
Journal of Machine Learning Research 8 (2007) 1893–1918 Submitted 11/06; Revised 4/07; Published 8/07

Fast Iterative Kernel Principal Component Analysis

Simon Günter simon.guenter@nicta.com.au

Nicol N. Schraudolph nic.schraudolph@nicta.com.au

S.V.N. Vishwanathan svn.vishwanathan@nicta.com.au

Research School of Information Sciences and Engineering

Australian National University –and–

Statistical Machine Learning Program

National ICT Australia, Locked Bag 8001

Canberra ACT 2601, Australia

Editor: Aapo Hyvarinen

Abstract

We develop gain adaptation methods that improve convergence of the kernel Hebbian algo-
rithm (KHA) for iterative kernel PCA (Kim et al., 2005). KHA has a scalar gain parameter
which is either held constant or decreased according to a predetermined annealing schedule,
leading to slow convergence. We accelerate it by incorporating the reciprocal of the current
estimated eigenvalues as part of a gain vector. An additional normalization term then
allows us to eliminate a tuning parameter in the annealing schedule. Finally we derive and
apply stochastic meta-descent (SMD) gain vector adaptation (Schraudolph, 1999, 2002) in
reproducing kernel Hilbert space to further speed up convergence. Experimental results on
kernel PCA and spectral clustering of USPS digits, motion capture and image denoising,
and image super-resolution tasks confirm that our methods converge substantially faster
than conventional KHA. To demonstrate scalability, we perform kernel PCA on the entire
MNIST dataset.

Keywords: Step size adaptation, gain vector adaptation, stochastic meta-descent, kernel
Hebbian algorithm, online learning.

1. Introduction

Principal components analysis (PCA) is a standard linear technique for dimensionality
reduction. Given a matrix X ∈ R

n×l of l centered, n-dimensional observations, PCA
performs an eigendecomposition of the covariance matrix Q := XX⊤. The r × n matrix
W whose rows are the eigenvectors of Q associated with the r ≤ n largest eigenvalues
minimizes the least-squares reconstruction error

‖X − W⊤WX‖F , (1)

where ‖ · ‖F is the Frobenius norm.

As it takes O(n2l) time to compute Q and O(n3) time to eigendecompose it, PCA can
be prohibitively expensive for large amounts of high-dimensional data. Iterative methods
exist that do not compute Q explicitly, and thereby reduce the computational cost to O(rn)
per iteration. They assume that each individual observation x is drawn from a statistical

c©2007 Simon Günter, Nicol N. Schraudolph, and S.V. N. Vishwanathan.

Günter, Schraudolph and Vishwanathan

distribution1, and the aim is to maximize the variance of y := Wx, subject to some
orthonormality constraints on the weight matrix W . In particular, we obtain the so-called
hierarchical PCA network if we assume that the ith row of W must have unit norm and
must be orthogonal to the jth row, where j = 1, . . . , i − 1 (Karhunen, 1994). By using
Lagrange multipliers to incorporate the constraints into the objective, we can rewrite the
merit function J(W) succinctly as (Karhunen and Joutsensalo, 1994):

J(W) = E[x⊤W⊤Wx] + 1
2tr[Λ(WW⊤− I)], (2)

where the Lagrange multiplier matrix Λ is constrained to be lower triangular. Taking
gradients with respect to W and setting to zero yields

∂WJ(W) = E[Wx]x⊤+ ΛW = 0. (3)

As a consequence of the KKT conditions (Boyd and Vandenberghe, 2004), at optimality

Λ(WW⊤− I) = 0. (4)

Right multiplying (3) by W⊤, using (4), and noting that Λ must be lower triangular yields

Λ = −lt(E [Wx]x⊤W⊤) = −lt(E[y]y⊤), (5)

where lt(·) makes its argument lower triangular by zeroing all elements above the diago-
nal. Plugging (5) into (3) and stochastically approximating the expectation E[y] with its
instantaneous estimate yt := Wtxt, where xt ∈ R

n is the observation at time t, yields

∂Wt
J(W) = ytx

⊤
t − lt(yty

⊤
t)Wt. (6)

Gradient ascent in (6) gives the generalized Hebbian algorithm (GHA) of Sanger (1989):

Wt+1 = Wt + ηt[ytx
⊤
t − lt(yty

⊤
t)Wt]. (7)

For an appropriate scalar gain, ηt, (7) will tend to converge to the principal component
solution as t → ∞; though its global convergence is not proven (Kim et al., 2005).

A closely related algorithm by Oja and Karhunen (1985, section 5) omits the lt operator:

Wt+1 = Wt + ηt[ytx
⊤
t − yty

⊤
t Wt]. (8)

This update is also motivated by maximizing the variance of Wx subject to orthonormality
constraints on W. In contrast to GHA it requires the ith row of W to be orthogonal to all
other rows of W, i.e., that W be orthonormal. The resulting algorithm converges to an
arbitrary orthonormal basis— not necessarily the eigen-basis — for the subspace spanned
by the first r eigenvectors.

One can do better than PCA in minimizing the reconstruction error (1) by allowing
nonlinear projections of the data into r dimensions. Unfortunately such approaches often
pose difficult nonlinear optimization problems. Kernel methods (Schölkopf and Smola, 2002)
provide a way to incorporate non-linearity without unduly complicating the optimization

1. It is customary to assume that the distribution is centered, i.e., E[x] = 0.

1894

Fast Iterative Kernel PCA

problem. Kernel PCA (Schölkopf et al., 1998) performs an eigendecomposition on the kernel
expansion of the data, an l× l matrix. To reduce the attendant O(l2) space and O(l3) time
complexity, Kim et al. (2005) introduced the kernel Hebbian algorithm (KHA) by kernelizing
GHA.

Both GHA and KHA are examples of stochastic approximation algorithms, whose iter-
ative updates employ individual observations in place of— but, in the limit, approximat-
ing —statistical properties of the entire data. By interleaving their updates with the passage
through the data, stochastic approximation algorithms can greatly outperform conventional
methods on large, redundant data sets, even though their convergence is comparatively slow.

Both GHA and KHA updates incorporate a scalar gain parameter ηt, which is either
held fixed or annealed according to some predefined schedule. Robbins and Monro (1951)
were first to establish conditions on the sequence of ηt that guarantee the convergence of
many stochastic approximation algorithms on stationary input. A widely used annealing
schedule (Darken and Moody, 1992) that obeys these conditions is

ηt =
τ

t + τ
η0, (9)

where t denotes the iteration number, and η0, τ are positive tuning parameters. τ determines
the length of an initial search phase with near-constant gain (ηt ≈ η0 for t ≪ τ), before the
gain decays asymptotically as τ/t (for t ≫ τ) in the annealing phase (Darken and Moody,
1992). For non-stationary inputs (e.g., in a online setting) Kim et al. (2005) suggest a small
constant gain.

Here we propose the inclusion of a gain vector in the KHA, which provides each estimated
eigenvector with its individual gain parameter. In Section 3.1 we describe our KHA/et*
algorithm, which sets the gain for each eigenvector inversely proportional to its estimated
eigenvalue, in addition to using (9) for annealing. Our KHA/et algorithm in Section 3.3
additionally multiplies the gain vector by the length of the vector of estimated eigenvalues;
this allows us to eliminate the τ tuning parameter.

We then derive and apply the stochastic meta-descent (SMD) gain vector adaptation
technique (Schraudolph, 1999, 2002) to KHA/et* and KHA/et to further speed up their
convergence. Our resulting KHA-SMD* and KHA-SMD methods (Section 4.2) adapt gains
in a reproducing kernel Hilbert space (RKHS), as pioneered in the recent Online SVMD
algorithm (Vishwanathan et al., 2006). The application of SMD to the KHA is not trivial; a
naive implementation would require O(rl2) time per update. By incrementally maintaining
and updating two auxiliary matrices we reduce this cost to O(rl). Our experiments in
Section 5 show that the combination of preconditioning by the estimated eigenvalues and
SMD can yield much faster convergence than either technique applied in isolation.

The following section summarizes the KHA, before we provide our eigenvalue-based gain
modifications in Section 3. Section 4 describes SMD and its application to the KHA. We
report the results of our experiments with these algorithms in Section 5, then conclude with
a discussion of our findings.

2. Kernel Hebbian Algorithm

Kim et al. (2005) adapt Sanger’s (1989) GHA algorithm to work with data mapped into a
reproducing kernel Hilbert space (RKHS) H via a feature map Φ : X → H (Schölkopf and

1895

Günter, Schraudolph and Vishwanathan

Smola, 2002). Here X is the input space, and H and Φ are implicitly defined by the kernel
k : X ×X → H with the property ∀x, x′ ∈ X : k(x,x′) = 〈Φ(x),Φ(x′)〉H, where 〈·, ·〉H
denotes the inner product in H. Let Φ denote the transposed data vector in feature space:

Φ := [Φ(x1),Φ(x2), . . . Φ(xl)]
⊤. (10)

This assumes a fixed set of l observations whereas GHA relies on an infinite sequence of
observations for convergence. Following Kim et al. (2005), we use an indexing function
p : N → Zl which concatenates random permutations of Zl to reconcile this discrepancy.
Our implementations loop through a fixed data set, permuting it anew before each pass.

PCA, GHA, and hence KHA all assume that the data is centered. Since the kernel
which maps the data into feature space does not necessarily preserve such centering, we
must re-center the data in feature space:

Φ′ := Φ − MΦ, (11)

where M denotes the l× l matrix with entries all equal to 1/l. This is achieved by replacing
the kernel matrix K := ΦΦ⊤ (that is, [K]ij := k(xi,xj)) by its centered version

K ′ := Φ′Φ′⊤ = (Φ − MΦ)(Φ − MΦ)⊤

= ΦΦ⊤ − MΦΦ⊤ − ΦΦ⊤M⊤ + MΦΦ⊤M⊤ (12)

= K − MK − (MK)⊤ + MKM .

Since all rows of MK are identical (as are all elements of MKM) we can pre-calculate
each row in O(l2) time and store it in O(l) space to efficiently implement operations with
the centered kernel. The kernel centered on the training data is also used when testing the
trained system on new data.

From kernel PCA (Schölkopf et al., 1998) it is known that the principal components
must lie in the span of the centered data in feature space; we can therefore express the
GHA weight matrix as Wt = AtΦ

′, where A is an r × l matrix of expansion coefficients,
and r the desired number of principal components. The GHA weight update (7) thus
becomes

At+1Φ
′ = AtΦ

′ + ηt[ytΦ
′(xp(t))

⊤− lt(yty
⊤
t)AtΦ

′], (13)

where lt(·) extracts the lower triangular part of its matrix argument (by setting all matrix
elements above the diagonal to zero), and

yt := WtΦ
′(xp(t)) = AtΦ

′Φ′(xp(t)) = Atk
′
p(t), (14)

using k′
i to denote the ith column of the centered kernel matrix K ′. Since we have Φ′(xi)

⊤ =
e⊤

i Φ′, where ei is the unit vector in direction i, (13) can be rewritten solely in terms of
expansion coefficients as

At+1 = At + ηt[yte
⊤
p(t) − lt(yty

⊤
t)At]. (15)

Introducing the update coefficient matrix

Γt := yte
⊤
p(t) − lt(yty

⊤
t)At (16)

1896

Fast Iterative Kernel PCA

we obtain the compact update rule

At+1 = At + ηtΓt. (17)

In their experiments, Kim et al. (2005) employed the KHA update (17) with a constant
scalar gain ηt = η0; they also proposed letting the gain decay as ηt = η0/t. Our imple-
mentation (which we denote KHA/t) employs the more general (9) instead, from which an
η0/(t + 1) decay is obtained by setting τ = 1, and a constant gain in the limit as τ → ∞.

3. Gain Decay with Reciprocal Eigenvalues

Consider the term ytx
⊤
t = Wtxtx

⊤
t appearing on the right-hand side of the GHA update

(7). At the desired solution, the rows of Wt contain the principal components, i.e., the
leading eigenvectors of Q = XX⊤. The elements of yt thus scale with the associated
eigenvalues of Q. Large differences in eigenvalues can therefore lead to ill-conditioning
(hence slow convergence) of the GHA; the same holds for the KHA.

We counteract this problem by furnishing the KHA with a gain vector ηt ∈ R
r
+ that

provides each eigenvector estimate with its individual gain parameter; we will discuss how
to set ηt below. The update rule (17) thus becomes

At+1 = At + diag(ηt)Γt , (18)

where diag(·) maps a vector into a diagonal matrix.

3.1 The KHA/et* Algorithm

To improve the KHA’s convergence, we set ηt proportional to the reciprocal of the estimated
eigenvalues. Let λt ∈ R

r
+ denote the vector of eigenvalues associated with the current

estimate of the first r eigenvectors. Our KHA/et* algorithm sets the ith component of ηt

to

[ηt]i =
1

[λt]i

τ

t + τ
η0, (19)

with η0 and τ positive tuning parameters as in (9) before. Since we do not want the
annealing phase to start before we have seen all observations at least once, we tune τ in
small integer multiples of the data set size l.

KHA/et* thus conditions the KHA update by proportionately decreasing (increasing)
the gain (19) for rows of At associated with large (small) eigenvalues. A similar approach
(with a simple 1/t gain decay) was applied by Chen and Chang (1995) to GHA for neural
network feature selection.

3.2 Calculating the Eigenvalues

The above update (19) requires the first r eigenvalues of K ′ — but the KHA is an algorithm
for estimating these eigenvalues and their associated eigenvectors in the first place. The
true eigenvalues are therefore not available at run-time. Instead we use the eigenvalues

1897

Günter, Schraudolph and Vishwanathan

associated with the KHA’s current eigenvector estimate in At, computed as

[λt]i =
‖K ′[At]

⊤
i∗‖2

‖[At]⊤i∗‖2
, (20)

where [At]i∗ denotes the ith row of At, and ‖ · ‖2 the 2-norm of a vector. This can be stated
compactly as

λt =

√

diag(AtK ′(AtK ′)⊤)

diag(AtA
⊤
t)

, (21)

where the division and square root operation are performed element-wise, and diag(·) ap-
plied to a matrix extracts the vector of elements along the matrix diagonal.

The main computational effort for calculating λt lies in computing AtK
′, which— if

done naively— is quite expensive: O(rl2). Fortunately it is not necessary to do this at every
iteration, since the eigenvalues evolve but gradually. We empirically found it sufficient to
update λt and ηt only once after each pass through the data, i.e., every l iterations —see
Figure 4. Finally, Section 4.2 below introduces incremental updates (33) and (34) that
reduce the cost of calculating AtK

′ to O(rl).

3.3 The KHA/et Algorithm

The τ parameter of the KHA/et* update (19) above determines at what point in the iterative
kernel PCA we gradually shift from the initial search phase (with near-constant ηt) into the
asymptotic annealing phase (with ηt near-proportional to 1/t). It would be advantageous
if this parameter could be determined adaptively (Darken and Moody, 1992), obviating the
manual tuning required in KHA/et*.

One way to achieve this is to have some measure of progress counteract the gain decay:
As long as we are making rapid progress, we are in the search phase, and do not want to
decrease the gains; when progress stalls it is time to start annealing them. A suitable mea-
sure of progress is ‖λt‖, the length of the vector of eigenvalues associated with our current
estimate of the eigenvectors, as calculated via (20) above. This quantity is maximized by
the true eigenvectors; in the KHA it tends to increase rapidly early on, then approach the
maximum asymptotically.

Our KHA/et algorithm fixes the gain decay schedule of KHA/et* at τ = l, but multiplies
the gains by ‖λt‖:

[ηt]i =
‖λt‖
[λt]i

l

t + l
η0. (22)

The rapid early growth of ‖λt‖ thus serves to counteract the gain decay until the leading
eigenspace has been identified. Asymptotically ‖λt‖ approaches its (constant) maximum,
and so the gain decay will ultimately dominate (22). This achieves an effect comparable
to an “adaptive search then converge” (ASTC) gain schedule (Darken and Moody, 1992)
while eliminating the τ tuning parameter. Since (19) and (22) can both be expressed as

[ηt]i =
η̂t

[λt]i
, (23)

1898

Fast Iterative Kernel PCA

USPS dot-product KPCA: USPS RBF KPCA: multipatch image KPCA:

image super-resolution: USPS spectral clustering: motion capture KPCA:

Figure 1: Comparison of gain η̂t (23) between KHA/et* and KHA/et in all applications
reported in Section 5, at individually optimal values of η0 and (for KHA/et*) τ .

for particular choices of η̂t, we can compare the gain vectors used by KHA/et* and KHA/et
by monitoring how they evolve the scalar η̂t; this is shown in Figure 1 for all experiments
reported in Section 5. We see that although both algorithms ultimately anneal η̂t in a
similar fashion, their behavior early on is quite different: KHA/et keeps a lower initial gain
roughly constant for a prolonged search phase, whereas KHA/et* (for the optimal choice of
τ) starts decaying η̂t far earlier, albeit from a higher starting value. In Section 5 we shall
see how this affects the performance of the two algorithms.

4. KHA with Stochastic Meta-Descent

While KHA/et* and KHA/et make reasonable assumptions about how the gains of a KHA
update should be scaled, further improvements are possible by adapting gains in response to
the observed history of parameter updates so as to optimize convergence. We briefly review
gradient-based gain adaptation methods, then derive and implement Schraudolph’s (1999;
2002) stochastic meta-descent (SMD) algorithm for both KHA/et* and KHA/et, focusing
on the scalar form of SMD that can be used in an RKHS.

4.1 Scalar Stochastic Meta-Descent

Let V be a vector space, θ ∈ V a parameter vector, and J : V → R the objective function
which we would like to optimize. We assume that J is twice differentiable almost everywhere.
Denote by Jt : V → R the stochastic approximation of the objective function at time t. Our
goal is to find θ such that Et[Jt(θ)] is minimized. We adapt θ via the stochastic gradient

1899

Günter, Schraudolph and Vishwanathan

descent

θt+1 = θt − eρtgt, where gt = ∂θt
Jt(θt), (24)

using ∂θt
as a shorthand for ∂

∂θ

∣

∣

θ=θt

. Stochastic gradient descent is sensitive to the value
of the log-gain ρt ∈ R: If it is too small, (24) will take many iterations to converge; if it is
too large, (24) may diverge.

One solution is to adapt ρt by a simultaneous meta-level gradient descent. Thus we
could seek to minimize the value of the objective at the next iteration by adjusting ρt in
proportion to the gradient ∂ρt

Jt+1(θt+1). Using the chain rule and (24) we find

ρt+1 = ρt − µ ∂ρt
Jt+1(θt+1)

= ρt − µ [∂θt+1
Jt+1(θt+1)]

⊤∂ρt
θt+1 (25)

= ρt + µ eρtg⊤
t+1 gt,

where the meta-gain µ ≥ 0 is a scalar tuning parameter. Intuitively, the gain adaptation
(25) is driven by the angle between successive gradient measurements: If it is less than
90◦, then g⊤

t+1 gt > 0, and ρt will be increased. Conversely, if the angle is more than 90◦

(oscillating gradient), then ρt will be decreased because g⊤
t+1 gt < 0. Thus (25) serves to

decorrelate successive gradients, which leads to improved convergence of (24).

One shortcoming of (25) is that the decorrelation occurs only across a single time step,
making the gain adaptation overly sensitive to spurious short-term correlations in the data.
Stochastic meta-descent (SMD; Schraudolph, 1999, 2002) addresses this issue by employing
an exponentially decaying trace of gradients across time:

ρt+1 = ρt − µ

t
∑

i=0

ξi∂ρt−i
Jt+1(θt+1)

= ρt − µ [∂θt+1
Jt+1(θt+1)]

⊤
t

∑

i=0

ξi∂ρt−i
θt+1 (26)

=: ρt − µ g⊤
t+1 vt+1,

where the vector vt+1 ∈ V characterizes the dependence of θt+1 on its gain history over a
time scale governed by the decay factor 0 ≤ ξ ≤ 1, a scalar tuning parameter.

To compute vt+1 efficiently, we expand θt+1 in terms of its recursive definition (24):

vt+1 :=

t
∑

i=0

ξi∂ρt−i
θt+1

=

t
∑

i=0

ξi∂ρt−i
θt −

t
∑

i=0

ξi∂ρt−i
[eρtgt] (27)

≈ ξvt − eρt(gt + ∂θt
gt

t
∑

i=0

ξi∂ρt−i
θt).

1900

Fast Iterative Kernel PCA

Here we have used ∂ρt
θt = 0, and approximated

t
∑

i=1

ξi∂ρt−i
ρt ≈ 0, (28)

which amounts to stating that the log-gain adaptation must be in equilibrium on the time
scale determined by ξ. Noting that ∂θt

gt is the Hessian Ht of Jt(θt), we arrive at the simple
iterative update

vt+1 = ξvt − eρt(gt + ξHtvt). (29)

Since the initial parameters θ0 do not depend on any gains, v0 = 0. Note that for ξ = 0
(29) and (26) reduce to the single-step gain adaptation (25).

Computation of the Hessian-vector product Htvt would be expensive if done naively.
Fortunately, efficient methods exist to calculate this quantity directly without computing
the Hessian (Pearlmutter, 1994; Griewank, 2000; Schraudolph, 2002). In essence, these
methods work by propagating v as a differential (i.e., directional derivative) through the
gradient computation:

dθt := vt ⇒ Htvt := dgt. (30)

In other words, if we set the differential dθt of the parameter vector to vt, then the resulting
differential of the gradient gt (a function of θt) is the Hessian-vector product Htvt. We will
see this at work for the case of the KHA in (36) below.

4.2 SMD for KHA

The KHA update (18) can be viewed as r coupled updates in RKHS, one for each row of
At, each associated with a scalar gain. To apply SMD here we introduce an additional
log-gain vector ρt ∈ R

r :

At+1 = At + ediag(ρt) diag(ηt)Γt. (31)

(The exponential of a diagonal matrix is obtained simply by exponentiating the individual
diagonal entries.) We are thus applying SMD to KHA/et, i.e., to a gradient descent pre-
conditioned by the reciprocal estimated eigenvalues. SMD will happily work with such a
preconditioner, and benefit from it.

In an RKHS, SMD adapts a scalar log-gain whose update is driven by the inner product
between the gradient and a differential of the system parameters, all in the RKHS (Vish-
wanathan et al., 2006). In the case of KHA, ΓtΦ

′ can be interpreted as the gradient in
the RKHS of the merit function (2) maximized by KHA. Therefore SMD’s adaptation of
ρt in (31) is driven by the diagonal entries of 〈ΓtΦ

′, BtΦ
′〉H, where Bt := dAt denotes the

r × l matrix of expansion coefficients for SMD’s differential parameters, analogous to the v

vector in Section 4.1:

ρt = ρt−1 + µ diag(
〈

ΓtΦ
′,BtΦ

′
〉

H
)

= ρt−1 + µ diag(ΓtΦ
′Φ′⊤B⊤

t) (32)

= ρt−1 + µ diag(ΓtK
′B⊤

t).

1901

Günter, Schraudolph and Vishwanathan

Naive computation of ΓtK
′ in (32) would cost O(rl2) time, which is prohibitively expensive

for large l. We can, however, reduce this cost to O(rl) by noting that (16) implies that

ΓtK
′ = yte

⊤
p(t)K

′ − lt(yty
⊤
t)AtK

′

= ytk
′⊤
p(t) − lt(yty

⊤
t)AtK

′, (33)

where the r × l matrix AtK
′ can be stored and updated incrementally via (31):

At+1K
′ = AtK

′ + ediag(ρt) diag(ηt)ΓtK
′. (34)

The initial computation of A1K
′ still costs O(rl2) in general but is affordable as it is

performed only once. Alternatively, the time complexity of this step can easily be reduced
to O(rl) by making A1 suitably sparse.

Finally, we apply SMD’s standard update (29) of the differential parameters:

Bt+1 = ξBt + ediag(ρt) diag(ηt) (Γt + ξdΓt). (35)

The differential dΓt of the gradient, analogous to dgt in (30), can be computed by applying
the rules of calculus:

dΓt = d[yte
⊤
p(t) − lt(yty

⊤
t)At]

= (dAt)k
′
p(t)e

⊤
p(t) − lt(yty

⊤
t)(dAt) − [d lt(yty

⊤
t)]At (36)

= Btk
′
p(t)e

⊤
p(t) − lt(yty

⊤
t)Bt − lt(Btk

′
p(t)y

⊤
t + ytk

′⊤
p(t)B

⊤
t)At,

using the fact that since k′ and e are both independent of A we have d(k′
p(t)e

⊤
p(t)) = 0.

Inserting (16) and (36) into (35) finally yields the update rule

Bt+1 = ξBt + ediag(ρt) diag(ηt)[(At+ξBt) k′
p(t)e

⊤
p(t) (37)

− lt(yty
⊤
t)(At+ξBt) − ξ lt(Btk

′
p(t)y

⊤
t + ytk

′⊤
p(t)B

⊤
t)At].

In summary, our application of SMD to the KHA comprises Equations (32), (37), and (31),
in that order. Our approach allows us to incorporate a priori knowledge about suitable
gains in ηt, which SMD will then improve upon by using empirical information gathered
along the update trajectory to adaptively tune ρt.

Algorithm 1 shows KHA-SMD, the algorithm obtained by applying SMD to KHA/et in
this fashion. To obtain KHA-SMD*, the analogous algorithm applying SMD to KHA/et*,
simply change step 2(b) to use (19) instead of (22). To recover KHA/et resp. KHA/et*
from Algorithm 1, omit the steps marked with a single vertical bar. The double-barred
steps do not have to be performed on every iteration; omitting them entirely, along with
the single-barred steps, recovers the original KHA algorithm.

We list the worst-case time complexity of every step in terms of the number l and dimen-
sionality n of observations, and the number r of kernel principal components to extract. For
r ≪ n (as is typical), the most expensive step in the iteration loop will be the computation
of a row of the kernel matrix in 2(c), required by all algorithms.

We initialize ρ0 to all ones, B1 to all zeroes, and A1 to an isotropic normal density with
suitably small variance. The resulting time complexity of O(rl2) of step 1(c) can easily be
reduced to O(rl) by initializing A1 sparsely in step 1(b). This leaves the centering of the
kernel in step 1(a), required by all algorithms, as the most expensive initialization step.

1902

Fast Iterative Kernel PCA

Algorithm 1 KHA-SMD Eq.no. time complexity

1. Initialize:

(a) calculate MK, MKM O(l2)

(b) A1 ∼ N(0, (rl)−1I) O(rl)

(c) calculate A1K
′ O(rl2)

(d) ρ0 := [1 . . . 1]⊤, B1 := 0 O(rl)

2. Repeat for t = 1, 2, . . .

(a) calculate λt (20) O(rl)

(b) calculate ηt (22) O(r)

(c) calculate k′
p(t) O(nl)

(d) calculate yt (14) O(rl)

(e) calculate Γt (16) O(rl)

(f) calculate ΓtK
′ (33) O(rl)

(g) update ρt−1 → ρt (32) O(rl)

(h) update Bt → Bt+1 (37) O(rl)

(i) update AtK
′ → At+1K

′ (34) O(rl)

(j) update At → At+1 (31) O(rl)

5. Experiments

We present two sets of experiments. In the first, we benchmark against the KHA with a
conventional gain decay schedule (9), which we denote KHA/t, in a number of different
settings: Performing kernel PCA and spectral clustering on the well-known USPS dataset
(LeCun et al., 1989), replicating image denoising and face image super-resolution experi-
ments of Kim et al. (2005), and denoising human motion capture data. For Kim et al.’s
(2005) experiments we also compare to their original KHA with the constant gain ηt = η0

they employed. A common feature of all these datasets is that the kernel matrix can
be stored in main memory, and the optimal reconstruction can thus be computed with a
conventional eigensolver. In our second set of experiments we demonstrate scalability by
performing kernel PCA on 60000 digits from the MNIST dataset (LeCun, 1998). Here the
kernel matrix cannot be stored in main memory of a standard PC, and hence one is forced
to resort to iterative methods.

5.1 Experiments on Small Datasets

In these experiments the KHA and our enhanced variants are used to find the first r eigenvec-
tors of the centered kernel matrix K ′. To assess the quality of the solution, we reconstruct
the kernel matrix using the eigenvectors found by the iterative algorithms, and measure the

1903

Günter, Schraudolph and Vishwanathan

Table 1: Parameter settings for our experiments. Footnotes indicate parameters which were
individually tuned for each experiment and the given algorithm(s).

Experiment Section σ τ1 τ2 η 1

0
η 2

0
η 3

0
µ4 µ5 ξ

USPS (dot-prod. kernel) 5.1.1 – 2l 4l .002 5 10−3 10−5 10−4 0.99
USPS (RBF kernel) 5.1.1 8 l 3l 1 5 0.2 0.05 0.1 0.99

Lena image denoising 5.1.2 1 l 4l 2 5 0.1 1 2 0.99
face super-resolution 5.1.3 1 l 4l 0.2 5 0.02 0.2 5 0.99

USPS spectral clustering 5.1.4 8 l l 200 10 50 20 103 0.99

motion capture KPCA 5.1.5
√

1.5 l 3l 2 5 0.1 0.1 1 0.99

1for KHA/t 2for KHA/et*, KHA/SMD* 3for KHA/et, KHA/SMD 4for KHA/SMD* 5for KHA/SMD

reconstruction error

E(A) := ‖K ′ − (AK ′)⊤AK ′‖F . (38)

Since the kernel matrix can be stored in memory, the optimal reconstruction error from r
eigenvectors, Emin := minA E(A), is computed with a conventional eigensolver. This allows
us to report reconstruction errors as excess errors relative to the optimal reconstruction,
i.e., E(A)/ Emin − 1.

To compare algorithms we plot the excess reconstruction error on a logarithmic scale
after each pass through the entire data set. This is a fair comparison since the overhead for
KHA/et*, KHA/et, and their SMD versions is negligible compared to the time required by
the KHA base algorithm: The most expensive operations — the initial centering of the kernel
matrix, and the repeated calculation of a row of it— are shared by all these algorithms.

Each non-SMD algorithm had η0 and (where applicable) τ manually tuned, by iter-
ated hill-climbing over η0 ∈ {a · 10b : a ∈ {1, 2, 5}, b ∈ {−3,−2,−1, 0, 1, 2}} and τ ∈
{l, 2l, 3l, 4l, 5l, 7l, 10l, 15l, 20l, 30l, 40l, 50l}, for the lowest final reconstruction error in each
experiment. The SMD versions used the same values of η0 and τ as their corresponding
non-SMD variant; for them we hand-tuned µ (over the same set of values as η0), and set
ξ = 0.99 a priori throughout. Thus KHA/t and KHA/et* each had two parameters tuned
specifically for them, the other algorithms one. Table 1 lists the parameter settings for each
experiment, with the individually tuned parameters indicated.

5.1.1 USPS Digit KPCA

Our first benchmark is to perform iterative kernel PCA on a subset of the well-known
USPS dataset (LeCun et al., 1989) —namely, the first 100 samples of each digit— with two
different kernel functions: the dot-product kernel2

k(x,x′) = x⊤x′ (39)

and the RBF kernel

k(x,x′) = exp

(

(x − x′)⊤(x − x′)

2σ2

)

(40)

2. Kernel PCA with a dot-product kernel is equivalent to ordinary PCA in the input space.

1904

Fast Iterative Kernel PCA

Figure 2: Excess relative reconstruction error of KHA variants for kernel PCA (16 eigen-
vectors) on the USPS data, using a dot-product (left) resp. RBF (right) kernel.
(On the left, the curves for KHA/et* and KHA-SMD* virtually coincide.)

with σ = 8, the value used by Mika et al. (1999). We extract the first 16 eigenvectors of
the kernel matrix and plot the excess relative error in Figure 2. Although KHA/et and
KHA/et* differ in their transient behavior — the former performing better for the first 6
passes through the data, the latter thereafter— their error after 200 passes is quite similar;
both clearly outperform KHA/t. SMD is able to significantly improve the performance
of KHA/et but not KHA/et*, and so KHA-SMD achieves the best results on this task.
These results hold for either choice of kernel. We show the first 10 eigenvectors obtained
by KHA/et* for each kernel in Figure 3.

In Figure 4 we compare the performance of our algorithms, which estimate the eigen-
values and update the gains only once after every pass through the data (’p’), against
variants (’i’) which do this after every iteration. Tuning parameters were re-optimized for
the new variants, though most optimal settings remained the same.3 Updating the es-
timated eigenvalues after every iteration, though computationally expensive, is beneficial

3. The exceptions were minor: τ = 4 (instead of τ = 3) for KHA/et* and KHA-SMD*, µ = 0.1 (instead
of µ = 0.05) for KHA-SMD*, and µ = 0.05 (instead of µ = 0.1) for KHA-SMD.

Figure 3: First ten eigenvectors (from left to right) found by KHA/et* for the dot-product
(top row) resp. RBF kernel (bottom row).

1905

Günter, Schraudolph and Vishwanathan

Figure 4: Comparison of excess relative reconstruction error of KHA variants estimating
eigenvalues and updating gains every iteration (’i’) vs. once every pass (’p’)
through the USPS data, for RBF kernel PCA extracting 16 eigenvectors.

initially but does not seem to affect the quality of the solution much in the long run; the
minor differences that can be observed are attributable to differences in parameter settings.

5.1.2 Multipatch Image Denoising

For our second benchmark we replicate the image denoising problem of Kim et al. (2005),
the idea being that noise can be removed from images by reconstructing image patches from
their r leading eigenvectors. We divide the well-known Lena image (Munson, 1996) into four
sub-images, from which 11×11 pixel windows are sampled on a grid with two-pixel spacing
to produce 3844 vectors of 121 pixel intensity values each. Following Kim et al. (2005) we
use an RBF kernel with σ = 1 to find the 20 best eigenvectors for each sub-image. Results
averaged over the four sub-images are plotted in Figure 6 (left), including the KHA with
constant gain of ηt = 0.05 employed by Kim et al. (2005) for comparison. The original,
noisy, and denoised Lena images are shown in Figure 5.

Figure 5: Lena image —original (left), noisy (center), and denoised by KHA-SMD (right).

1906

Fast Iterative Kernel PCA

Figure 6: Excess relative reconstruction error of KHA variants in our replication of exper-
iments due to Kim et al. (2005). Left: multipatch image kernel PCA on a noisy
Lena image; Right: super-resolution of face images.

KHA/t, while better than the conventional KHA with constant gain, is clearly not as
effective as our methods. Of these, KHA/et is outperformed by KHA/et* but benefits more
from the addition of SMD, so that the performance of KHA-SMD is almost comparable to
KHA-SMD*. KHA-SMD and KHA-SMD* achieved an excess reconstruction error that is
over three orders of magnitude better than the conventional KHA after 50 passes through
the data.

Replicating Kim et al.’s (2005) 800 passes through the data with the constant-gain KHA
we obtain an excess relative reconstruction error of 5.64%, 500 times that of KHA-SMD
after 50 passes. The signal-to-noise ratio (SNR) of the reconstruction after 800 passes with
constant gain is 13.46,4 comparable to the SNR of 13.49 achieved by KHA/et* in 50 passes.

To illustrate the large difference in early performance between conventional KHA and
KHA-SMD, we show the images reconstructed from either method after 1, 2, and 3 passes
through the data set in Figure 7. KHA-SMD delivers good-quality reconstructions very
quickly, while those of the conventional KHA are rather blurred.

We now investigate how the different components of KHA-SMD* affect its performance.
The overall gain used by KHA-SMD* comprises three factors: the scheduled gain decay
over time (9), the reciprocal of the current estimated eigenvalues, and the gain adapted by
SMD. Let us denote these three factors as t, e, and s, respectively, and explore which of
their combinations make sense. We clearly need either t or s to give us some form of gain
decay, which e does not provide. This means that in addition to the KHA/t (using only t),
KHA/et* (t and e), and KHA-SMD* (t, e, and s) algorithms, there are three more feasible
variants: a) s alone, b) t and s, and c) e and s.

We compare the performance of these “anonymous” variants to that of KHA/t, KHA/et*,
and KHA-SMD* on the Lena image denoising problem. Parameters were tuned for each
variant individually, yielding η0 = 0.5 and µ = 2 for variant s, η0 = 1 and µ = 2 for
variant es, and τ = l, η0 = 2, and µ = 1 for variant ts. Figure 8 (left) shows the excess

4. Kim et al. (2005) reported an SNR of 14.09; the discrepancy is due to different reconstruction methods.

1907

Günter, Schraudolph and Vishwanathan

Figure 7: Reconstructed Lena image after (left to right) 1, 2, and 3 passes through the data
set, for KHA with constant gain ηt = 0.05 (top row) vs. KHA-SMD (bottom row).

relative error as a function of the number of passes through the data. On its own, SMD
(s) outperforms the scheduled gain decay (t), but combining the two (ts) is better still.
Introducing the reciprocal eigenvalues (e) further improves performance in every context.
In short, all three factors convey a significant benefit, both individually and in combination.
The “anonymous” variants represent intermediate forms between the (poorly performing)
KHA/t and KHA-SMD*, which combines all three factors to attain the best results.

Next we examine the sensitivity of the KHA with SMD to the value of the meta-gain
µ by increasing µ ∈ {a · 10b : a ∈ {1, 2, 5}, b ∈ {−1, 0, 1}} until the algorithm diverges.
Figure 8 (right) plots the excess relative error of the s variant (SMD alone, black) and
KHA-SMD* (red/gray) on the Lena image denoising problem for the last three values of
µ prior to divergence. In both cases the largest non-divergent meta-gain (µ = 2 for s,
µ = 1 for KHA-SMD*) yields the fastest convergence. The differences are comparatively
small though, illustrating that SMD is not overly sensitive to the value of µ. This holds in
particular for KHA-SMD*, where SMD is assisted by the other two factors, t and e.

5.1.3 Face Image Super-Resolution

We also replicate a face image super-resolution experiment of Kim et al. (2005). Here the
eigenvectors learned from a training set of high-resolution images are used to predict high-
resolution detail from low-resolution test images. The training set consists of 5000 face
images of 10 different people from the Yale face database B (Georghiades et al., 2001),

1908

Fast Iterative Kernel PCA

Figure 8: Excess relative reconstruction error for multipatch image PCA on a noisy Lena
image. Left: comparison of original KHA variants (black) with those using other
combinations (red/gray) of gain decay (t), reciprocal eigenvalues (e), and SMD
(s). Right: effect of varying µ on the convergence of variant s (black) and KHA-
SMD* (red/gray).

down-sampled to 60 × 60 pixels. Testing is done on 10 different images from the same
database; the test images are first down-sampled to 20 × 20 pixels, then scaled back up to
60 × 60 by mapping each pixel to a 3 × 3 block of identical pixel values. These are then
projected into a 16-dimensional eigenspace learned from the training set to predict the test
images at the 60 × 60 pixel resolution.

Figure 6 (right) plots the excess relative reconstruction error of the different algorithms
on this task. KHA/t again produces better results than the KHA with constant gain but is
ineffective compared to our methods. KHA/et* again does better than KHA/et but benefits
less from the addition of SMD making SMD-KHA once more the best-performing method.
After 50 passes through the data, all our methods achieve an excess reconstruction error
about three orders of magnitude better than the conventional KHA, though KHA-SMD is
substantially faster than the others at reaching this level of performance. Figure 9 illustrates
that the reconstructed face images after one pass through the training data generally show
better high-resolution detail for KHA-SMD than for the conventional KHA with constant
gain.

5.1.4 Spectral Clustering of USPS Digits

Our next experiment uses the spectral clustering algorithm of Ng et al. (2002):

1. Define the normalized transition matrix P := D− 1

2 KD− 1

2 , where K ∈ R
l×l is the

kernel matrix of the data, and D is a diagonal matrix with [D]ii =
∑

j [K]ij .

2. Let A ∈ R
r×l be the matrix whose rows correspond to the first r eigenvectors of P .

3. Normalize the columns of A to unit length, and map each input pattern to its corre-
sponding column in A.

1909

Günter, Schraudolph and Vishwanathan

Figure 9: Pairs of rows from top to bottom: Original face images (60× 60 pixels) and sub-
sampled images (20× 20 pixels); super-resolution images produced by KHA after
one resp. four passes through the data set; likewise for KHA-SMD.

4. Cluster the columns of A into r clusters (using, for instance, k-means clustering), and
assign each pattern to the cluster its corresponding column vector belongs to.

We can obviously employ the KHA in Step 2 above. We evaluate our results in terms of
the variation of information (VI) metric (Meila, 2005): For a clustering algorithm c, let
|c| denote the number of clusters, and c(·) its cluster assignment function, i.e., c(xi) = j
iff c assigns pattern xi to cluster j. Let Pc ∈ R

|c| denote the probability vector whose
jth component denotes the fraction of points assigned to cluster j, and Hc the entropy
associated with Pc:

Hc = −
|c|

∑

i=1

[Pc]i ln[Pc]i. (41)

Given two clustering algorithms c and c′ we define the confusion matrix P c′

c ∈ R
|c|×|c′| by

[P c′

c]km =
1

l
|{i|(c(xi) = k) ∧ (c′(xi) = m)}|, (42)

where l is the number of patterns. The mutual information Ic′

c associated with P c′

c is

Ic′

c =

|c|
∑

i=1

|c′|
∑

j=1

[P c′

c]ij ln
[P c′

c]ij
[Pc]i[Pc′]j

. (43)

1910

Fast Iterative Kernel PCA

Figure 10: Quality of spectral clustering of the USPS data using an RBF kernel, as mea-
sured by variation of information (left) and excess relative reconstruction error
(right). Horizontal ‘PCA’ line on the left marks the variation of information
achieved by an exact eigensolver.

The VI metric is now defined as

VI = Hc + Hc′ − 2Ic′

c . (44)

Our experimental task consists of applying spectral clustering to all 7291 patterns of the
USPS data (LeCun et al., 1989), using 10 kernel principal components. We used a Gaussian
kernel with σ = 8 and k-means with k = 10 (the number of labels) for clustering the columns
of A. The clusterings obtained by our algorithms are compared to the clustering induced
by the class labels. On the USPS data, a VI of 4.54 corresponds to random grouping, while
clustering in perfect accordance with the class labels would give a VI of zero.

In Figure 10 (left) we plot the VI metric as a function of the number of passes through
the data. All our accelerated KHA variants converge towards an optimal clustering in less
than 10 passes — in fact, after around 7 passes their results are statistically indistinguishable
from that obtained by using an exact eigensolver (labeled ‘PCA’ in Figure 10, left). KHA/t,
by contrast, needs about 30 passes through the data to reach a similar level of performance.

The excess relative reconstruction errors — for spectral clustering, of the matrix P —
plotted in Figure 10 (right) confirm that our methods outperform KHA/t. They also show
KHA/et* significantly outperforming KHA/et, by about an order of magnitude. Again SMD
is able to substantially accelerate both KHA/et and KHA/et*. As usual the improvement
is larger for the former, though in this case not by quite enough to close the performance
gap to the latter.

5.1.5 Human Motion Denoising

For our next experiment we employ the KHA to denoise a human walking motion trajectory
from the CMU motion capture database (http://mocap.cs.cmu.edu), converted to Carte-
sian coordinates via Neil Lawrence’s matlab motion capture toolbox (http://www.dcs.
shef.ac.uk/~neil/mocap/). The experimental setup is similar to that of Tangkuampien

1911

http://mocap.cs.cmu.edu
http://www.dcs.shef.ac.uk/~neil/mocap/
http://www.dcs.shef.ac.uk/~neil/mocap/

Günter, Schraudolph and Vishwanathan

Figure 11: Excess relative reconstruction error on human motion capture data.

and Suter (2006): First zero-mean Gaussian noise is added to the frames of the original
motion, then KHA using 25 principal components is used to denoise them. The noise is
applied in “delta pose space,” where each body part is represented by the normalized vector
from its start to its end point, with a variance of 2 degrees for each of the two vector angles.
The walking motion we consider has 343 frames, each represented by a 90-dimensional vec-
tor specifying the spatial orientation of 30 body parts. The motion is reconstructed in R

3

via the KHA with an RBF kernel (σ =
√

1.5); the resulting excess relative error is shown
for various KHA variants in Figure 11.

As in the previous experiment, KHA/et* clearly outperforms KHA/et which in turn is
better than KHA/t. Again SMD is able to improve KHA/et to a much larger extent than
KHA/et*, though not enough to surpass the latter. KHA/et* reduces the noise variance
by 87.5%; it is hard to visually detect any difference between the denoised frames and the
original ones — see Figure 12 for an example.

5.2 Experiments on MNIST Dataset

The MNIST dataset (LeCun, 1998) consists of 60000 handwritten digits, each 28×28 pixels
in size. While kernel PCA has previously been applied to subsets of this data, to the best
of our knowledge nobody has attempted it on the entire dataset— for obvious reasons: the
full kernel matrix has 3.6 · 109 entries, requiring over 7 GB of storage in single-precision
floating-point format. Storing this matrix in main memory is already a challenge, let alone
computing its eigenvalues; it thus makes sense to resort to iterative schemes.

We will perform a single pass through the MNIST data, attempting to find the first 50
eigenvalues of the centered kernel matrix. Since we run through the data just once, we will
update the estimated eigenvalues after each iteration rather than after every pass. Hitherto
we have used the excess reconstruction error relative to the optimal reconstruction error to
measure the performance of the KHA. For MNIST this is no longer possible since existing
eigensolvers cannot handle such a large matrix. Instead we simply report the reconstruction
error (38), which we can still compute— albeit with a rather high time complexity, as it
requires calculating all entries of the kernel matrix.

1912

Fast Iterative Kernel PCA

Figure 12: Reconstruction of human motion capture data: One frame of the original data
(left), a superposition of this original and the noisy data (center), and a super-
position of the original and reconstructed (i.e., denoised) data (right).

Since our algorithms are fairly robust with respect to the value of τ , we simply set
τ = 0.05l a priori, which corresponds to decreasing the gain by a factor of 20 during the
first (and only) pass through the data. In our previous experiments we observed that the
best values of η0 and µ were usually the largest ones for which the run did not diverge. We
also found that when divergence occurs, it tends to do so early and dramatically, making
this event simple and inexpensive to detect. Algorithm 2 exploits this to automatically tune
a gain parameter (η0 resp. µ):

Algorithm 2 Auto-tune gain parameter x for KHA (any variant)

1. Compute (Algorithm 1, Step 1) and save initial KHA state;

2. x := 500;

3. While ∀i, j : is finite([At]ij):

Run KHA (Algorithm 1, Step 2) for 100 iterations;

4. x := max
a,b

a · 10b : a ∈ {1, 2, 5}, b ∈ Z, a · 10b < x;

5. restore initial KHA state and Goto Step 3.

1913

Günter, Schraudolph and Vishwanathan

Algorithm 2 starts with a parameter value so large (here: 500) as to surely cause diver-
gence (Step 2). It then runs the KHA (any variant) while testing the coefficient matrix At

every 100 iterations for signs of divergence (Step 3). If any element of At becomes infinite or
NaN (“not a number”), the KHA has diverged; in this case the parameter value is lowered
(Step 4) and the KHA restarted (Step 5). In order to make these restarts efficient, we have
precomputed and saved in Step 1 the initial state of the KHA — namely a row of MK, an
element of MKM , the initial coefficient matrix A1, and A1K

′. Once the parameter value
is low enough to avoid divergence, Algorithm 2 runs the KHA to completion in Step 3.

We use Algorithm 2 to tune η0 for KHA/et and KHA/et*, and µ for KHA-SMD and
KHA-SMD*. For η0 the SMD variants use the same value as their respective non-SMD
analogues. In our experiments, divergence always occurred within the first 600 iterations
(1% of the data), or not at all. It is therefore possible to tune both η0 and µ for the SMD
variants as follows: first run Algorithm 2 to tune η0 (with µ = 0) on a small fraction of the
data, then run it a second time to tune µ (with the previously obtained value for η0) on the
entire dataset.

Our experiments were performed on an AMD Athlon 2.4 GHz CPU with 2 GB main
memory and 512 kB cache, using a Python interface to PETSc (http://www-unix.mcs.
anl.gov/petsc/petsc-as/). For a fair comparison, all our algorithms use the same initial
random matrix A1, whose absolute reconstruction error is 33417. The reconstruction error
after one pass through the data is shown in Table 2; it is evident that all our algorithms
significantly improve upon the performance of KHA/t, with the SMD variants slightly ahead
of their non-SMD analogues.

Table 2 also reports the time spent in parameter tuning, the resulting tuned parameter
values, the time needed by each KHA variant for one pass through the data, and the total
runtime (comprising kernel centering, parameter tuning, KHA proper, and computing the
reconstruction error). Our KHA variants incur an overhead of 10–60% over the total runtime
of KHA/t; the SMD variants are the more expensive. In all cases less than 5% of the total
runtime was spent on parameter tuning.

6. Discussion and Conclusion

We modified the kernel Hebbian algorithm (KHA) of Kim et al. (2005) by providing a
separate gain for each eigenvector estimate, and presented two methods, KHA/et* and

Table 2: Tuned parameter values (col. 2), reconstruction errors (col. 3), and runtimes for
various KHA variants on the MNIST dataset. The total runtime (col. 6) is the sum
of the times required to: center the kernel (11h 13’), tune the parameter (col. 4),
run the KHA (col. 5), and calculate the reconstruction error (12h 16’).

algorithm parameter rec. error tuning KHA time total time

KHA/t η0 = 5 508.42 20’ 33h 29’ 57h 17’
KHA/et* η0 = 50 363.09 13’ 41h 41’ 65h 22’
KHA-SMD* µ = 1 362.44 1h 9’ 53h 19’ 77h 57’
KHA/et η0 = 0.5 415.48 47’ 39h 26’ 63h 42’
KHA-SMD µ = 0.05 404.06 3h 59’ 64h 39’ 92h 07’

1914

http://www-unix.mcs.anl.gov/petsc/petsc-as/
http://www-unix.mcs.anl.gov/petsc/petsc-as/

Fast Iterative Kernel PCA

KHA/et, which set those gains inversely proportional to the current estimate of the eigen-
values. KHA/et has a normalization term which allowed us to eliminate one of the free
parameters of the gain decay scheme. Both methods were then enhanced by applying
stochastic meta-descent (SMD) to perform gain adaptation in RKHS.

We compared our algorithms to the conventional approach of using KHA with constant
gain, resp. with a scheduled gain decay (KHA/t), in seven different experimental settings.
All our methods clearly outperformed the conventional approach in all our experiments.
KHA/et* was superior to KHA/et, at the cost of having an additional free parameter τ . Its
parameters, however, proved particularly easy to tune, with η0 = 5 and τ = 3l or 4l optimal
in all but the spectral clustering and MNIST experiments. This suggests that KHA/et* has
good normalization properties and may well be preferable to KHA/et.

SMD improved the performance of both KHA/et and KHA/et*, where the improvements
for the former were often larger than for the latter. This is not surprising per se, as it is
naturally easier to improve upon a good algorithm than an excellent one. However, the
fact that KHA-SMD frequently outperformed KHA-SMD* indicates that the interaction
between KHA/et and SMD appears to be more effective.

Principal component analysis (PCA) is an important tool for analysis, preprocessing,
and modeling of empirical data in a Euclidean space. Like other kernel methods, kernel
PCA (Schölkopf et al., 1998) generalizes this to arbitrary RKHS, including those defined
on structured data. Traditionally, kernel methods require computation and storage of the
entire kernel matrix. As the data sets available for learning grow larger and larger, this
is rapidly becoming infeasible. Recent advances eliminate this requirement by repeatedly
cycling through the data set, computing kernels on demand (e.g. Platt, 1999; Joachims,
1999; Zanni et al., 2006). This is done for kernel PCA by the KHA (Kim et al., 2005),
which as originally introduced suffers from slow convergence. The acceleration techniques
we have introduced here rectify this situation, and hence open the way for kernel PCA to
be applied to large data sets.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. A short version
of this paper was presented at the 2006 NIPS conference (Schraudolph et al., 2007). National
ICT Australia is funded by the Australian Government’s Department of Communications,
Information Technology and the Arts and the Australian Research Council through Backing
Australia’s Ability and the ICT Center of Excellence program. This work is supported by
the IST Program of the European Community, under the Pascal Network of Excellence,
IST-2002-506778.

References

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, England, 2004.

Liang-Hwe Chen and Shyang Chang. An adaptive learning algorithm for principal compo-
nent analysis. IEEE Transaction on Neural Networks, 6(5):1255–1263, 1995.

1915

Günter, Schraudolph and Vishwanathan

Christian Darken and John E. Moody. Towards faster stochastic gradient search. In John E.
Moody, Stephen J. Hanson, and Richard Lippmann, editors, Advances in Neural Infor-
mation Processing Systems, volume 4, pages 1009–1016. Morgan Kaufmann Publishers,
1992.

Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. From few to
many: Illumination cone models for face recognition under variable lighting and pose.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):643–660, 2001.
ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/34.927464.

Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Schölkopf,
Chris J. C. Burges, and Alex J. Smola, editors, Advances in Kernel Methods—Support
Vector Learning, pages 169–184, Cambridge, MA, 1999. MIT Press.

Juha Karhunen. Optimization criteria and nonlinear PCA neural networks. In IEEE World
Congress on Computational Intelligence, volume 2, pages 1241–1246, 1994.

Juha Karhunen and Jyrki Joutsensalo. Representation and separation of signals using
nonlinear PCA type learning. Neural Networks, 7(1):113–127, 1994.

Kwang In Kim, Matthias O. Franz, and Bernhard Schölkopf. Iterative kernel principal
component analysis for image modeling. IEEE Trans. Pattern Analysis and Machine
Intelligence, 27(9):1351–1366, 2005.

Yann LeCun. MNIST handwritten digit database, 1998. URL http://www.research.att.

com/~yann/ocr/mnist/.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural Computation, 1:541–551, 1989.

Marina Meila. Comparing clusterings: An axiomatic view. In Proc. 22nd Intl. Conf.
Machine Learning (ICML), pages 577–584, New York, NY, USA, 2005. ACM Press.

Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz,
and Gunnar Rätsch. Kernel PCA and de-noising in feature spaces. In Michael S. Kearns,
Sara A. Solla, and David A. Cohn, editors, Advances in Neural Information Processing
Systems, volume 11, pages 536–542. MIT Press, 1999.

David C. Munson, Jr. A note on Lena. IEEE Trans. Image Processing, 5(1), 1996.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors,
Advances in Neural Information Processing Systems, volume 14, 2002.

Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigen-
values of the expectation of a random matrix. Journal of Mathematical Analysis and
Applications, 106(1):69–84, February 1985.

1916

http://books.nips.cc/papers/files/nips04/1009.pdf
http://books.nips.cc/
http://books.nips.cc/
http://www.mkp.com/
http://mitpress.mit.edu/
http://www.research.att.com/~yann/ocr/mnist/
http://www.research.att.com/~yann/ocr/mnist/
http://neco.mitpress.org/
http://books.nips.cc/papers/files/nips11/0536.pdf
http://books.nips.cc/
http://books.nips.cc/
http://mitpress.mit.edu/
http://books.nips.cc/papers/files/nips14/AA35.pdf
http://books.nips.cc/papers/files/nips14/AA35.pdf
http://books.nips.cc/

Fast Iterative Kernel PCA

Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6
(1):147–160, 1994.

John Platt. Fast training of support vector machines using sequential minimal optimization.
In Bernhard Schölkopf, Chris J. C. Burges, and Alex J. Smola, editors, Advances in Kernel
Methods—Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Math-
ematical Statistics, 22:400–407, 1951.

Terrence D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward
network. Neural Networks, 2:459–473, 1989.

Bernhard Schölkopf and Alex J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

Bernhard Schölkopf, Alex J. Smola, and Klaus-Robert Müller. Nonlinear Component Anal-
ysis as a Kernel Eigenvalue Problem. Neural Computation, 10:1299–1319, 1998.

Nicol N. Schraudolph. Fast Curvature Matrix-Vector Products for Second-Order Gradient
Descent. Neural Computation, 14(7):1723–1738, 2002.

Nicol N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc.
Intl. Conf. Artificial Neural Networks, pages 569–574, Edinburgh, Scotland, 1999. IEE,
London.

Nicol N. Schraudolph, Simon Günter, and S. V. N. Vishwanathan. Fast iterative kernel
PCA. In Bernhard Schölkopf, John Platt, and Thomas Hofmann, editors, Advances in
Neural Information Processing Systems, volume 19, Cambridge MA, June 2007. MIT
Press.

Therdsak Tangkuampien and David Suter. Human motion de-noising via greedy kernel
principal component analysis filtering. In Proc. Intl. Conf. Pattern Recognition, 2006.

S. V. N. Vishwanathan, Nicol N. Schraudolph, and Alex J. Smola. Step size adaptation in
reproducing kernel Hilbert space. Journal of Machine Learning Research, 7:1107–1133,
June 2006.

Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel software for training large
scale support vector machines on multiprocessor systems. Journal of Machine Learning
Research, 7:1467–1492, July 2006.

1917

http://neco.mitpress.org/
http://mitpress.mit.edu/
http://mitpress.mit.edu/
http://neco.mitpress.org/cgi/reprint/10/5/1299
http://neco.mitpress.org/cgi/reprint/10/5/1299
http://neco.mitpress.org/
http://neco.mitpress.org/cgi/reprint/14/7/1723
http://neco.mitpress.org/cgi/reprint/14/7/1723
http://neco.mitpress.org/
http://books.nips.cc/papers/files/nips19/NIPS2006_0809.pdf
http://books.nips.cc/papers/files/nips19/NIPS2006_0809.pdf
http://books.nips.cc/
http://books.nips.cc/
http://mitpress.mit.edu/
http://mitpress.mit.edu/
http://www.jmlr.org/papers/volume7/schraudolph06a/schraudolph06a.pdf
http://www.jmlr.org/papers/volume7/schraudolph06a/schraudolph06a.pdf
http://jmlr.csail.mit.edu/
ihttp://www.jmlr.org/papers/volume7/zanni06a/zanni06a.pdf
ihttp://www.jmlr.org/papers/volume7/zanni06a/zanni06a.pdf
http://jmlr.csail.mit.edu/
http://jmlr.csail.mit.edu/

	Introduction
	Kernel Hebbian Algorithm
	Gain Decay with Reciprocal Eigenvalues
	The KHA/et* Algorithm
	Calculating the Eigenvalues
	The KHA/et Algorithm

	KHA with Stochastic Meta-Descent
	Scalar Stochastic Meta-Descent
	SMD for KHA

	Experiments
	Experiments on Small Datasets
	USPS Digit KPCA
	Multipatch Image Denoising
	Face Image Super-Resolution
	Spectral Clustering of USPS Digits
	Human Motion Denoising

	Experiments on MNIST Dataset

	Discussion and Conclusion

