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Abstract. The spectral broadening of γ-rays from fusion plasmas can be measured

in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that

determine the observable velocity space and quantify the velocity-space sensitivity of

one-step reaction high-resolution GRS measurements in magnetized fusion plasmas.

The weight functions suggest that GRS resolves the energies of fast ions directly

without the need for tomographic inversion for selected one-step reactions at moderate

plasma temperatures. The D(p,γ)3He reaction allows the best direct fast-ion energy

resolution. We illustrate our general formalism using reactions with and without

intrinsic broadening of the γ-rays for the GRS diagnostic at JET.

1. Introduction

Resolution of the energies of fast particles in fusion plasmas is a long-standing

problem in present energetic-particle diagnostics. For example, the ITER measurement

requirements entail resolution of the energy spectrum of confined α-particles [2].

However, recent studies of the velocity-space sensitivity of available core plasma fast-

ion diagnostics suggest that this goal cannot be achieved by traditional measurements

and analysis techniques as there is no direct one-to-one correspondence between fast-

ion energy and measured signals [3–8]. In fact, fast-ion charge-exchange recombination

spectroscopy (e.g. fast-ion Dα (FIDA) [3,4]), collective Thomson scattering (CTS) [4,5],

neutron emission spectrometry (NES) [6, 7] and two-step reaction γ-ray spectrometry

‡ See the Appendix of [1]
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(GRS) [8] are not sensitive to distinct energies or pitches but to large regions in 2D

velocity space covering a wide range of energies and pitches. Neutral particle analyzers

(NPA) are a notable exception and resolve fast-ion energies for the observable narrow

pitch range [3]. Here we demonstrate that fast-ion energies for all pitches can be resolved

directly by one-step reaction GRS. However, good direct energy resolution is achievable

only for selected one-step reactions, such as the D(p,γ)3He reaction with fast protons.

Further, the plasma temperature needs to be moderate. Hence direct energy resolution

in burning plasmas in ITER remains elusive. Nevertheless, energy resolution of fast ions

is possibly achievable by tomographic inversion in velocity space [9–13].

In GRS the γ-rays emitted by fusion plasmas are spectrally analyzed [14, 15].

Today the highest γ-ray fluxes from fusion plasmas are achieved at JET where GRS is

routinely used [16–32]. The high nuclear reaction rates in the upcoming DT campaign

at JET [1, 33] and later in burning plasmas at ITER and DEMO will further enhance

the γ-ray emission [14, 15, 34, 35]. GRS measurements have traditionally been made at

moderate spectral resolution just sufficient to identify peaks appearing at characteristic

γ-ray energies in the spectra. Each peak can be related to a nuclear reaction by the γ-ray

energy. GRS measurements at moderate spectral resolution have been made at Doublet-

III [36], TFTR [37], JET [16–24] and JT-60U [38,39]. New detectors [27,40] allow GRS

measurements at very high spectral resolution sufficient to resolve the spectral shapes

of the individual peaks as demonstrated at JET [25–31] and ASDEX Upgrade [41].

Nuclear reactions emitting γ-rays can be divided into one-step reactions and two-

step reactions based on their reaction kinematics [14]. In one-step reactions the γ-ray

is a primary reaction product, as e.g. in D(p,γ)3He which can also be written as

D + p → 3He + γ. (1)

In two-step reactions the γ-ray is a secondary reaction product, as e.g. in 9Be(α, nγ)12C.

The two steps of this reaction are:

α + 9Be → 12C∗ + n, (2)
12C∗ → 12C + γ. (3)

As this reaction releases high γ-ray fluxes in tokamaks with strong alpha particle

populations and beryllium as a main plasma impurity, it is foreseen for alpha particle

studies in the upcoming DT campaign at JET and at ITER [19, 42].

We have recently shown that two-step reaction high-resolution GRS measurements

observe rather large regions in velocity space [8]. The measurements are sensitive to

energies near the nuclear resonances in selected pitch ranges. As γ-rays at measured

energies Eγ can be produced on several nuclear resonances, two-step reaction GRS

actually provides no direct resolution of fast-ion energies. Here we demonstrate

that selected one-step reaction GRS measurements, on the contrary, directly provide

resolution of the fast-ion energies at moderate plasma temperatures. We will consider

the D(p,γ)3He reaction as the main example as well as the reactions summarized in

table 1.
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Table 1. One-step fusion reactions discussed in this paper. The Q-value is the energy

released in the reaction. σQ stands for the intrinsic non-zero mass width of the nuclear

reaction product.

Reaction Q [MeV] σQ [MeV] Remark

D(p,γ)3He 5.5 0.0 well-established cross sections, often analysed

D(D,γ)4He 23.8 0.0 peak has not been found at JET

D(T,γ)5He 16.85 0.648 intrinsic broadening

T(p,γ)4He 19.7 0.0 suggested for DEMO, good for H in DT plasma

The sensitivity in 2D velocity-space of fast-ion diagnostics can be described by

weight functions. At present, weight functions have been developed for FIDA [3, 4],

NPA [3], CTS [4, 5], fast-ion loss detectors [43] and NES [6, 7] as well as for two-step

reaction GRS [8]. Weight functions have been used in four ways. First, they show

the velocity-space sensitivity of the diagnostic separating the observable velocity-space

regions from unobservable regions [3–8, 31, 44–63]. Second, assuming a 2D fast-ion

velocity distribution function, the velocity-space distribution of the ions generating

a given measurement can be calculated [3–8, 31, 44, 57–62, 64]. Third, they allow

rapid calculation of synthetic measurements [4–8]. Fourth, given enough measurements

and sufficiently high signal-to-noise ratio, it is possible to infer 2D fast-ion velocity

distribution functions by tomographic inversion [5, 9–13, 65, 66]. The formalism we

present here allows these applications for one-step reaction GRS measurements.

This paper is organized as follows. In section 2 we consider the kinematics of one-

step reactions. In section 3 we present analytic weight functions describing the velocity-

space sensitivity of high-resolution one-step reaction GRS measurements. Section 4

illustrates typical observable velocity-space of the GRS spectrometer at JET for the

D(p,γ)3He reaction. In section 5 we derive analytic expressions for the boundaries of

the observable regions and explain the energy resolution of one-step reaction GRS by

energy and momentum conservation. In section 6 we benchmark our formalism against

numerical simulations. Section 7 discusses other nuclear reactions with and without

so-called intrinsic broadening. Similarly, in section 8 the impact of thermal broadening

is discussed. Finally, in section 9 we discuss implications of our formalism, and in

section 10 we draw conclusions.

2. Kinematics of one-step reactions

The reaction kinematics determines the spectral broadening of the peak in the spectrum

for reactions without intrinsic broadening [67]. Here we derive the relationship between

the line-of-sight velocity uf , the energy of the fast ion and the energy Eγ of the detected

γ-ray by considering the reaction kinematics. As uf depends on the gyroangle Γ of

the fast ion, we can relate the energy Eγ to the gyroangle Γ of the fast ion. For a

generic one-step reaction between species 1 and species 2 to form a reaction product,
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pr, releasing a γ-ray, the non-relativistic energy and momentum conservation equations

are, respectively,

1

2
m1v

2
1 +

1

2
m2v

2
2 +Q =

1

2
mprv

2
pr + Eγ , (4)

m1v1 +m2v2 = mprvpr + pγ. (5)

Eγ and pγ are respectively the energy and momentum of the emitted γ-ray, and Q is the

energy released in the reaction. We now assume that one species is fast and the other

thermal. Neglecting the energy and momentum of the thermal species and denoting

the mass of the fast species to mf and its velocity to vf , the energy and momentum

equations become

1

2
mfv

2
f +Q =

1

2
mprv

2
pr + Eγ, (6)

mfvf = mprvpr + pγ . (7)

The effects of non-zero temperature will be calculated in section 8 using the GENESIS

code [29, 68]. Elimination of v2pr in equation 6 using equation 7 gives

1

2
mfv

2
f +Q =

1

2mpr

(

m2
fv

2
f − 2mfpγ · vf + p2γ

)

+ Eγ (8)

where pγ = |pγ |. Equation 8 could also be obtained from the erroneous equation

mfvf = −mprvpr+pγ instead of momentum conservation (equation 5). This is checked

for and excluded below. The dot product pγ · vf can be expressed in terms of the

line-of-sight velocity uf by introducing the unit vector along the line-of-sight p̂γ:

pγ · vf = pγp̂γ · vf = pγuf . (9)

The magnitude of the momentum pγ and the energy of the γ-ray are related by

pγ = Eγ/c (10)

where c is the speed of light. Substitution of equations 9 and 10 into equation 8 gives

1

2
mfv

2
f +Q =

1

2mpr

(

m2
fv

2
f − 2mf

Eγ

c
uf +

E2
γ

c2

)

+ Eγ . (11)

Equation 11 relates the line-of-sight velocity uf of the fast ion to the measurable energy

Eγ of the γ-photon. We solve equation 11 for uf and express v2f in (v‖, v⊥)-coordinates

with respect to the total magnetic field as v2f = v2‖ + v2⊥:

uf =
(mf −mpr)c

2Eγ

(v2‖ + v2⊥) +
Eγ

2mfc
+

mprc(Eγ −Q)

mfEγ

. (12)

The line-of-sight velocity uf is determined by the gyroangle Γ according to [5, 7, 11]

uf = v‖ cosφ+ v⊥ sinφ cos Γ (13)

where φ is the observation angle between the line-of-sight and the magnetic field. We

eliminate uf from equations 12 and 13 and solve for Γ ∈ [0, π]:

Γ = arccos

(mf−mpr)c

2Eγ
(v2‖ + v2⊥) +

Eγ

2mf c
+ mprc(Eγ−Q)

mfEγ
− v‖ cosφ

v⊥ sinφ
. (14)
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This relation allows us to calculate the gyroangle Γ ∈ [0, π] of the fast ion leading to

the detected energy Eγ of the γ-ray. A second solution for Γ′ ∈ [π, 2π] is given by [5]

Γ′ = 2π − Γ. (15)

3. One-step reaction GRS weight functions

The relation between fast-ion measurements, s, and fast-ion distribution functions, f ,

can be expressed as an integral over phase space,

s(Eγ,1, Eγ,2, φ) =

∫

vol

∫ ∞

0

∫ ∞

−∞

w(Eγ,1, Eγ,2, φ, v‖, v⊥,x)f(v‖, v⊥,x)dv‖dv⊥dx (16)

where w is the weight function [3–8, 44] and x denotes the spatial coordinates. For

GRS measurements, s(Eγ,1, Eγ,2, φ) is the detection rate of γ-rays [photons/s] in the

energy range Eγ,1 < Eγ < Eγ,2 with an observation angle φ. The units of f(v‖, v⊥,x)

are [fast ions × s2/m5]. The units of GRS weight functions are thus [photons / (fast

ion × s)] describing the velocity-space sensitivity of the diagnostic. Analogous to two-

step reaction GRS weight functions as well as FIDA and NES weight functions [4,7,8],

we factor GRS weight functions w into a detection rate function R(v‖, v⊥, φ,x) and a

probability prob(Eγ,1 < Eγ < Eγ,1|φ, v‖, v⊥):
w(Eγ,1, Eγ,2, φ, v‖, v⊥,x) = R(v‖, v⊥, φ,x)× prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥). (17)

R(v‖, v⊥, φ,x) describes incident rates in [photons / (fast ion × s)] irrespective of the γ-

ray energy [8]. R(v‖, v⊥, φ,x) hence has the same units as weight functions whereas

the probabilities are dimensionless numbers between 0 and 1. The laws of energy

and momentum conservation determine the boundaries of the probability functions

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) in (v‖, v⊥)-space and hence ultimately the boundaries

of weight functions which separate the observable regions from the unobservable regions.

Before we calculate probability functions, we briefly discuss the rate function

R. Assuming a fast reactant with velocity (v‖, v⊥) and a thermal reactant at rest

and neglecting any angle dependence of the cross section σ, the rate function can be

calculated according to [7]

R(v‖, v⊥,x) =
Ω

4π
nt

√

v2‖ + v2⊥σ
(√

v2‖ + v2⊥

)

. (18)

where Ω is the solid angle of the detector as seen from position x and nt is the density

of the thermal ions. The cross section can be modelled as [41]

σ(E) =
S

E
exp(−βG/

√
E) (19)

where E = 1
2
m(v2‖ + v2⊥) is the energy (which depends on the velocity-space position),

βG is the Gamow constant and S is the so-called astrophysical factor which is a slowly

varying function of energy [69,70]. For the D(p,γ)3He reaction, S is modelled as a fifth-

order polynomial for which the coefficients are given in reference [41]. The rate function

is illustrated in figure 1.
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Figure 1. Rate function R in units [γ-photons / (ion × s)]. The magnitude is shown

in base 10 logarithm.

The probability function prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) can be calculated

by transforming to probabilities in Γ using equation 14. This transformation is

advantageous as the gyroangle has, to a good approximation, a uniform distribution:

pdfΓ =
1

2π
. (20)

We write the probability function as an integral over the corresponding probability

density function and transform to probability densities in Γ:

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) =
∫ Eγ,2

Eγ,1

pdf(Eγ |φ, v‖, v⊥)dEγ

=

∫ Γ1

Γ2

pdfΓdΓ +

∫ 2π−Γ2

2π−Γ1

pdfΓdΓ =
Γ1 − Γ2

π
. (21)

We have used that

pdf(Eγ|φ, v‖, v⊥) = pdfΓ

∣

∣

∣

∣

dΓ

dEγ

∣

∣

∣

∣

. (22)

The second integral in Γ arises due to the second solution in Γ shown in equation 15.

The integration limits Γ1 and Γ2 are respectively given by the energies Eγ,1 and Eγ,2

according to equation 14. We stress that the probability function depends only on the

observation angle φ, the considered γ-ray energy range and the reaction kinematics but

not on the reaction cross sections.

4. Observable velocity-space regions for the D(p,γ)3He reaction at JET

Typical observation angles for the two high-resolution GRS diagnostics at JET are

about φ = 90◦ and φ = 30◦ with respect to the magnetic field in the plasma centre. The

observation angle varies along the line-of-sight. However, as most γ-rays are generated

in the plasma centre, we neglect these spatial variations here. Figure 2 shows probability

functions for the D(p,γ)3He reaction with fast protons and thermal deuterium for these

angles and various γ-ray energy ranges. In this case the proton velocity is much larger

than the deuterium velocity (vp ≫ vD). This reaction is often studied for plasma

scenarios with ICRH hydrogen minority heating in deuterium plasma [18, 41, 67]. The

observation regions are similar for the two views and are bounded by circular arcs that
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have their centers close to the origin as we will show in section 5. Hence fast ions in

narrow energy ranges are observable in each γ-ray energy range. The radius of each

circular arc as well as the distance of its center to the origin are independent of φ.

For φ = 90◦ the probability functions are symmetric about v‖ = 0. For φ = 30◦ the

center is tilted towards negative parallel velocities, and hence the observation regions are

slightly biased towards negative parallel velocities. We also observe that the probability

functions for φ = 30◦ are narrower and have larger amplitudes than those at φ = 90◦.

The arcs for φ = 30◦ are narrower as the impact of the gyromotion is smaller according

to equation 13. The shapes and amplitudes of the probability functions suggest good

resolution of the fast ion energies for all pitches in contrast to other fast-ion diagnostics.

Weight functions with perfect energy resolution would be bounded by concentric circular

arcs about the origin in (v‖, v⊥)-coordinates.
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Figure 2. Probability functions prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) of D(p,γ)3He with

vp ≫ vD for two observation angles φ and various γ-ray energies in base 10 logarithm.

In each figure we plot four probability functions showing the observation regions at

four γ-ray energy ranges with fixed width Eγ,2−Eγ,1 = 1 keV. From inside to outside:

Eγ,1 −Q = 50 keV, 150 keV, 300 keV, 500 keV.
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(a) φ = 90◦
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(b) φ = 30◦

Figure 3. Weight functions of D(p,γ)3He with vp ≫ vD for two observation angles φ

and various γ-ray energy ranges of fixed width Eγ,2−Eγ,1 = 1 keV in units [γ-photons

/ (ion × s)] in base ten logarithm. From inside to outside: Eγ,1 − Q = 50 keV, 150

keV, 300 keV, 500 keV. The weight functions are obtained from equation 17. R is

shown in figure 1 and prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) in figure 2.

Figure 3 shows the corresponding weight functions, i.e. the product of each

probability function from figure 2 with the rate function R from figure 1. As R covers
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the entire velocity space, the forms of the probability functions and the corresponding

weight functions are identical. However, as the cross sections and hence R increase with

energy, the weight functions have their largest amplitudes in the parts furthest away

from the origin.

5. Boundaries of one-step reaction GRS weight functions

Boundaries of weight functions are found by inserting cos Γ = ±1 in equation 13 as

then the line-of-sight velocity is at extremal values for given φ. Substitution of uf into

equation 12 then gives

E2
γ + 2mprc

2(Eγ −Q)− 2mfc(v‖ cosφ± v⊥ sinφ)Eγ

−mf (mpr −mf )c
2(v2‖ + v2⊥) = 0. (23)

Equation 23 can be written in the form (v‖ − v‖,0)
2 + (v⊥ − v⊥,0)

2 = r2v :
(

v‖ +
cosφEγ

(mpr −mf )c

)2

+

(

v⊥ ± sin φEγ

(mpr −mf)c

)2

=
mprE

2
γ + 2mpr(mpr −mf )c

2(Eγ −Q)

mf (mpr −mf )2c2
. (24)

The weight functions are hence bounded by the circular arcs with v⊥ > 0. The center

and the radius rv are given by

v‖,0 = − cosφEγ

(mpr −mf )c
, (25)

v⊥,0 = ± sinφEγ

(mpr −mf )c
, (26)

rv =

√

mpr

mf

(

E2
γ

(mpr −mf )2c2
+

2(Eγ −Q)

mpr −mf

)

. (27)

The distance of the center of the circular arcs to the origin is

v0 =
Eγ

(mpr −mf )c
. (28)

The radicand in equation 27 must be positive which implies a minimum energy of the

observable γ-rays:

Eγ ≥ Eγ,min =
√

2(mpr −mf )c2Q+ (mpr −mf )2c4 − (mpr −mf)c
2. (29)

For example, for the D(p,γ)3He reaction with fast protons and thermal deuterium

Eγ,min = 5.480 MeV (for Q = 5.488 MeV). This minimum energy is only a few keV

below the released energy Q whereas there are no maximum energies. The peak is

strongly asymmetric with a much larger high-energy tail than low-energy tail as has

been observed previously [67]. As the low-energy tail is close to the spectral resolution,

we consider the nominal peak energy and the high-energy tail in the following. For NES

an analogous minimum energy of observable neutrons was found to be En > Q/2 [7]
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which implies a considerably more prominent low-energy tail in neutron emission energy

spectra.

As observed in figure 3 and in equations 25 – 28, the radius and the distance of the

center to the origin do not depend on the observation angle φ, but the pitch coordinate

v‖/v of the center does. For a given energy Eγ we can now give upper and lower energy

limits on the fast proton leading to the γ-ray emission. The center of the upper circular

boundary has v⊥,0 > 0, whereas the center of the lower circular boundary v⊥,0 < 0 (see

equation 26). Hence the largest and smallest possible proton energies Emax and Emin

for a given γ-ray energy Eγ are

Emin =
1

2
mf (rv − v0)

2, (30)

Emax =
1

2
mf(rv + v0)

2 (31)

where rv and v0 are given by equations 27 and 28, respectively. The fast-ion energy

limits for a given γ-ray energy range are found at the extremal values of the considered

γ-ray energies. In figure 4 we plot an example of a probability function together with

its boundaries as calculated in equations 25 – 27 as well as the upper and lower limits

on the proton energies according to equations 30 and 31. In (v‖, v⊥)-coordinates the

upper and lower energy limits show as the two circles about the origin that each touch

the probability function. These upper and lower proton energy limits are plotted as

a function of the measured γ-ray energy Eγ for the D(p,γ)3He reaction in figure 5,

illustrating the fast-ion energy resolution of the measurement for each γ-ray energy.

This reaction is useful for tail temperatures T⊥ < 400 keV. At higher tail temperatures

the peak tends to become difficult to separate from the background [18]. The energy

limits are valid for zero temperature of the deuterium. We note that in JET there

are often also fast deuterium ions in the plasma. Fast hydrogen is generated by first

harmonic ICRH. If fast deuterium ions due to NBI are in the plasma, they will also

be accelerated to high energies by second harmonic ICRH. Under some conditions fast

deuterium can even be generated without NBI [18].
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Figure 4. Probability function of D(p,γ)3He with vp ≫ vD for φ = 30◦ and

Eγ,1 − Q = 300 keV in units [γ-photons / (ion × s)] in base ten logarithm. We

set Eγ,2−Eγ,1 = 50 keV, so that the low-energy and high-energy boundaries are more

easily distinguishable. Black dashed lines: boundaries. Green dashed lines: Upper and

lower energy limits.
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Figure 5. Proton energy resolution of the GRS measurement. The green region shows

possible proton energies Ep for a given measured γ-ray energy Eγ . This neglects the

energy of the thermal species. Here we set Eγ,2 − Eγ,1 = 1 keV.

The fast-ion energy resolution of the measurement is good if rv ≫ v0. This is indeed

the case for large or even moderate energy shifts. The ratio rv/v0 is

rv
v0

=

√

mpr

mf

(

1 +
Eγ −Q

Eγ

× 2(mpr −mf)c2

Eγ

)

. (32)

At the nominal peak energy Eγ = Q, the radius becomes rv =
√

mpr

mf
v0. This will also

hold approximately when the energy shift Eγ − Q is so small that the first term in

equation 27 dominates. The second term dominates at large energy shifts, i.e. if

Eγ −Q

Eγ

≫ Eγ

2(mpr −mf)c2
. (33)

For example for fast protons in D(p,γ)3He, 2(mpr −mf )c
2 ∼ 4 GeV and Eγ ∼ 5.5 MeV,

and hence the fraction Eγ/(2(mpr −mf)c
2) is of order 10−3. The radius is larger than

the distance of the circular arc to the origin, unless the Eγ is very close to the minimum

energy Eγ,min. For large energy shifts according to equation 33, we find rv ≫ v0, i.e. the

centers of the circular arcs are close to the origin compared with the radius. Equation 32

suggests that lowQ-values (and hence typical Eγ ∼ Q), largempr/mf and largempr−mf

are beneficial for the energy resolution. NES weight functions are analogously bounded

by circular arcs. But for the GRS weight function of the D(p,γ)3He reaction, the center

of the circle lies very close to the origin compared with the radius. Hence for this

and other selected one-step reaction GRS, the measured γ-energies can be related to

particular fast-ion energies in rather narrow bands. The reaction kinematics of NES

and one-step reaction GRS are very similar. The significant differences originate from

the ratios between energies and momenta for neutron and γ-ray fusion products:

En = pn
vn
2
, (34)

Eγ = pγc (35)

For example, for the 2.45 MeV neutrons from D(D,n)3He, En/pn . c/20. For one-step

reactions releasing γ-rays, Eγ/pγ = c as always. One may estimate how much of the
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initial fast-ion momentum a released γ-ray or neutron can carry:

pγ
pf

=
Eγ

Ef

vf
2c

, (36)

pn
pf

=
En

Ef

vf
vn

. (37)

As vn/2c ≪ 1 and if En ∼ Eγ , the γ-rays carry a much smaller fraction of the total

momentum after the reaction compared with a neutron in a similar reaction. The γ-ray

therefore tends to carry a significant fraction of the energy, but a small fraction of the

momentum compared with neutrons. For the D(p,γ)3He reaction with Ep ∼ 1 MeV and

Eγ ∼ Q ∼ 5.5 MeV, we get pγ/pp ∼ 0.13. For the D(D,γ)4He reaction with ED ∼ 1 MeV

and Eγ ∼ Q ∼ 23.8 MeV, we get pγ/pD ∼ 0.39. As comparison, for the D(D,n)3He

reaction releasing 2.45 MeV neutrons and ED ∼ 1 MeV, we get pn/pD ∼ 1.1. Hence

the observation regions become strongly selective in energy and only weakly selective

in pitch, as reflected by the circular shapes centered close to the origin, for one-step

reactions releasing γ-rays with low Q-value when the momentum carried by the γ-ray is

comparatively low. Examples of probability functions for various reactions illustrating

their energy resolution will be shown in section 7.

6. Numerically calculated weight functions with anisotropic cross sections

Weight functions can also be calculated numerically using the GENESIS code that

predicts a GRS measurement for an arbitrary fast-ion distribution function [29, 68].

In this numerical approach, we calculate a γ-ray spectrum for a collection of Nf fast

ions located at a single point in velocity space and then scan the location of this point

through velocity space. This formalism has been presented for two-step reaction GRS

measurements [8] and is analogous to numeric computation of weight functions for

FIDA [3, 11], CTS [5] and NES [6, 7]. The amplitude of the weight function at phase-

space position (xp, v‖p, v⊥p) is [7]

w(Eγ,1, Eγ,2, φ, v‖p, v⊥p,xp) =
s(Eγ,1, Eγ,2, φ)

Nf

. (38)

GRS weight functions show the incident rate s of γ-photons between two γ-ray energies

viewed at angle φ per alpha particle at phase-space position (xp, v‖p, v⊥p). In the

numerical approach we take anisotropy of the cross sections into account [71]. Figure 6

shows the rate function R for the two observation angles φ = 90◦ and φ = 30◦ illustrating

the strong anisotropy of the cross sections. For isotropic cross sections the isolevels are

concentric circles (see figure 1). Figure 7 shows numerically calculated weight functions

at these angles. While the shapes of the numerically calculated weight functions agree

with the analytic model at the same angles (see figure 3), the amplitudes are different

due to the anisotropic cross sections.

Fast-ion distribution functions typical for ICRH are often characterized by a so-

called tail temperature. We model the tail of such a distribution function as strongly

biased bi-Maxwellian with a tail temperature T⊥ = 150 keV and T‖ = 15 keV as



M. Salewski et al. (2016) Nucl. Fusion 56 046009 12

-15 -10 -5 0 5 10 15
0
2
4
6
8

10
12
14
16
18

v  [106 m/s]

v
 [1

06
 m

/s
]

3,1x10 -9

5,2x10 -7

1,0x10 -6

1,5x10 -6

2,1x10 -6

2,6x10 -6

3,1x10 -6

(a) φ = 90◦

-15 -10 -5 0 5 10 15
0
2
4
6
8

10
12
14
16
18

v  [106 m/s]

v
 [1

06
 m

/s
]

2,0x10 -9

3,3x10 -7

6,6x10 -7

9,9x10 -7

1,3x10 -6

1,7x10 -6

2,0x10 -6

(b) φ = 30◦

Figure 6. Rate function R in units [γ-photons / (ion × s)] for two observation angles.

Anisotropic cross sections are accounted for.

-15 -10 -5 0 5 10 15
0
2
4
6
8

10
12
14
16
18

v  [106 m/s]

v
 [1

06
 m

/s
]

5,0x10 -11

1,0x10 -8

2,0x10 -8

3,0x10 -8

4,0x10 -8

5,0x10 -8

(a) φ = 90◦

-15 -10 -5 0 5 10 15
0
2
4
6
8

10
12
14
16
18

v  [106 m/s]

v
 [1

06
 m

/s
]

10-11

1,7x10 -9

3,3x10 -9

5,0x10 -9

6,7x10 -9

8,3x10 -9

10-8

(b) φ = 30◦

Figure 7. Numerically calculated weight function in units [γ-photons / (ion × s)] for

two observation angles covering various energy ranges of fixed width Eγ,2 − Eγ,1 =

1 keV. From inside to outside: Eγ,1 − Q = 50 keV, 150 keV, 300 keV, 500 keV.

Anisotropic cross sections are accounted for.
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illustrated in figure 8. The product of weight functions and a given fast-ion velocity

distribution functions w× f resolves the origin of the γ-rays in 2D velocity space of the

fast ions for this given f as illustrated in figure 9. The narrow probability functions

at φ = 30◦ provide a better energy resolution for narrow velocity distribution functions

with v‖ ≪ v⊥, such as the bi-Maxwellian from figure 8.
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Figure 9. Products w × f of the weight functions illustrated in figure 7 and the

bi-Maxwellian illustrated in figure 8. The observation angles are (a) φ = 90◦ and (b)

φ = 30◦. The γ-rays observed in each narrow energy range originate from small regions

in velocity space.
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Figure 10. Energy spectra for the bi-Maxwellian distribution from figure 8 as

calculated using Monte Carlo simulations and by weight functions for (a) φ = 90◦

and (b) φ = 30◦. The spectrum shows the number of detected γ-photons per second

[photons/s] in small energy bins of widths Eγ,2 − Eγ,1 = 1 keV.

Figure 10 shows spectra as calculated by traditional Monte Carlo simulations and by

weight functions. The energy and momentum of the thermal species are here neglected.

As expected, the two approaches give very similar results and differ only due to Monte

Carlo noise. The weight function approach has two advantages. First, the velocity-space

region generating the γ-ray at each energy can be identified (see figure 9). Second, once

the weight functions are calculated, the weight function approach is significantly faster
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as it requires only a matrix multiplication instead of Monte Carlo simulations. Hence

spectra of many fast-ion velocity distribution functions can rapidly be calculated.

7. Other reactions and excited charged reaction products

Our formalism is general and applies to any one-step reaction GRS measurement,

including reactions where the charged reaction product has an intrinsic mass width. This

leads to so-called intrinsic broadening of the reaction energy peak such as in D(T,γ)5He.

For many reactions the energy dependence of the reaction cross sections is described

by only few data points. We can nevertheless draw conclusions about the velocity-

space sensitivity for such one-step reactions. The cross sections enter only into the

calculation of the rate function R whereas probability functions are calculated based

on the conservation of energy and momentum and do not depend on the cross sections.

Hence we can calculate the probability functions and the boundaries of weight functions

exactly even if the cross sections are poorly known. Three examples of one-step reactions

with less well established cross sections are D(D,γ)4He, D(T,γ)5He and T(p,γ)4He. The

highly energetic γ-rays from these reactions (see table 1) could be observable at ITER

as deuterium and tritium are the main constituents of ITER plasmas and the continuum

emission above 10 MeV in ITER is practically zero.

Some example probability functions of the D(p,γ)3He, D(D,γ)4He and T(p,γ)4He

reactions are illustrated in figure 11. The D(p,γ)3He reactions with fast protons

provides the narrowest weight functions suggesting direct fast-proton energy resolution.

D(p,γ)3He with fast deuterium and thermal protons (as might be useful in the low-

activation phase of ITER with hydrogen plasmas and deuterium beam injection) and

T(p,γ)4He have somewhat broader weight functions tilted towards negative pitches. The

D(D,γ)4He reaction provides the lowest fast-ion energy resolution.

Reactions with so-called intrinsic broadening require special attention, for example

the D(T,γ)5He reaction. The ground state of the 5He nucleus has a broad energy width

due to its very short lifetime after which it decays to 4He and a neutron. The energy of

the ground state is then defined as Lorentzian with a width σ∗
Q = 0.648 MeV obeying

the uncertainty principle. In this case DT gamma-ray energies also follow a Lorentzian

distribution centered about the nominal energy Q = 16.85 MeV:

pdf(Q∗) =
1

π

1
2
σ∗
Q

(Q−Q∗)2 + (1
2
σ∗
Q)

2
. (39)

We account for this effect by introducing Q∗ as nuisance parameter:

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥)

=

∫

Q∗

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, Q∗)× pdf(Q∗)dQ∗

=

∫

Q∗

∣

∣

∣

∣

Γ2(Q
∗, ..)− Γ1(Q

∗, ..)

π

∣

∣

∣

∣

pdf(Q∗)dQ∗. (40)
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Figure 11. Probability functions prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) for the various

reactions: (a) D(p,γ)3He with fast p; (b) D(p,γ)3He with fast D; (c) T(p,γ)4He with

fast p; (d) D(D,γ)4He. The inner probability functions is at Eγ,1 − Q = 50 keV

for each reaction, and the outer at 500 keV. The observation angle is φ = 30◦, and

Eγ,2 − Eγ,1 = 1 keV.

An example probability function for the D(T,γ)5He reaction is shown in figure 12. The

intrinsic broadening of the peak broadens the observable velocity space, such that ions

with any energy could result in the given γ-ray energy. Nevertheless, the measurement

is significantly more sensitive in some regions compared with others.
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Figure 12. Probability function prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) of the D(T,γ)5He

reaction for φ = 30◦, Eγ1 −Q = 0.35 MeV, Eγ2 −Eγ1 = 1 keV. The intrinsic width of

the line is 648 keV.

8. Blurring due to high temperatures

In our model we assumed that the energy and momentum of the thermal species is

negligible. Non-zero temperatures can be accounted for by the Monte-Carlo sampling

approach as previously shown for NES [7] where it was found that non-zero temperatures
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blur the weight functions. In figure 13 we illustrate the blurring effect for one-step

reaction GRS weight functions for a typical JET ion temperature of 5 keV. The blurring

due to thermal broadening decreases the fast-ion energy resolution, but some energy

resolution can still be provided at these typical temperatures. The strength of the

blurring can be assessed by comparing the momenta and energies of the fast ions to

those of the thermal reaction partners. Our analytical model from section 2 neglected

the energies and momenta of the thermal ions (equations 4-7). These approximations

improve with the fast-ion velocity at given temperature. This suggests that at larger

fast-ion energies the blurring effect is less pronounced and the fast-ion energy resolution

thus less affected.
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Figure 13. Comparison of numerically calculated weight functions at 0 keV and 5 keV

at two γ-ray energy shifts Eγ,1 −Q.

9. Discussion

Weight functions have previously been calculated for FIDA [3, 4], NPA [3], CTS [4, 5],

FILD [43] and NES measurements [6, 7] as well as for two-step reaction GRS [8]. The

substantial differences between the weight functions of each diagnostic imply that the

diagnostics complement each other well. FIDA, CTS, NES and two-step reaction GRS

observe large regions in velocity space which do not allow energy resolution of the

measurements unless tomographic techniques in velocity space are used [9–13]. In

contrast, the velocity-space positions of the narrow weight functions of selected one-

step reaction GRS measurements demonstrate that GRS can provide energy resolution
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of the fast-ion population, even without tomographic techniques. The fast-ion energy

resolution is a strong asset of one-step reaction high resolution GRS measurements that

could be highly important for further fast-ion studies at JET, ITER or other large-size

tokamaks with significant γ-ray fluxes. However, the temperature should be as low

as possible for good energy resolution. Figure 13 illustrates that the fast-ion energy

resolution at a plasma temperature of 5 keV is degraded compared with the 0 keV case.

This temperature is likely the upper limit for useful energy resolution. At the very high

temperatures of burning plasmas (T ∼ 20 keV), it is likely that tomographic inversion

techniques will be required to provide useful energy resolution.

We have argued that the ITER measurement requirements on resolution of the

confined α-particle energies [2] are not achievable by major core fast-ion diagnostics

(FIDA [56, 65], CTS [72, 73], NES [7, 32] or two-step reaction GRS [7, 32]) without

resorting to tomographic inversion in velocity space. A notable exception is NPA that

can provide good energy resolution for a narrow observed pitch range if the signal-

to-noise ratio is high enough. Our results would suggest that energy resolution of

confined α-particles could in principle be achievable at moderate temperatures for one-

step reactions involving α-particles. However, the chances to observe such peaks at

ITER are bleak. The capture reactions α(D,γ)6Li and α(T,γ)7Li have much lower cross

sections than 9Be(α, nγ)12C by about five to six orders of magnitude at the resonances.

As deuterium and tritium will be about 100 times more abundant than beryllium in

ITER and the velocity-space observation regions have comparable sizes, the emission

will be about three to four orders of magnitude smaller. We can expect counting rates

on the order of 1 Hz in a spectral range (1-3 MeV) where the background counting

rates are on the order of 100 kHz. Hence the observation of one-step reaction peaks

involving α-particles at ITER will be extremely difficult if not impossible. Hence one-

step reaction GRS will likely not be able to meet the ITER measurement requirement

on energy resolution of confined α-particles either. Nevertheless, other fast ions should

be readily observable at ITER and DEMO. T(p,γ)4He has been highlighted as a very

promising reaction in DT plasmas [35] as may be demonstrated using ICRH minority

heating in the upcoming tritium campaign at JET. The D(T,γ)5He reaction should be

observable, as count rates on the order of 1 kHz are expected in a high-energy spectral

range (> 10 MeV) where the background is practically zero. Other ions accelerated

by ion cyclotron resonance heating, e.g. 3He, could also be readily observable. The

D(D,γ)4He reaction peak could so far not be detected in JET discharges, but might

appear at ITER.

Weight functions are now available for all major core fast-ion diagnostics. At

ASDEX Upgrade [74], full tomographic inversion of fast-ion measurements to infer fast-

ion distribution functions based on weight functions has already been demonstrated [11].

Such a full tomographic inversion is not likely to be achievable based on one-step

reaction GRS measurements by themselves. However, ASDEX Upgrade has up to six

FIDA views [56, 62, 65], two CTS views [55, 63, 75–78] one NES view [79, 80], one GRS

view [41], one NPA [81] as well as three FILD diagnostics [82, 83]. We can in principle
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combine the one-step reaction GRS with the other fast-ion measurements [10,84]. This

approach is also promising for JET which is equipped with two NES views, two GRS

views as well as an NPA [31, 32]. Lastly, we will be able to show the velocity-space

sensitivity of GRS measurements at ITER [34] and DEMO [35]. ITER will be equipped

with GRS, NES [2] and CTS [85–87] as well as fast-ion charge-exchange recombination

spectroscopy [88]. With this set of diagnostics, measurements of the 2D fast-ion velocity

distribution functions on ITER, and hence energy resolution, should be in reach.

10. Conclusions

We derived analytic expressions, so-called weight functions, describing the velocity-space

observation regions of one-step reaction GRS measurements. The spectral resolution

of the γ-rays achievable with modern detectors allows energy resolution of the fast

ion distribution for all pitches for selected one-step reactions at moderate plasma

temperatures. One-step reaction GRS is the only major core fast-ion diagnostic that

can provide energy resolution directly without tomographic inversion in velocity space

which is a strong asset of this diagnostic. The D(p,γ)3He reaction with fast protons

has the best direct energy resolution. The D(D,γ)4He allows somewhat coarser energy

resolution. The direct energy resolution is worst for reactions with intrinsic broadening.

High plasma temperatures as expected in ITER also strongly degrade the direct energy

resolution. Nevertheless, one-step reaction GRS weight functions provide additional

information on fast-ion velocity space for any machine with substantial γ-ray fluxes,

such as JET, ITER and DEMO. Weight functions are now available for the major fast-

ion diagnostics: FIDA, NPA, CTS, NES, and one- and two-step reaction GRS. Hence

all major fast-ion diagnostics can now in principle be combined to determine fast-ion

velocity distribution functions experimentally.
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