valued AWE algorithm, (b) fast interval-valued AWE algorithm, (c) interval-valued PRIMA algorithm, and (d) fast interval-valued
PRIMA algorithm.

Fig. 6. (a) π-circuit model for interconnect. (b) Ceff model for interconnect.

interconnect-delay models, because the “shielding effect” due
to increasing wire resistance can no longer be ignored. That is,
the wire resistance shields some of the interconnect capacitance
such that the actual load capacitance “seen” by the driving
gate is less than the total interconnect capacitance. To account
for this, one can approximate the driving point admittance by
synthesizing a π-circuit model [see Fig. 6(a)] to replace the
original interconnect [28]. π-model is generally regarded as an
accurate enough approximation for interconnect. However, it is
not compatible with most existing timing analysis methodolo-
gies, which often require a lumped interconnect capacitive load
for the gate. Therefore, an effective capacitance (Ceff) model
for the interconnect [see Fig. 6(b)] was developed in [21].

As pointed out in Section I, circuit (including gate and
interconnect) timing analysis tools that can handle manufactur-
ing variations are being developed. But what is still missing
is the statistical interaction between the variational gate and
interconnect models. In what follows, we build the missing link
by developing statistical Ceff models, based on affine interval
representations.

B. Statistical Iterative Effective Capacitance

The first three interval-valued moments of the driving point
admittance are readily computed by our interval-valued path-
tracing algorithm. After that, we stop interval-valued computa-
tion and switch to sampling over the interval moments. Each set
of scalar-valued moment samples (m1, m2, and m3) is used to
compute one set of scalar-valued π-model parameters

R = − m2
3

m3
2

(14)

C1 =
m2

2

m3
(15)

C2 =m1 − m2
2

m3
. (16)

Fig. 7. Scalar-valued gate delay notations.

Then, by equating the average current flowing into the
π-circuit with the average current flowing into the Ceff (follow-
ing the development in [21]), we can estimate the scalar-valued
Ceff as

Ceff = C2 + C1

[
1 − RC1

tD − tx
2

+
(RC1)2

tx
(
tD − tx

2

)e−(tD−tx)
RC1

(
1 − e

−tx
RC1

)]
. (17)

In other words, the scalar-valued Ceff load is so much so
that it has the same total charge transfer as the scalar-valued
π-circuit. Note that the value of Ceff is between C2 and C1 +
C2 (i.e., the total interconnect capacitance). tD and tx are com-
puted by

tD = td +
tin
2

(18)

tx = td +
tin
2

− 0.5tout (19)

where the scalar-valued gate delay notations (i.e., tin, tout,
and td) are illustrated in Fig. 7. tin denotes the scalar gate input
transition time from 20% to 80% of the final input voltage, tout

the scalar output transition time from 20% to 80% of the final
output voltage, and td the scalar delay between the time to reach
50% of the final input voltage point and the time to reach 50%
of the final output voltage point.

Typically, the scalar gate delay td and output transition
time tout can be empirically precharacterized with respect to
scalar input transition time tin and scalar load capacitance CL

(currently being modeled as Ceff ), using either lookup tables
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Fig. 8. Statistical iterative Ceff modeling algorithm.

or k-factor equations [29]. For simplicity, we adopt the same
scalar-valued k-factor equation templates as in [21] and [29]4

td = (kd1 + kd2CL)tin + kd3C
3
L + kd4CL + kd5 (20)

tout = (ko1 + ko2CL)tin + ko3C
3
L + ko4CL + ko5. (21)

We can see that the scalar-valued Ceff is a function of
the scalar gate delay td and output transition time tout [i.e.,
(17)–(19)] and vice versa [i.e., (20) and (21)]. Therefore, for
each scalar sample, Ceff , td, and tout must be calculated alto-
gether iteratively. The procedure is stopped when the difference
between the scalar Ceff values in two consecutive iterations is
less than a given threshold. One complete pass of iterations
(mostly in less than five iterations, according to [21]) produces
one set of scalar Ceff , td, and tout.

Enough random sampling over the interval-valued moments
and then scalar-valued computations for each sample as out-
lined above eventually produce a distribution of the variational
Ceff , as well as those of the gate delay and output transition
time. MC sampling over the only three moment intervals is very
efficient. Fig. 8 describes the complete statistical iterative Ceff

algorithm.

C. Statistical Direct Effective Capacitance

It has also recently been suggested in [22] that the Ceff can
be calculated by direct formulas. Different from the approach in
[21], Nassif and Li [22] modeled the gate by a constant linear
resistor Reff , as shown in Fig. 9, such that the overall gate-
interconnect is equivalent to a simple RC circuit. The value of
the equivalent output resistance Reff is determined by

Reff =
ln
(

3Vdd−4Vtn
Vdd

)
+ 2Vtn

Vdd−Vtn

(ln 2)kn(Vdd − Vtn)
(22)

through basic inverter delay analysis [29] for a falling output
transition. Vdd is the supply voltage and Vtn is the threshold

4It is still under investigation whether the interval model can be well applied
to table lookup, which is different from other affine arithmetic operations we
presented before.

Fig. 9. Constant linear resistor model for the gate with (a) π-circuit and
(b) Ceff models for the interconnect, respectively.

Fig. 10. Statistical direct Ceff modeling algorithm.

TABLE I
NUMBERS OF RCL ELEMENTS FOR THREE BENCHMARK CIRCUITS

voltage of the NMOS transistor, and we assume Vdd > 2Vtn.
kn is the “gain factor” of the NMOS transistor, which depends
on the mobility µn, gate oxide permittivity εox and thickness
tox, and aspect ratio Wn/Ln of the NMOS transistor.

Then, instead of matching the average current between the
π-circuit and the Ceff as in [21], Nassif and Li [22] matched
the time to reach 50% of the final gate output voltage between
the Reff -π circuit [see Fig. 9(a)] and the Reff -Ceff circuit [see
Fig. 9(b)]. The solution to the matching equation is the Ceff ,
which can be further approximated in a simple closed-form as

Ceff =
3α + β2

3 + β2
(C1 + C2) (23)

with less than 1% error compared to the exact yet nonanalytical
solution. α and β are

α =
C2

C1 + C2
(24)

β =
Reff

R
. (25)

And the π-model parameters R, C1, and C2 are still computed
by (14)–(16).

Note that in general, the Ceff values given by the standard,
iterative, and direct scalar-valued models are somewhat dif-
ferent, as we shall see in Section V-B. But this presents no
difficulty to our interval-valued statistical analysis framework,
which is flexible enough to accommodate a wide variety of
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TABLE II
COMPARISON BETWEEN MC-AWE AND statAWE

TABLE III
COMPARISON BETWEEN MC-PRIMA AND statPRIMA

numerical computation schemes. The above scalar-valued di-
rect Ceff modeling algorithm can be easily retargeted to an
interval-valued statistical direct Ceff algorithm, as shown in
Fig. 10. Just like the approach proposed in Section IV-B, we
first compute the first three interval-valued moments of the
driving point admittance, based on our interval-valued path-
tracing algorithm. We stop interval computation here, and
switch to efficient MC sampling over the three moment inter-
vals. For each sample, we then perform scalar-valued direct
Ceff computations, as introduced earlier in this section. Again,
enough random scalar samples eventually produce a distrib-
ution of the variational Ceff . Fig. 10 describes the complete
statistical direct Ceff algorithm.

To summarize, following the discussions in Section III-D, it
is easy to understand that in the development of both iterative
and direct statistical Ceff algorithms, we made the following

straightforward tradeoff in the hybrid interval/scalar computa-
tion framework.

1) Conduct interval-valued computations to reduce the orig-
inal large variational system to three interval-valued mo-
ments; stop interval-valued computation here.

2) Now switch to scalar-valued MC sampling over the mo-
ments to avoid the errors of affine approximation for the
nonlinear equations for π-model or Ceff computation.

V. EXPERIMENTAL RESULTS

A. Results of Interconnect Model Reduction

The fast interval-valued statistical algorithms for AWE and
PRIMA of Figs. 3 and 4 have been implemented as a pair of
tools called statAWE and statPRIMA, respectively. The tools,
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together with the underlying affine arithmetic library, were
implemented in C/C++ and benchmarked on a 1.0 GHz UNIX
machine, using three RC(L) treelike interconnect circuits (de-
sign 0, design 1, and design 2). The numbers of RLC elements
of the three circuits are given in Table I. It is worth pointing out
that design 2 is a synthetic unbuffered balanced H-shape clock
tree similar to that in [30]. We choose a number of uncertainty
symbols ranging from 6 to 21 for (8)–(10). Among these
symbols, one is assumed to originate from global variation and
is shared by all RLC elements. The rest of the symbols are as-
sumed for local wire width variations, linearized by first-order
Taylor series expansion, and are only shared by a cluster of
RLC elements that are “close enough” to one another. In other
words, for the case of, say, six uncertainty terms, we partition
each net-list into six groups, and assign the same uncertainty
term to every element in one group. Our algorithms and im-
plementation can accommodate any number of global and local
uncertainty symbols that originate from most types of variation
sources. Furthermore, we assume three combinations for the
relative σ of global and local variations: 20%/10%, 10%/20%,
and 5%/30%, given in the first columns of Tables II and III.

We find 50% delay distribution of fourth-order statAWE
and statPRIMA for design 1 and design 2. For comparison
of accuracy and speed, we use a fast interconnect simulator
based on standard model order reduction (RICE 4 for AWE
[20] and RICE 5 for PRIMA [23]) in a simple MC loop.5

That is, randomly varying RLC circuit elements according to
the specified variations at the very beginning and repeating
scalar deterministic RICE 4/5. For the sake of fairness and
efficiency, we determine how many samples for each tool,
parameter setting, and experiment using standard confidence
interval methods [31]. We use samples sufficient to guaran-
tee a 99% confidence level with 1% accuracy. For almost
all our experiments, this turns out to be between 3000 and
3500 samples. We show mean and standard deviation (std)
of the resulting delay distributions, and overall run times,
comparing our interval approaches statAWE and statPRIMA
with the straightforward MC simulation runs (MC-AWE and
MC-PRIMA) in Tables II and III, respectively.

In columns 9–11 of Tables II and III, the errors of mean
delay and standard deviation, and the run-time speedup are
defined as the difference between the result of our interval-
valued approach and that of MC simulation, normalized to the
latter. It is easy to see that both the mean delay and standard
deviation errors for all the experiments are less than 6%, even
with variations up to 35%. On average, the mean delay error
is 1.7% for statAWE and 2.5% for statPRIMA; the standard
deviation error is 1.8% for statAWE and 2.6% for statPRIMA.
Both statAWE and statPRIMA achieve an average of 10× run-
time speedup over the simple MC simulation. Stated differently,
a typical interval-valued variational analysis conducted with
our tools takes the same time as simulating about 300 different
interconnect configurations (samples) in a brute-force manner,
with a very fast interconnect simulator. We see more speedup

5Note that we use the RICE tools in a simple simulator-in-a-loop MC
experiment and not the extensions of [7], which can compute variational models
directly, but only for uncorrelated uncertainties.

Fig. 11. Comparison of pole distribution in false color shading between
MC-AWE and statAWE for design 0. (a) Pole distribution of MC-AWE.
(b) Pole distribution of statAWE. For both figures, x-axis is real axis and y-axis
is imaginary axis. Average errors are 7.1%, 3.6%, 4.2%, and 7.2%, respectively,
for four poles (from top to bottom).

for larger circuits. The run time for the interval-valued path-
tracing component of our tools is less than 5 s for all cases;
MC sampling of the much smaller, interval-valued reduced
system, and the subsequent scalar-valued computations on these
samples, comprise the majority of the total run time.

Figs. 11 and 12 offer some visual evidence on the quality
of results of our interval-based algorithms. Fig. 11 plots the
distributions of the four dominant poles for the RLC circuit
design 0, assuming 5% global variation, 30% local variation,
nine uncertainty terms, and eighth-order AWE reduction. False
color shading indicates greater pole probability with a darker
color. We compare the pole density between the MC simulation
[Fig. 11(a)] and our own statAWE extraction [Fig. 11(b)].
The visual correspondence is good. We further quantify the
correspondence in the same way as in Section II-D. The average
errors of pole distributions predicted by statAWE with respect
to MC-AWE are 7.1%, 3.6%, 4.2%, and 7.2%, respectively, for
the four poles (from top to bottom). Similar observations hold
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Fig. 12. Comparison between interval-valued approaches and MC simulation for design 1. (a) pdf: AWE (average error: 4.7%). (b) cdf: AWE. (c) pdf: PRIMA
(average error: 6.3%). (d) cdf: PRIMA.

for PRIMA reduction. As is obvious from the figure, unstable
right half-plane “false poles” as a result of AWE are pruned
in the standard manner [17], [18], [20]. Assessing the stabil-
ity/passivity of interval valued computation remains a challeng-
ing problem, though there are some earlier useful results for the
simpler case of classical nonaffine intervals [32]. Fig. 12 plots
the probability density function (pdf) and cumulative density
function (cdf) for design 1 with 5% global variation, 30% local
variation, and 11 initial uncertainty symbols. The pdf and cdf
given by our interval-valued approaches match well with those
given by MC simulation. For this test case, we also quantify
the accuracy of our approaches in the following sense: For each
MC sample over εs, the relative error is the difference between
the delay result of our approach and that of straightforward MC
simulation, normalized to the latter. Then, the average error
of the delay distribution predicted by our approach is defined
as the square root of the sum of the squared relative errors
over all the MC samples, divided by the number of samples.
The average error is 4.7% for statAWE [Fig. 12(a)] and 6.3%
for statPRIMA [Fig. 12(c)]. Note that the distribution of 50%
delay is asymmetrical, with a positive skew (mean > median)
and a long tail at the far end of distribution histogram [see
Fig. 12(a) and (c)]. Although each individual interval-valued
quantity is, in our heuristic interpretation, modeled as a sum of

normal random variables and thus normal itself, the final delay
values are not simple intervals. They are nonlinear functions
of intervals, which we evaluate via MC methods. These final
nonlinear formulas are fairly compact, so the MC simulations
are quick. But because of these critical, final nonlinearities, the
delay pdf and cdf can have arbitrary, nonnormal form.

To further demonstrate the efficiency and effectiveness of the
interval-valued statistical approaches, as well as the tradeoffs
of interval- and scalar-valued computations, we compare the
following four AWE-style approaches to statistical interconnect
reduction.

1) statAWE proposed in this paper: Interval-valued tree for-
mulation, interval-valued path tracing for interval-valued
moments, and then MC sampling.

2) intAWE proposed in [17] and [18]: Interval-valued MNA
formulation, LU-decomposition-based interval-valued
computation for interval-valued poles and residues, and
then MC sampling.

3) Interval-valued tree formulation, path-tracing-based
interval-valued computation for interval-valued poles
and residues, and then MC sampling.

4) Interval-valued MNA formulation, LU-decomposition-
based interval-valued computation for interval-valued
moments, and then MC sampling.
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We test the above four approaches on the same combinations
of global variation, local variation, and number of uncertainty
terms for circuit design 1 as those in Table II. Note that for
approaches 1) and 3), the mean delay and standard deviation
errors are with respect to RICE-based MC simulations, and
for approaches 2) and 4), the errors are with respect to Matrix
Laboratory (MATLAB)-based MC simulations, using MNA
formulation and LU decomposition. We use the same confi-
dence interval techniques [31] to determine the proper number
of samples for each test case. Fig. 13 plots the results of run
time versus mean delay and standard deviation errors for all the
approaches. We can see that all the errors are less than 10%,
which proves the feasibility of our interval-valued approaches
to statistical interconnect reduction. Furthermore, statAWE pro-
vides the best efficiency-accuracy tradeoff among all the four
approaches: it achieves far less errors for both mean delay and
standard deviation estimation than all the other approaches,
while its run time is only slightly longer than that of approach 3)
and much shorter than those of approaches 2) and 4). In
particular, approach 1) (i.e., statAWE) achieves more than 3×
reductions in both mean delay and standard deviation errors,
and is an order of magnitude faster, compared to approach 2)
(i.e., intAWE). Similar observations hold for PRIMA-style
interval-valued statistical approaches. Again, as discussed in
Section III-D, this is attributable to: 1) many fewer inter-
val operations in interval-valued path tracing versus interval-
valued LU decomposition and 2) smarter choices on where to
switch from interval computation to scalar MC sampling—after
model order reduction yet before highly nonlinear solve for
the reduced system. Finally, it is worth pointing out that
approach 3) (i.e., pervasive interval-valued computations based
on path tracing) is also attractive, yielding the best efficiency,
and accuracy to within 8%.

B. Results of Effective Capacitance Modeling

We have also implemented the two statistical Ceff mod-
eling algorithms, denoted as var-iterCeff and var-dirCeff , re-
spectively. They are benchmarked on design 1 and design 2
with the same settings of the manufacturing uncertainties as in
Section V-A. We compare the mean and standard deviation of
the distribution of variational Ceff (in pF) between our proposed
approaches and MC simulations of scalar-valued Ceff modeling
algorithms ([21] and [22]) using RICE 4 [20] function li-
braries (denoted as MC-iterCeff and MC-dirCeff , respectively).
Again, for each case, we use MC samples sufficient to guar-
antee a 99% confidence level with 1% accuracy. (For almost
all our experiments, this turns out to be between 5000 and
6000 samples.)

We use Taiwan Semiconductor Manufacturing Company
(TSMC) 0.18 µm technology parameters [33] to fit the coef-
ficients of (20) and (21), and to calculate Reff in (22). Further-
more, to take into account process variations induced on the
driving gate, we randomly, normally vary the threshold voltage,
gate oxide thickness, W , and L of its transistors, as well as its
input transition time, during both the complete MC simulations
and the sampling steps in our approaches. Equations (20) and
(21) were extended to accommodate these parameters, and Reff

Fig. 13. Comparison among four approaches in terms of (a) run time and
mean delay error and (b) run time and standard deviation error. For both figures,
x axis is error and y axis is run time in logarithmic scale.

was evaluated differently for each sample of these parameters
according to (22). Obviously, it is more straightforward for the
direct Ceff model than for the iterative Ceff model to consider
variations of device parameters which are explicitly present in
(22). And we choose 20% and 30% relative σ, respectively, for
the variations induced on the gate. Tables IV and V show all
the results.

It is easy to see that both the mean Ceff and standard
deviation errors for all the experiments are less than 4%. On
average, the mean error is 0.8% for var-iterCeff and 1.2%
for for var-dirCeff ; the standard deviation error is 0.7% for
var-iterCeff and 0.9% for var-dirCeff . The run time results are
not shown in Tables IV and V. They are less than 4 s for all the
runs of our proposed approaches, more than 400 s for all the
MC-dirCeff runs, and more than 500 s for all the MC-iterCeff

runs. Our proposed approaches achieve more than 100× run
time speedup over the simple MC simulation. Stated differently,
our interval-valued statistical Ceff modeling algorithms take
about the same time as a brute-force MC simulation using just
50 samples.

VI. CONCLUSION

The affine interval model, which allows us to represent and
preserve first-order correlations among range uncertainties,
can be applied to classical model order reduction techniques
for variational linear-interconnect analysis. A simple statistical
interpretation of the resulting intervals allows us to statistically
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TABLE IV
Ceff RESULTS, ASSUMING 20% VARIATIONS FOR GATE PARAMETERS AND INPUT TRANSITION TIME

TABLE V
Ceff RESULTS, ASSUMING 30% VARIATIONS FOR GATE PARAMETERS AND INPUT TRANSITION TIME

sample the small, reduced model and estimate the delay
distribution for the original variational interconnect circuit. We
have extended our paper in [17] and [18] by developing more
efficient and accurate interval-valued path tracing algorithms,
and have answered a key question posed in [17] and [18] on
the optimal “boundary” between where it is advantageous
to compute with intervals, and where it is more accurate
yet still efficient enough to stop and sample the intervals to
produce a set of scalar-valued models. Our new algorithms
are roughly 10× faster than our first generation efforts, yet
still able to achieve accuracies to within 5% of classical MC
simulation. We have further extended the interval analysis
strategy to build statistical effective capacitance models for
variational interconnect, with over 100× speedup and less than
4% errors compared to classical MC simulation. It is still an
open question which, among the many competing strategies

being pursued for efficient and accurate variational analysis for
circuits and systems will be the winner. Based on the results
in this paper, we believe that interval-valued models will find
a practical and useful role in this important and evolving
new area.
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