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Abstract

We investigate fast iterative image reconstruction methods for fully 3D multispectral 

bioluminescence tomography for applications in small animal imaging. Our forward model uses a 

diffusion approximation for optically inhomogeneous tissue, which we solve using a finite element 

method (FEM). We examine two approaches to incorporating the forward model into the solution 

of the inverse problem. In a conventional direct calculation approach one computes the full 

forward model by repeated solution of the FEM problem, once for each potential source location. 

We describe an alternative on-the-fly approach where one does not explicitly solve for the full 

forward model. Instead, the solution to the forward problem is included implicitly in the 

formulation of the inverse problem, and the FEM problem is solved at each iteration for the 

current image estimate. We evaluate the convergence speeds of several representative iterative 

algorithms. We compare the computation cost of those two approaches, concluding that the on-

the-fly approach can lead to substantial reductions in total cost when combined with a rapidly 

converging iterative algorithm.

1. Introduction

Bioluminescence tomography is an in vivo imaging technique that localizes and quantifies 

bioluminescent sources in a small animal. It has recently gained a great deal of attention as a 

promising means for macroscopic in vivo imaging of gene expression and other molecular 

and cellular-level processes (Contag and Bachmann 2002, Ntziachristos et al 2005). The 

objective of bioluminescence tomography is to reconstruct the three-dimensional (3D) 

spatial distribution of bioluminescent sources inside the animal from images of the light 

emitted through the animal surface. Collecting measurement data in multiple spectral bands 

and from more than one view, so that the entire animal surface is imaged, facilitates 

tomographic reconstruction of the 3D optical source distribution (Chaudhari et al 2005).
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We have set up a bioluminescence tomographic imaging system using mirrors to collect four 

independent views (Chaudhari et al 2005). Multispectral data were acquired to improve 

localization (Chaudhari et al 2005, Dehghani et al 2006, Cong and Wang 2006, Wang et al 

2006b, Kuo et al 2007, Allard et al 2007, Lv et al 2007). We then used an FEM solution of 

the diffusion equation to construct realistic forward models. We have successfully localized 

bioluminescent sources with this system, using the TOAST software to compute the forward 

model (Arridge et al 1993). However, TOAST is primarily intended to solve the diffuse 

optical tomography problem and is not well adapted for bioluminescence tomography 

applications; the forward model computation cost is high.

Fully 3D multispectral bioluminescence tomography is a computationally challenging 

inverse problem because (1) FEM-based forward models, which allow inhomogeneous 

tissue and realistic geometry, require the inversion of a very large matrix to solve the 

forward problem, (2) the use of multispectral data, which helps localize deep sources, 

increases the problem size by the number of spectral bins and (3) the inverse problem is 

intrinsically ill-posed due to the nature of the photon diffusion process and the limited 

information contained in data collected only on the animal surface.

In this paper we investigate various numerical techniques in order to minimize the cost of 

computing inverse solutions. The inverse problem is equivalent to a search for the source 

distribution which best predicts the measured data while also satisfying an a priori 

assumption regarding the smoothness of the source distribution. In order to iteratively solve 

the inverse problem, a forward model which maps a source to the data domain must be 

computed repeatedly. We explore two different approaches to incorporating the forward 

solutions into iterative algorithms for the inverse problem: (1) a direct calculation approach 

where the forward problem is solved in advance for every source location and then a 

forward solution is computed as a linear combination of these precomputed solutions, and 

(2) an on-the-fly approach where the FEM matrix inversion problem is solved as needed at 

each iteration using the current estimate of the source configuration. In this way, the full 

forward model need never be computed. We evaluate those approaches, combined with 

several different iterative algorithms, to determine the combination of forward and inverse 

algorithm that will minimize the computational cost.

Our goal in this paper is to introduce and evaluate methods that can rapidly reconstruct 3D 

bioluminescent images while still using a realistic FEM forward model. To the best of our 

knowledge, the on-the-fly approach is novel to this application and can substantially reduce 

the total reconstruction time, as shown in section 4. The iterative algorithms we consider in 

this paper include the class of incremental gradient or ordered subset methods, which have 

been widely explored for applications in nuclear medicine imaging (Hudson and Larkin 

1994, Browne and De Pierro 1996, Ahn and Fessler 2003) but have not been investigated in 

the optical imaging literature. The algebraic reconstruction technique (ART) (Gordon et al 

1970), which is a special case of the incremental gradient algorithms, was used for diffuse 

optical tomography (Arridge and Schweiger 1998). Our comparison of reconstruction times 

for the different methods described above should help guide the selection of reconstruction 

and forward modeling algorithms for developers of 3D bioluminescent and fluorescent 

imaging systems when using FEM-based forward models.
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In section 2 we formulate the forward problem based on the diffusion equation using FEM 

models and describe approaches to incorporating the FEM solvers into iterative algorithms. 

In section 3 we define the inverse problem using regularized least squares (RLS) and 

describe various iterative algorithms for computing the inverse solution. Finally, in section 4 

we evaluate different reconstruction methods in terms of computation times using in vivo 

bioluminescent imaging data from a mouse with an implanted brain tumor.

2. Forward problem

In the forward problem one needs to predict the photon flux from the animal surface for a 

given bioluminescent source distribution using known optical scatter and absorption 

properties within the animal. Since iterative solutions to the inverse problem require 

multiple solutions to the forward problem, a computationally efficient forward solution is 

important.

2.1. Forward model

Photon propagation in turbid media can be described by the radiative transfer or Boltzmann 

transport equation (Arridge 1999). While this model can be used in bioluminescence 

tomography (Klose 2007), the high computation cost and detailed knowledge required of the 

media's optical properties limit its use in practice. In contrast, the diffusion approximation 

under the assumption of isotropic scattering has been used extensively (Arridge et al 1993, 

Schweiger et al 1995, Jiang 1998, Arridge 1999, Hielscher et al 1999, Gu et al 2004, Wang 

et al 2004, Cong et al 2005, Slavine et al 2006, Dehghani et al 2006, Comsa et al 2006, 

Soloviev 2007, Kuo et al 2007). The diffusion approximation is reasonably accurate in soft 

tissue in the near-infrared region where scattering dominates absorption (Arridge 1999, Shen 

et al 2007). We, therefore, focus on the forward model based on the following steady-state 

diffusion equation (Arridge 1999),

(1)

subject to a Robin boundary condition

(2)

where q represents the bioluminescent source distribution, ϕ denotes the photon density, 

 denotes the location vector,  is the animal volume, ∂Ω is the animal surface, 

 is a unit vector pointed outwardly normal to the surface ∂Ω, λ is the wavelength and 

, with μa and  being the absorption and reduced 

scattering coefficients, respectively. In the boundary condition (2), G is a parameter 

modeling internal reflection at the boundary and can be computed as G = (1 + γ)/(1 − γ), 

where  with nint being the refractive 

index of tissue (Schweiger et al 1995). The measurable photon flux at r ∈ ∂Ω is given by 

m(r, λ) = ϕ(r, λ)/(2G). The mapping from the source distribution q in the volume to the 

photon flux m through the surface can be obtained by solving (1) for ϕ given q.
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Approaches to solving the diffusion equation (1) include analytical methods that assume 

simplified geometry and homogeneous tissue (Rice et al 2001) and the more general finite 

element method (FEM) (Arridge et al 1993, 2000, Schweiger and Arridge 1997, Jiang 1998, 

Arridge 1999, Roy and Sevick-Muraca 2001, Gu et al 2004, Cong et al 2005, Alexandrakis 

et al 2005, Chaudhari et al 2005, Lv et al 2006). Although the analytical method is more 

computationally efficient, simplifying assumptions about geometry and optical properties 

can produce inaccurate results (Chaudhari et al 2005). Here we focus on the FEM-based 

forward model.

In the FEM framework, the 3D animal volume Ω is discretized into tetrahedral elements 

connected at v vertex nodes. The source q and the photon density ϕ are also discretized 

using finite element basis functions and are represented by  and , respectively. 

Then the problem of solving the diffusion equation reduces to

(3)

where . The FEM matrix F is a function of the optical absorption and reduced 

scattering coefficients and refractive index. The optical properties can be specified using 

published measurements applied to a segmented MR or CT volume (Wang et al 2004, 

2006a, Chaudhari et al 2005, Alexandrakis et al 2005, 2006, Lv et al 2006, Allard et al 

2007). A detailed description of how to construct F can be found in Arridge et al (2000). 

The FEM matrix F is symmetric (Arridge et al (2000), equations (29)–(34)). It is also sparse 

with on the order of 10 nonzero elements per row.

2.2. Forward solution method

There are two standard methods for solving the inversion problem in (3) for φ: (1) Cholesky 

factorization and substitution (CFS) and (2) preconditioned conjugate gradient (PCG) 

(Arridge et al 1993, Davies et al 1997, Schweiger and Arridge 1997, Arridge 1999). See 

Schweiger and Arridge (1997) for an overview of those methods and an analysis of their 

computational complexities. We chose CFS for our forward problem solver since CFS was 

faster than PCG in our experiments using a realistic FEM mesh; a comparison can be found 

in Chaudhari (2006) and Ahn et al (2007a). The reason that CFS was more efficient in our 

case is that if Cholesky factorization is done once, subsequent forward and back-

substitutions can be inexpensively performed for multiple sources, as noted in Schweiger 

and Arridge (1997). In CFS, F is first decomposed into Cholesky factors as F = U′ U, where 

U is an upper triangular matrix and ′ represents matrix or vector transpose. Next one solves 

U′ c = q for  by forward substitution and then solves Uφ = c for φ by back-

substitution. The Cholesky factorization to calculate U is a one-time computation for a given 

FEM model F and the forward and back-substitution can be repeatedly computed for 

different q's using the precomputed Cholesky factor U.

2.3. System matrix

Let  be the load vector for a unit source at voxel i and 

be a matrix of the load vectors. Then the source representation  using the load 
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vectors as a basis, and the corresponding source  in tessellation nodes have the 

following relationship:

(4)

The data , which denote the photon flux through the animal surface as measured by 

a CCD camera, are given by

(5)

where  maps the photon density in the volume to the CCD camera measurements. 

Typically, p < v and N < v; therefore, W is a thin matrix and D is wide.

Combining (3), (4) and (5), we construct a system matrix  that transforms the 

source x into the measurement data y such that

(6)

The matrices D and W are sparse so the cost for multiplying a vector by D or W is 

negligible. Note that the system matrix A is not sparse whereas F is. To compute F−1q for 

some q, one needs to solve the forward problem (3), as discussed in section 2.2.

2.4. Forward and back-projector implementation approach

The two important operations involving the system matrix A are `forward projection' and 

`back-projection,' referred to jointly below as F/B projection. This terminology is borrowed 

from computed tomography (Herman 1980) although a mapping from a source to 

measurement data analogous to the system matrix was called the projection operator and the 

data were called the projection data in the context of optical tomography in Arridge and 

Schweiger (1998). For forward projection one multiplies a vector by the system matrix, that 

is, one computes y = Ax for some . For back-projection one computes x = A′ y for 

some . One needs to compute F/B projection multiple times in iterative algorithms. 

Since the time required for F/B projection is a major contributor to the total reconstruction 

time, it is important to implement F/B projection operators efficiently. We investigate two 

approaches to implementing F/B projectors: a straightforward scheme described below we 

call the `direct calculation' approach and a new `on-the-fly' method.

2.4.1. Direct calculation approach—In the direct calculation approach, one 

precomputes the full system matrix A and implements the F/B projector by a matrix-vector 

multiplication. Each column of the system matrix is computed by taking a unit vector 

corresponding to each source location as follows:
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(7)

where  is the jth unit vector with only the jth entry being 1. 

The substitution step in (7) must be repeated for a total of p source locations. However, once 

A is precomputed, F/B projection can be implemented as direct matrix-vector 

multiplications, Ax and A′ y.

2.4.2. On-the-fly approach—An alternative that avoids precomputing the full system 

matrix, is to calculate the F/B projection in an on-the-fly manner. The on-the-fly forward 

projector can be implemented as follows:

(8)

Similarly, in view of the symmetry of F, one can compute the back-projection on the fly as 

follows:

(9)

Every time we compute a forward or back-projection in the on-the-fly approach, we need to 

perform the substitution step only once.

2.4.3. Comparison—In the direct calculation approach, it is very expensive to 

precompute the full system matrix  because the forward problem must be solved 

p times where p is the number of source voxels. However, once the matrix has been 

precomputed, the F/B projection can be computed rapidly as a single matrix vector product. 

On the other hand, in the on-the-fly approach, whenever one needs to compute the forward 

or back-projection, one must solve the forward problem in (3), which is more expensive than 

computing the product of the system matrix and a vector, partly because the FEM matrix 

 is larger than the system matrix  (typically, N < v and p < v) despite 

the sparsity of F. For example, in the multispectral bioluminescence tomography system we 

consider in section 4, v2 was larger than Np by a factor of >150.
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Which of the direct calculation and on-the-fly approaches should be used? This depends on 

how many images are to be reconstructed for a given forward model, how many iterations 

per image are required for practical convergence of an iterative algorithm and how many 

F/B projections per iteration are needed. If one wishes to investigate many different iterative 

algorithms and regularization schemes for a given subject or if one assumes that the animal's 

anatomical structure and position do not change much over time in a longitudinal study, the 

direct calculation approach will be beneficial because once the expensive precomputation is 

performed, subsequent forward solutions can be rapidly computed by matrix vector 

multiplication. In contrast, if one is to compute relatively few images with a small number of 

iterations, the on-the-fly approach should be chosen. Comparisons of image reconstruction 

times for different approaches using real mouse bioluminescent data are made in section 4.

One of the advantages of the direct calculation approach is that direct access to any column 

or row in the system matrix is possible when the matrix is precomputed. Column or row 

access is required by certain iterative algorithms such as coordinate descent and incremental 

gradient algorithms, as discussed in section 3. Furthermore, the direct calculation approach 

may be more readily parallelizable than the on-the-fly approach.

Interestingly, the on-the-fly approach is closely connected with the adjoint or reverse 

differentiation method which is widely used for computing the gradient of a cost function in 

nonlinear diffuse optical tomography (Davies et al 1997, Hielscher et al 1999), as discussed 

in the appendix.

2.5. Multispectral system model

In multispectral imaging with K spectral bins, a multispectral system matrix Amul is 

constructed by concatenating monochromatic system matrices A1(λ1), …, AK(λK) for 

wavelengths λ1, …, λK (Chaudhari et al 2005):

(10)

where  with s1, …, sK being known emission 

spectra of the bioluminescent source, and  the 

multispectral data. It is straightforward to apply the F/B projection methods discussed in 

section 2.4 by combining individual F/B projections for each wavelength. That is, the 

forward projection is given by

and the back-projection
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Henceforth, we omit the subscript in Amul and ymul for notational simplicity and consider 

both monochromatic and multispectral systems in a common framework.

3. Inverse problem

The ultimate goal of bioluminescence tomography is to estimate the source x from the 

photon flux measurement y based on the system model (6) or (10). In this section we 

formulate the inverse problem and discuss iterative algorithms for the inverse solution.

3.1. Regularized least squares (RLS)

We focus on the following regularized least squares (RLS) estimate:

(11)

The nonnegativity constraint, x ≥ 0, is imposed because the source strength is physically 

nonnegative (Jiang and Wang 2004, Jiang et al 2007). Although the problem size can be 

reduced by allowing sources only in a permissible region (Cong et al 2004, 2005, Jiang and 

Wang 2004, Wang et al 2006a, 2006b, Cong and Wang 2006, Jiang et al 2007, Lv et al 

2007), we do not consider such constraints here. In (11), L is the data-fit function

(12)

β is a regularization parameter, and R is a quadratic regularization function such that

(13)

for a nonnegative definite matrix . The regularizer R stabilizes the noise in 

reconstructed images yet usually introduces bias. In a Bayesian framework, if the source and 

the additive noise are assumed to be zero-mean Gaussian with covariance of K and σ2I, 

respectively, then the RLS estimate  obtained with choosing β = σ2 and R = K−1 can be 

viewed as a maximum a posteriori (MAP) estimate, where I is the identity matrix (Tarantola 

2005, chapter 3). Other noise models such as the shot-noise model (Ye et al 1999) can also 

be used; other types of regularization functions include generalized Gaussian Markov 

random field priors (Bouman and Sauer 1993), non-Gaussian Gibbs priors (Hebert and 

Leahy 1989), which have an edge-preserving property, and L1-norm regularizers, which are 

known to produce sparse reconstruction (Cao et al 2007). We focus here on the quadratic 

cost function using (12) and (13). However, we note that the optimization methods described 

below are general, and can, with certain restrictions on differentiability and continuity, be 

used in conjunction with the nonquadratic regularizers referred to above.

We use a weighted L2-norm regularizer with a positive-definite diagonal matrix R (Lin et al 

2006). If R is the identity matrix, then R(x) becomes a conventional L2-norm regularizer 

(Cong and Wang 2006, Han et al 2006, Wang et al 2006a, Lv et al 2006, Han and Wang 

2007, Soloviev 2007). In this case, as the regularization parameter β increases, the 

reconstructed image becomes smooth and less noisy. But the reconstructed sources also tend 
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to become superficial, consequently increasing localization errors particularly for deep 

sources. This occurs because deep sources are highly attenuated so need larger amplitudes to 

match the surface photon flux from a superficial source; these large amplitudes are in turn 

penalized by the L2-norm. Quadratic weighting schemes have been proposed to reduce the 

preference for superficial sources in the related problem of cortical current imaging in EEG 

and MEG (Lin et al 2006, Baillet et al 2001). Nonquadratic penalties can also have 

attractive properties in this respect.

We use the following sensitivity-dependent weight matrix, which through column 

normalization removes the increased penalty for deep sources, effectively removing the bias 

towards superficial ones:

(14)

where diag{·} denotes a diagonal matrix, γj is the sensitivity of the jth source location 

defined as

(15)

and aij are the entries in the system matrix A. One can assume γj > 0 for all j without loss of 

generality since one can exclude any source xj with γj = 0 from the parameter space. Note 

that γj's are readily calculated using an on-the-fly back-projection A′1 of uniform data 1 = 

[1, …, 1]′, without precomputing A.

The cost function in (11) with a positive-definite matrix R is strictly convex and so there 

exists a unique solution  of the nonnegativity-constrained optimization problem in (11) and 

a local minimum is also the global minimum (Bertsekas 1999, p 685). In the continuous 

domain, the uniqueness of a solution to the diffusion equation under certain conditions on 

the source is discussed in Wang et al (2004) for the unregularized case and in Han et al 

(2006) and Han and Wang (2007) for the regularized one.

Most of the iterative algorithms that we study in section 3.2 use the gradient ∇Φ of the cost 

function Φ. The gradient is given by

(16)

calculation of which requires F/B projections. The Hessian H of the cost function is given 

by

(17)

The diagonal elements of the Hessian are used in certain preconditioners in section 3.2.5.

The quality of the reconstructed image  in (11), as reflected in source localization error, 

quantitation error, resolution and noise characteristics, is determined by the choice of cost 

function Φ as well as the physical properties and limitations of the imaging system. 
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Inaccuracies in the system model A will introduce a systematic bias into the image. An 

inaccurate noise model, for which we assume a zero-mean white Gaussian distribution, can 

lead to suboptimal noise characteristics as well as additional bias. Image quality will also be 

affected by choice of the regularization function R. However, we note that our goal here is to 

explore methods for solving the inverse problem once the cost function Φ is specified, rather 

than to investigate the relative merits of different cost functions. In section 4 we use a single 

regularization function which produces reasonably good localization results for the data used 

in our evaluations. We then compare the convergence speeds of different reconstruction 

algorithms that all converge to the same optimal solution for the chosen cost. Since all 

algorithms converge to the same solution we do not present comparisons of image quality in 

this paper.

3.2. Iterative algorithms

We will investigate iterative solutions to the optimization problem (11) since the 

nonnegativity constraint precludes an analytical solution. We choose four representative 

iterative algorithms: a gradient projection method (GPM), preconditioned conjugate gradient 

(PCG), coordinate descent (CD) and an incremental gradient algorithm, OS-SPS. We 

compare their convergence speeds using real mouse bioluminescent data in section 4. Those 

algorithms are described in detail below.

A number of different algorithms for bioluminescence tomography have been used in the 

literature. The expectation maximization (EM) algorithm (Dempster et al 1977) which was 

originally developed to compute a maximum likelihood solution for linear Poisson inverse 

problems (Shepp and Vardi 1982) was used in Jiang and Wang (2004), Alexandrakis et al 

(2005, 2006) and Jiang et al (2007). The EM algorithm maximizes an unregularized Poisson 

likelihood function and its convergence speed is generally very slow (Meng and van Dyk 

1997, Qi and Leahy 2006) so we do not consider it in this paper. A deblurring variant of EM 

was used in Slavine et al (2006). A regularized Newton's algorithm (Gu et al 2004) and a 

modified Newton's method with an active set strategy (Cong et al 2004, 2005, Lv et al 2006) 

have also been used. A major disadvantage of Newton's methods for constrained 

optimization is that it is computationally costly both to enforce constraints and guarantee 

convergence to the solution (Bertsekas 1999, p 231); for example, naive orthogonal 

projection onto the nonnegative constraint set does not necessarily guarantee a decrease in 

the cost function (Bertsekas 1999, p 245). A constrained Landweber method was used in 

Jiang and Wang (2004), which requires nontrivial stepsize selection for both global 

convergence and optimal convergence rates.

The nonnegativity constraint in (11) can be more easily enforced by the four algorithms 

(GPM, PCG, CD and OS-SPS) considered here than by using active set methods (Cong et al 

2004, 2005, Lv et al 2006, 2007). In GPM and PCG, the nonnegativity constraint is enforced 

by orthogonal projection onto the constraint set and a subsequent bent line search 

(Mumcuoğlu et al 1994, Qi et al 1998); in CD and OS-SPS, the optimization problem is 

reduced to a set of one-dimensional constrained problems, which makes it trivial to enforce 

the constraint. All the algorithms are aimed at minimizing the common RLS cost function in 

(11) and converge to the optimal point, with the exception of OS-SPS which approaches an 
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approximate solution as stated below. None of these algorithms has any free parameters, 

such as step size, so that we can directly compare convergence rates for solving the problem 

in (11).

3.2.1. Gradient projection method (GPM)—A gradient projection method (GPM) is an 

iterative algorithm for constrained problems analogous to a gradient descent method for 

unconstrained problems (Bertsekas 1999, p 223). The gradient projection method we focus 

on here can be summarized as follows: for n = 0, 1, …,

(18)

(19)

(20)

(21)

(22)

where  is the nth iterate, x0 is an initial estimate,  is a preconditioner, 

∇Φ and H are given in (16) and (17), respectively, and [·]+ denotesthe orthogonal projection 

onto the nonnegative orthant, that is, q = [t]+ implies qj = min(tj, 0) for all j. We describe 

preconditioners for this method in section 3.2.5. The above algorithm can be implemented 

by keeping Ax as a state vector so that GPM requires one F/B projection pair per iteration 

unless zn leaves the constraint set. Calculating the gradient in (18) and (16) requires one 

back-projection if Axn is retained as a state vector, and calculating the denominator in (20) 

needs one forward projection since dn′ Hdn = ∥Adn∥2 + βdn′ Rdn. If [zn]+ ≠ zn, then an 

additional forward projection is needed in (22) because dn is updated in (21).

3.2.2. Preconditioned conjugate gradient (PCG)—A PCG method is a general 

purpose optimization algorithm using a conjugate direction as a search direction (Bertsekas 

1999, p 138). To enforce the nonnegativity constraint, we use a constrained version of PCG 

where the search direction is bent when an iterate leaves the constraint set, as in section 

3.2.1 (Mumcuoğlu et al 1994, Qi et al 1998). The version we use can be summarized as 

follows: for n = 0, 1, …,
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(23)

The PCG method requires one F/B projection pair per iteration with an extra forward 

projection, depending on whether zn leaves the constraint set.

3.2.3. Coordinate descent (CD)—A coordinate descent (CD) method is an iterative 

algorithm that minimizes the cost function along one coordinate direction for each update 

(Bertsekas 1999, p 267). The method has been successfully applied to image reconstruction 

applications (Bouman and Sauer 1996, Ye et al 1999). The CD method can be implemented 

as follows:

(24)
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(25)

where ej is the jth unit vector and A·j is the jth column of A. In (24), the jth diagonal element 

Hjj of the Hessian H in (17) is given by

(26)

where

(27)

from (14), (15), and (17). The CD method requires access to each column A·j of the system 

matrix; therefore, the on-the-fly approach is not suitable for CD.

3.2.4. Incremental gradient methods—Incremental gradient methods (Bertsekas 1999, 

p 108) or ordered subset (OS) algorithms (Hudson and Larkin 1994) are optimization 

techniques which use only a subset of the data for each update with the aim of reducing the 

cost for computing gradients. Various incremental gradient methods have been successfully 

applied to PET/SPECT image reconstruction to accelerate convergence speeds (Hudson and 

Larkin 1994, Qi and Leahy 2006). The applicability of an OS algorithm to bioluminescence 

tomography was mentioned in Jiang and Wang (2004). In this paper we consider an OS 

version of separable paraboloidal surrogates (OS-SPS) where a line search is not required 

(Erdoğan and Fessler 1999). We derive the OS-SPS algorithm for our problem by following 

the derivation of additive updates in Erdoğan and Fessler (1999):

where
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and

(28)

for m = 1, …, M, with M being the number of subsets Sm or subcost functions Φm. We 

choose the subsets Sm in (28) by downsampling the data space as Sm = {i : i ≡ m − 1(mod 

M), i =1, …, KN}.

Generally, OS-SPS does not converge to an optimal solution of the problem in (11) but to a 

limit cycle of points which are only approximate solutions (Ahn et al 2006). The OS type 

algorithms can be forced to converge to the optimal solution by using relaxation parameters 

(Ahn and Fessler 2003), switching to a convergent algorithm at some point (Li et al 2005), 

or rederiving the algorithm in a framework of incremental optimization transfer (Ahn et al 

2006). However, we use the original form of OS-SPS as outlined above for simplicity 

because it works well enough for our purposes, as shown in section 4. Since OS algorithms, 

including OS-SPS, require access to each row of the system matrix A to compute the 

gradient ∇Φm of the subcost function, the on-the-fly approach is not suitable.

3.2.5. Preconditioners—For ill-conditioned problems, gradient based methods suffer 

from slow convergence but can be accelerated using preconditioning. Newton's method 

using the inverse of the Hessian as a preconditioner converges very quickly (Bertsekas 1999, 

p 26). However, calculating the Hessian inverse is impractical for large-scale problems. 

Here we consider only simple diagonal preconditioners.

A popular choice is a diagonal approximation to Newton's method (Bertsekas 1999, p 27),

(29)

with ξj and Rjj defined in (27). Calculating the term  requires precomputation of 

the full system matrix A so the on-the-fly approach is not suitable for this preconditioner. 

However, one can estimate ξj from  where γj ≜ Σi aij since ξj and  are usually highly 

correlated and γj can be readily computed on the fly by back-projecting a vector of ones as 

discussed in section 3.1. Figure 1 shows an example scatter plot of ξj versus  for the 

multispectral imaging system model from section 4. As shown in the figure, ξj and  are 

strongly correlated (Pearson's correlation coefficient was 0.922). A practical strategy for 

estimating ξj, which works for the on-the-fly approach, is as follows. First, one computes γj 

for j = 1, …, p by back-projection A′1. Next, one randomly chooses T source locations j1, 

…, jT, and calculates projections y(t) = Aejt and subsequently  for t = 1, 

…, T. Then one estimates the slope τ in the scatter plot by fitting a line ξ = τγ2 to the T 

samples . Finally, one approximates ξj as  using the slope estimate 

for j = 1, …, p. We refer to the resulting preconditioner as the estimated diagonal 

approximation to Newton's (EN) method,
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(30)

which can be applied in both direct calculation and on-the-fly approaches. Calculating this 

preconditioner requires one back-projection for computing 's and T forward projections 

for estimating τ. In section 4, we choose T = 10 source locations for estimating the slope τ. 

The coefficient of variation (CV) of  due to randomly choosing 10 source locations was 

about 29%, which is stable enough for our purposes (a very accurate estimate of τ is not 

necessary).

For PCG we also consider an EM-type preconditioner as follows:

(31)

where ∊ is a small positive number, e.g., ∊ = 10−3 max(1, maxl xl) > 0. This preconditioner 

originates from the EM algorithm for maximizing a Poisson likelihood (Shepp and Vardi 

1982) and has been used successfully to accelerate PCG algorithms for emission 

tomography (Kaufman 1987). It has also been used with PCG for bioluminescence 

tomography (Chaudhari et al 2005).

3.2.6. Comparison—The on-the-fly approach is not suitable for CD and OS-SPS, as 

discussed above, since they require access to each row or column of the system matrix; 

neither is it suitable for the diagonally approximated Newton preconditioner PN in (29) since 

calculating ξj needs the precomputed full system matrix. For GPM and PCG, using PEN in 

(30) or PEMin (31), both direct calculation and on-the-fly approaches can be applied.

The computation cost for the iterative algorithms is dominated by F/B projections. 

Therefore, the computational complexity of each algorithm can be represented by the 

number of F/B projections required per iteration. A forward or back-projection amounts to 

matrix-vector multiplication for the direct calculation approach, and to one FEM forward 

solution for the on-the-fly approach. GPM and PCG require one F/B projection pair plus 

possibly an extra forward projection. The cost per iteration for CD and OS-SPS equals 

roughly that of one F/B projection pair. Therefore, the computation costs per iteration for 

those algorithms considered here do not differ substantially once the F/B projection 

implementation approach is chosen. Other important factors are the cost for precomputation 

and the convergence speed, that is, how many iterations are required for practical 

convergence.

Memory requirements for the iterative algorithms are modest. During iterations, one needs a 

memory space O(p + KN) proportional to the image size p and to the data size KN. 

Additionally, for the direct calculation approach, one needs to store the KN × p system 

matrix. On the other hand, for the on-the-fly approach, one must retain the v × v FEM 

matrix, which is sparse and has about 10v nonzero elements, for each wavelength if PCG is 

used for the forward problem solver; and one needs to keep the v × v Cholesky factor, which 
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is a sparse upper triangular matrix, for each wavelength if CFS is chosen for the FEM 

solver.

The cost of all of these methods is dominated by the cost of (possibly partial) forward and 

back-projections. Since these operations all involve large matrix-vector multiplications for 

the direct calculation approach, parallelization using multithreading or other methods is 

relatively straightforward. Among the four methods, the full gradient methods (PCG and 

GPM) in conjunction with the direct calculation approach benefit most readily since the full 

forward and back-projection operations can be easily distributed across processors. The CD 

method which updates one variable at a time will benefit least from parallelization.

4. Results

We applied iterative reconstruction methods to real bioluminescent data obtained from a 

mouse with a brain tumor implanted in the right cerebral hemisphere. Our goal is to compare 

computation cost for different reconstruction methods. All methods described should 

converge to the RLS image  in (11) with the exception of OS-SPS which may enter a limit 

cycle as described above.

Multispectral bioluminescent data were obtained from top and two side views by the IVIS 

200 imaging system for wavelengths 580 nm, 600 nm, 620 nm and 640 nm. Since the tumor 

was near the dorsal surface of the head, no signal was detected from the bottom view and 

those three views (top and two sides) had sufficient information for localizing the source 

(Chaudhari et al 2005).

3D CT scan data were used to segment the anatomical volume into skull and soft tissue and 

to assign standard optical properties (Cheong et al 1990). The specific values of the 

absorption and reduced scattering coefficients for the skull and soft tissue we used can be 

found in Chaudhari et al (2005). A regularization parameter value of β = 0.05 was 

determined empirically. All image reconstructions were performed on an AMD Opteron 870 

2.0 GHz computer. For all the iterative algorithms, a zero uniform image, 

, was used as an initial estimate x0.

There is a trade-off between the number of FEM mesh nodes and the accuracy of FEM 

model; 105–106 nodes were recommended for sufficient accuracy in 3D problems 

(Schweiger and Arridge 1997). Here we used a FEM-based forward model with v = 71256 

tessellation nodes, a source space with p = 10814 source locations, and N = 3085 surface 

measurement nodes for K = 4 spectral bins. We did not attempt to investigate different FEM 

models in terms of accuracy and computation cost since our purpose is to compare the 

computation speeds of different reconstruction methods for a given model; however, we 

achieved reasonably good localization results within a reasonable time, as shown below. See 

Chaudhari et al (2005) for a study of the effects of the number of surface measurement 

points on reconstruction results.

First, we precomputed the full system matrix A by using the mldivide function in Matlab 

(v7.3; Mathworks, MA, USA). We computed 500 columns of the system matrix at a time; 
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that is, we prepared a 71256 × 500 matrix by combining 500 load vectors and solved the 

forward problem in (3) by putting the matrix on the right-hand side. It took 12 708 s to 

compute the full system matrix, as shown in table 1. Then we reconstructed the 

bioluminescence image with the system matrix using the direct calculation approach. The 

iterative algorithms were implemented in the C language. Table 1 shows, in the columns 

named iteration cost, the computation time in seconds and the number of iterations, required 

for each algorithm to achieve the relative error , <5%, and 

<1%, respectively, where the RLS image  in (11) was estimated by 2000 iterations of 

GPM-N. Note that the relative error  is not with respect to the true source distribution 

which is unknown but with respect to the RLS solution  given in (11). Therefore, 

represents how close an image is to the converged solution and can be used for evaluating 

the convergence speed of an iterative algorithm. In the table, GPM-U denotes the 

unpreconditioned GPM; GPM-N and GPM-EN denote GPM with preconditioner PN and 

PEN given in (29) and (30), respectively; CG, PCG-N, PCG-EN, and PCG-EM denote PCG 

with no preconditioner and with preconditioners PN, PEN, and PEM, respectively; and OS-

SPS-2, OS-SPS-5, and OS-SPS-10 denote OS-SPS with two, five and ten subsets, 

respectively. In table 1, the total reconstruction time is the sum of the precomputation time 

and the iteration cost. We did not include the computation cost for constructing the FEM 

matrix F, which is common in all the methods.

Next, we reconstructed images using the on-the-fly approach. For the on-the-fly approach, 

the precomputation time (110 s) in the table represents the time required for Cholesky 

factorization. As discussed in section 3, we excluded CD and OS-SPS, and preconditioner 

PN for this approach. For the on-the-fly approach we implemented the iterative algorithms in 

Matlab. For the on-the-fly F/B projectors, the one-time computation for Cholesky 

factorization was performed by the chol function, and repeated substitutions were carried out 

by the mldivide function in Matlab.

As shown in table 1, for both GPM and PCG, the use of preconditioners PN, PEN and PEM 

significantly accelerates convergence. In other words, the preconditioned algorithms (GPM-

N, GPM-EN and PCG-N, PCG-EN, PCG-EM) require fewer iterations and lower iteration 

costs in seconds than the unpreconditioned ones (GPM-U and CG). Preconditioners PEN 

using the estimated diagonal elements of the Hessian and PN using the exact diagonals 

showed similar convergence speeds. In the direct calculation approach, CD and OS-SPS-10 

were much faster than GPM and PCG. In fact, OS-SPS-10 showed the fastest convergence 

speed; it required only 8 and 15 iterations (11 and 20 s) for  < 10% and  < 5%, 

respectively. However, OS-SPS-10 (as well as OS-SPS-5) could not reach a point where ε < 

1% because of the limit cycle behavior. This is a typical characteristic of incremental 

gradient or OS algorithms; as the number of subsets increases the initial convergence speed 

becomes faster but the limit point moves further from the optimal solution. Therefore, when 

it comes to the number of subsets for OS algorithms, there is a trade-off between 

convergence speed and accuracy. For ε < 1%, CD was fastest among the iterative algorithms 

for the direct calculation approach. On the other hand, for the on-the-fly approach, GPM-EN 

showed the fastest convergence rate for all three relative error cases, and PCG-EN showed a 

similar yet little slower convergence rate.
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The precomputation time (12 708 s) for the direct calculation approach is much larger than 

that (110 s) for the on-the-fly approach whereas the cost per iteration for the direct approach 

is smaller than that for the on-the-fly approach. If few images are to be reconstructed for a 

given system, then the on-the-fly approach can substantially reduce the total computation 

cost. For example, for the relative error <10%, GPM-EN, the fastest among the on-the-fly 

algorithms in total reconstruction time, is faster than OS-SPS-10, the fastest of the direct 

calculation algorithms, by a factor of 12719/798 ≈ 15.9; similarly, for < 5%, by a factor of 

12728/1091 ≈ 11.7. For ε < 1%, GPM-EN in the on-the-fly approach is faster than CD in 

the direct calculation approach by a factor of 12773/1724 ≈ 7.4. As the number of required 

iterations increases, the factor of computational saving of the on-the-fly approach compared 

to the direct approach decreases.

Figure 2 shows the RLS image  and figure 3 shows an image reconstructed by 29 iterations, 

taking 798 s in total reconstruction time, of GPM-EN, which is the fastest among the on-the-

fly algorithms. Although the relative error between the images is about 10%, they look 

similar and the localization is reasonably accurate.

5. Conclusion

We have explored computationally efficient methods for fully 3D multispectral 

bioluminescence image reconstruction. When it comes to incorporating F/B projectors into 

iterative algorithms, we investigated the straightforward direct calculation approach and an 

on-the-fly approach where one does not have to precompute the system matrix. We 

evaluated those approaches combined with various iterative algorithms by using real mouse 

bioluminescence data. We achieved a substantial speed-up using the proposed on-the-fly 

approach by a factor of up to 15.9 when a single image reconstruction is required. However, 

if multiple image reconstructions are to be performed for a given model, the speed-up factor 

decreases and in this case the direct calculation approach may be more efficient. Using 

proper preconditioners accelerates convergence speeds significantly; the estimated diagonal 

approximation to Newton's preconditioner (EN), which applies to both direct calculation and 

on-the-fly approaches, reduced the iteration cost by a factor of >7 for both GPM and PCG. 

In the on-the-fly approach, GPM-EN yielded the fastest convergence speed and PCG-EN 

showed a little slower convergence rates. For the direct calculation approach, OS-SPS, an 

incremental gradient algorithm, was the fastest one although it converged to an 

approximated RLS solution; CD was the second fastest, which converges to the RLS 

solution.

We note that the emphasis in this paper is on fast methods for computing inverse solutions. 

With the exceptions described above, all methods implemented should converge to the same 

solution. For this reason we have not explored measures of image quality such as bias, 

resolution and variance. The methods presented here represent the simplest (quadratic) error 

models and regularization functions. However, most of the ideas discussed can be extended 

to incorporate more sophisticated noise models and nonquadratic regularization functions. 

We also restricted our attention here to bioluminescence imaging. However, the methods 

can be extended to the related problem of reconstructing images in 3D fluorescence optical 

tomography (Ahn et al 2007b). In this case, the models must be extended to also include the 
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propagation of the excitation light through the animal. Since this process can also be 

approximated using the diffusion equation, similar fast FEM and on-the-fly methods can be 

developed.
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Appendix. Relationship between adjoint or reverse differentiation and F/B 

projection approaches

Suppose that F = F (θ) and q = q(θ) where F and q are defined in (3) and 

 is an unknown parameter vector. In diffuse optical tomography, θ 

represents the optical absorption and reduced scattering coefficients and q is a known 

constant in θ. In bioluminescence tomography, θ is the source distribution and F is a known 

constant. From (3), one can show

(A.1)

for s = 1, …, S. Let a data-fit function be defined as

(A.2)

where D is defined as in (5). Here our goal is to compute the gradient ∇L(θ) efficiently.

Using (A.1), one obtains

(A.3)

where 〈·,·〉 denotes the real inner product. If one is to use the above expression to compute 

∇L(θ). one needs to solve the forward problem in (3) to compute ϕ and additionally `S' 

forward problems to calculate F−1{∂q/∂θs – ∂F/∂θs)ϕ} for s = 1, …, S by solving Fu = ∂q/

∂θs – ∂F/∂θs)ϕ. Now one can rewrite (A.3) as

(A.4)

where (F−1)* is the adjoint of F−1 and (A.4) is due to the fact that F is a real symmetric 

matrix, in other words, a self-adjoint operator. Computing ∇L(θ) by (A.4) requires only two 

forward solutions, one for computing ϕ and the other for computing the vector F−1D′ (y – 

Dϕ) by solving Fu = D′ (y – D ϕ) for u, hence a computational saving by a factor of (S + 

1)/2 is achieved if the cost for forward solutions is dominant in the gradient computation. 

Using (A.4) for computing the gradient is often referred to as adjoint or reverse 
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differentiation in diffuse optical tomography (Davies et al 1997, Hielscher et al 1999). A 

similar idea is also used in Arridge and Schweiger (1995, 1998).

Now we consider the special case of bioluminescence tomography, where F is a known 

constant and q = Wθ as in (4). Then (A.3) becomes

where es represents the sth unit vector. Calculating the vector DF−1Wes in the above 

equation for s = 1, …, S is equivalent to computing the full system matrix A = DF−1W as in 

the direct calculation approach described in section 2.4.1. On the other hand, (A.4) for the 

adjoint differentiation method reduces to

where calculating A′(y−Dϕ) by a forward solution method without precomputing the system 

matrix A corresponds to the on-the-fly implementation of F/B projectors.
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Figure 1. 

Example scatter plot of  versus  for the multispectral imaging 

system used in section 4.

Ahn et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2014 November 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
The RLS image , which minimizes the cost function Φ given in (11), shown on nine 

horizontal planes. The reconstructed bioluminescence image was obtained by 2000 iterations 

of GPM-N and is overlaid on co-registered MR slices. Reconstructed values greater than or 

equal to 10% of the maximum value are displayed. The black contour denotes the boundary 

of the tumor obtained from the MR image. The color scale on the right shows relative 

intensity. These results are not quantitatively calibrated.
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Figure 3. 
The same as figure 2 except that this image was reconstructed using 29 iterations of GPM-

EN using the on-the-fly approach. The relative error  is about 10%.
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Table 1

Comparison of computation costs for different reconstruction methods when a single image reconstruction is 

performed.

 < 10%  < 5%  < 1%

F/B projection approach
Algorithm Iteration 

cost (# 
iters)

Total recon. time Iteration 
cost (# iters)

Total recon. time Iteration 
cost (# iters)

Total recon. time

Direct calculation 
approach with 
precomputed system 
matrix (precomput. time: 
12 708 s)

GPM-U 359 s (216) 13068 s 599 s (378) 13307 s 1444 s (879) 14152 s

GPM-N 53 s (32) 12761 s 77 s (46) 12786 s 129 s (79) 12838 s

GPM-EN 54 s (29) 12762 s 71 s (42) 12780 s 121 s (73) 12830 s

CG 563 s (216) 13272 s 941 s (378) 13650 s 2376 s (878) 15084 s

PCG-N 58 s (35) 12766 s 88 s (52) 12796 s 157 s (93) 12865 s

PCG-EN 59 s (33) 12767 s 81 s (48) 12789 s 146s (86) 12854 s

PCG-EM 81 s (45) 12789 s 111 s (66) 12819 s 268 s (151) 12976 s

CD 37 s (20) 12746 s 46 s (26) 12754 s 64 s (38) 12773 s

OS-SPS-2 48 s (36) 12756 s 80 s (61) 12788 s 178 s (136) 12887 s

OS-SPS-5 20 s (15) 12729 s 35 s (26) 12743 s – –

OS-SPS-10 11 s (8) 12719 s 20 s (15) 12728 s

On-the-fly approach 
(precomput. time: 110 s)

GPM-U 4877 s (216) 4987 s 8523 s (378) 8633 s 16152 s (879) 16262 s

GPM-EN 688 s (29) 798 s 981 s (42) 1091 s 1614 s (73) 1724 s

CG 6531 s (216) 6641 s 11400 s (378) 11509 s 21557 s (878) 21666s

PCG-EN 735 s (33) 845 s 1035 s (48) 1145 s 1797 s (86) 1907 s

PCG-EM 1033 s (45) 1143 s 1480 s (66) 1590 s 3291 s (151) 3401 s
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