
Fast Joint Estimation of Silhouettes
and Dense 3D Geometry from Multiple Images

Kalin Kolev, Thomas Brox, and Daniel Cremers

Abstract—We propose a probabilistic formulation of joint silhouette extraction and 3D reconstruction given a series of calibrated 2D

images. Instead of segmenting each image separately in order to construct a 3D surface consistent with the estimated silhouettes, we

compute the most probable 3D shape that gives rise to the observed color information. The probabilistic framework, based on

Bayesian inference, enables robust 3D reconstruction by optimally taking into account the contribution of all views. We solve the

arising maximum a posteriori shape inference in a globally optimal manner by convex relaxation techniques in a spatially continuous

representation. For an interactively provided user input in the form of scribbles specifying foreground and background regions, we build

corresponding color distributions as multivariate Gaussians and find a volume occupancy that best fits to this data in a variational

sense. Compared to classical methods for silhouette-based multiview reconstruction, the proposed approach does not depend on

initialization and enjoys significant resilience to violations of the model assumptions due to background clutter, specular reflections,

and camera sensor perturbations. In experiments on several real-world data sets, we show that exploiting a silhouette coherency

criterion in a multiview setting allows for dramatic improvements of silhouette quality over independent 2D segmentations without any

significant increase of computational efforts. This results in more accurate visual hull estimation, needed by a multitude of image-based

modeling approaches. We made use of recent advances in parallel computing with a GPU implementation of the proposed method

generating reconstructions on volume grids of more than 20 million voxels in up to 4.41 seconds.

Index Terms—Shape from silhouettes, interactive segmentation, convex optimization.

Ç

1 INTRODUCTION

THE problem of modeling 3D objects from multiple views
has seen some groundbreaking advances in recent years

[14], [10], [18]. Nevertheless, most methods require special
settings, which allow for reliable silhouette extraction, and
are computationally quite demanding due to the estimation
of robust photoconsistency measures associated with each
point in space. The goal of this paper is to cast multiview
reconstruction as a problem of interactive joint segmenta-
tion of all images which does not require photoconsistency
or silhouette information and which provides 3D models of
acceptable quality in the order of 2-5 seconds. See Fig. 1 for
an example.

1.1 Shape from Silhouettes

The earliest approaches for multiview 3D reconstruction,
dating back to the 1970s [2], use outlines to infer geometrical
structure. While silhouette-based methods are not capable
of retrieving surface concavities, since these do not affect the
image projections, they come along with some important
advantages and are often preferred in applications like robot

navigation and tracking. First, they enjoy significant
stability and efficiency, which allows them to operate in
challenging imaging conditions. Second, they seem to be the
only reasonable alternative for recovering textureless or
homogeneous objects. Third, they usually do not require
exact visibility estimation. This is a great advantage over
multiview/photometric stereo and shading techniques,
where visibility reasoning leads to a chicken-and-egg
problem. Silhouette-based methods can provide useful
initial solutions that can be refined by other techniques.

Usually, silhouettes are used to infer surfaces in a two
step process: An individual decision about pixel occupancy
is made on a per-view basis, then geometrical structure is
inferred from all estimated segmentations [2], [20], [29].
Unfortunately, the automatic segmentation of individual
images is in many cases not feasible, especially in the
presence of noise, illumination variations, and background
clutter. To this end, researchers developed interactive
approaches, where the user is required to guide the process
by manually labeling image regions [5], [27], [33]. While two
scribbles marking foreground and background are usually
sufficient for simple images, the extent of required user
interaction increases significantly in case of cluttered or
camouflaged environments. This problem becomes more
relevant if we consider a collection of input images where
even a modest amount of user interaction on an individual
image basis entails significant efforts. Applying the above
interactive segmentation methods leads to a two-step
silhouette fusion procedure, where binary image labelings
are first computed separately and combined subsequently
to build a unified 3D model. Yet, this simple scheme is
suboptimal in the sense that the segmentation of each
individual image does not take into account information
from the remaining imagery. It is beneficial to exploit the
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fact that all input views capture the same scene in order to
counteract possible inaccuracies in single observations.
Furthermore, for realistic inhomogeneous backgrounds, a
robust segmentation will require imposing spatial regular-
ity of the boundary. It is unclear how this additional
smoothness assumption will affect the final 3D model.

1.2 Previous Work

Since the current paper touches the topic of shape from
silhouettes, it is related to a vast body of prior work in
multiview 3D reconstruction. Historically, the main strategy
for computing a silhouette-consistent shape has been to
directly implement the intersection of visual cones corre-
sponding to different silhouettes [2]. Such techniques aim at
estimating the object’s visual hull, i.e., the largest shape that
yields the same silhouettes as the observed ones [20]. An
important class within this domain exhibits volumetric
approaches. The key idea is to discretize the space by a
fixed voxel grid and label each voxel as opaque or
transparent according to its projections onto the images.
An early paper reporting a volumetric approximation of the
visual hull is due to Martin and Aggarwal [23]. Subse-
quently, octree-based representations have been employed
by Potmesil [26] and Szeliski [31] in order to increase the
efficiency. The viability of volumetric techniques is due to
some important properties. They are not susceptible to
numerical difficulties that can arise in analytic computa-
tions and enable objects of arbitrary topology and complex-
ity to be reconstructed. Moreover, their computational time
can be drastically reduced by using parallel implementa-
tions over the voxel grid. While most of the prior research
has been focused on increasing the accuracy or efficiency of
the process of silhouette fusion, little attention has been
paid to the problem of improving the robustness and
minimizing the efforts needed to achieve this goal.

Probabilistic methods for multiview silhouette fusion
have previously been proposed in the context of model-free
tracking [9], [13]. However, since they are based on
background subtraction, they require special environmental
conditions and are not directly applicable to the problem of
joint color-based segmentation and reconstruction from
real-world image sequences.

Along with shape from silhouette techniques, research-
ers have advocated the use of theoretically more transpar-
ent energy minimization methods which directly compute a
3D shape, consistent with all images [36], [29], [6]. In [36],
the 3D surface sought is modeled in a variational sense by
minimizing the reprojection error between estimated sur-
face intensities and observed ones. Rather than regularizing
the boundary of individual segmentations, the variational
formulation allows to directly impose regularity of the
estimated 3D model. One of the difficulties with such
energy minimization methods is that respective functionals
are not convex. Therefore, the proposed gradient descent
optimization is likely to get stuck in a local minimum,
especially in case of a complex object topology. The aspect
that typically prevents global optimizability of respective
functionals is the fact that the observed projections cannot
be inverted and therefore do not allow a direct inference of
voxel occupancy. They merely allow statements about the
collection of voxels along respective lines of sight. This
difficulty can be circumvented by measuring costs in 3D
space rather than on the image plane [29], [6]. Yet, the
approach in [29] requires binary view segmentations, which
makes it susceptible to noise in individual observations. A
more general algorithm that operates directly on image
color information has independently been proposed in [6].
Although the authors report significant improvements over
classical silhouette fusion techniques, the applicability of
their formulation is limited. First, the method does not
allow for efficient user interaction on a single image. It
either runs without any user intervention, which is
unreliable in many cases, or it requires interaction in all
views due to the utilization of separate background models.
Note that the proposed fixation arguments may fail for
certain objects and camera settings. Second, the method is
quite slow (computational times up to a couple of hours)
and sequential in nature, which entails the lack of
parallelization potential. In this respect, additional difficul-
ties are caused by the employment of graph cut optimiza-
tion, the parallelization of which is also not straightforward.

User interaction has become an established tool for
segmenting real-world images. The pioneering work [5]
addresses the foreground/background interactive segmen-
tation in still images via max-flow/min-cut energy mini-
mization. The energy balances between likelihood of pixels
belonging to the foreground and the edge contrast imposing
regularization. The user-provided scribbles collect statistical
information on pixels and serve additionally as hard
constraints. The GrabCut [3], [27] framework further
simplifies the user interaction required. It allows for
interactively adding scribbles to improve the initial segmen-
tation. Full color statistics are used, modeled as mixtures of
Gaussians, and these are updated as the segmentation
progresses. Further developments have led to the utilization
of weighted geodesic distances to the information supplied
by the user [8], [1]. Recent advances in convex optimization
[7] initiated the appearance of [33], where total variation
minimization has been adopted to interactive image seg-
mentation. Yet, all of these methods are restricted to
individual image segmentation. They are unable to ade-
quately process collections of images capturing the same
scene, where the interdependence between different obser-
vations is crucial. This drawbackmotivated the development
of image cosegmentation [28]—a framework exploiting the
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Fig. 1. The figure illustrates an example where the proposed interactive
approach delivers an accurate reconstruction in only 2.08 seconds. First
row: Three out of 27 input images and utilized user interaction (blue
scribbles mark foreground and red ones background). Second row: Two
views of the reconstructed surface. Note that the image sequence
exhibits a major challenge for classical multiview stereo methods due to
the homogeneous appearance of the imaged object. The figure is best
viewed in color.



overlapping in content of two or more images with the goal
of improving the segmentation results. While the current
work is inspired by a similar incentive, there is one important
difference—in our case, the images are calibrated, which is
an additional source of information and allows for a more
accurate modeling of the connection between different
observations.

Furthermore, researchers have adapted interactivity to
video segmentation [35], [21]. In this context, additional
improvements are obtained by imposing time coherency,
under the assumption that the changes between successive
frames are minor. However, the generalization of such
approaches to make them applicable to the problem of
segmenting collections of still photographs imaging the
same scene remains an open challenge.

1.3 Contribution

In this paper, we propose a probabilistic treatment of the
multiview reconstruction problem. Instead of processing
the input images independently and subsequently fusing
the resulting information, we compute the most probable
surface that gives rise to the given observations. To this
end, we adopt a volumetric approach, where we assign to
each voxel probability costs for being inside or outside the
imaged shape. Color distributions for foreground and
background are estimated from user interactions in the
form of a few scribbles in only one of the input images. We
avoid explicit visibility reasoning by initially neglecting
the interdependence of voxels and reintroducing it in a
probabilistic manner at a later stage of the modeling. The
consequence of this approximation is that the resulting
Bayesian inference problem can be optimized globally. In
particular, we employ established convex relaxation
techniques to find the exact solution. In numerous
experiments, we demonstrate that the proposed probabil-
istic formulation provides far more robust reconstructions
than the classical silhouette fusion method [2], [20].
Furthermore, we show dramatic improvements of indivi-
dual image segmentations by exploring multiview coher-
ency criteria. Based on a volumetric parallelization, we are
able to obtain reconstructions of surprising accuracy in
only a few seconds by means of a GPU implementation. It
is important to note that the proposed framework is
general and can be used in combination with any
probabilistic model for image inference.

A preliminary version of this framework was presented
at a conference [17], where the probabilistic formulation
was introduced for grayscale images. In the following, we
summarize the novelty of the current paper over [17]:

. The iterative update of the parameters of the fore-
ground/background color distributions is replaced
by an interactive determination through user input.

. We show that the resulting functional can be
minimized by means of convex relaxation. This
allows us to compute globally optimal shapes
independent from initialization.

. Making use of recent developments in parallel
computing, we present a GPU implementation of
the proposed approach which leads to a formid-
able reduction in runtime from above an hour to a
few seconds.

The paper is laid out as follows: In the next section, we
present and discuss the underlying probabilistic framework.
An energy minimization formulation and a respective
numerical optimization scheme are derived in Section 3. In
Section 4, we show experimental results demonstrating in
particular superior performance over classical silhouette
fusion techniques. Finally, we conclude in Section 5.

2 PROBABILISTIC VOLUME INTERSECTION

2.1 3D Shape Modeling via Bayesian Inference

We consider the problem of probabilistic voxel labeling
from a series of calibrated images of a scene. The relation-
ship between image observations and surface estimation is
established in terms of Bayesian inference, which allows to
derive a MAP estimate for the sought 3D surface by
modeling the process of image formation. The probabilistic
framework covers a wide range of noise sources like camera
sensor perturbance, surface reflections, erroneous camera
calibration, etc. All these effects have as a result that
observed colors deviate from the expected ones. In the
following, the proposed probabilistic formulation is ex-
plained in more detail.

Let

V :¼ ½v11; v12� � ½v21; v22� � ½v31; v32� � IR3

be a volume enclosing the object of interest with boundary
values vlm 2 IR, and

~V :¼

v11 þ i �
v12 � v11

N1

v21 þ j �
v22 � v21
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v31 þ k �
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a discretized version of resolution N1 �N2 �N3. Ob-
viously, we have the relation ~V � V . Further, let I1; . . . ; In :

� 7! IR3 be a collection of calibrated color images with
perspective projections �1; . . . ; �n : V ! �, where � � IR2

denotes a common image domain. Given the set of views,
we are looking for the most probable surface Ŝ that gives
rise to them, that is,

Ŝ ¼ argmax
S2�

P ðS j fI1; . . . ; IngÞ; ð1Þ

where � :¼ fS j S : D � IR2 ! V g is the set of all closed
surfaces lying inside the volume V . By means of the Bayes
formula, we obtain

P ðS j fI1; . . . ; IngÞ / P ðfI1; . . . ; Ing j SÞ � P ðSÞ; ð2Þ

where the a priori probability P ðSÞ allows us to introduce
preference to a certain class of surfaces possessing desired
properties like smoothness, simple topology, etc. It should
be noted that the constant term

1

P ðfI1; . . . ; IngÞ

has been omitted in the above expression since it does not
influence the shape retrieval process.

A crucial issue in this formulation is the modeling of the
likelihood P ðfI1; . . . ; Ing j SÞ. It reflects the image formation
process in terms of the probability for observing images
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I1; . . . ; In, provided a surface estimate S. To this end, we
could rely on the simple and straightforward assumption
that observations of separate voxels are independent of each
other and only their projections onto the images influence
their state. This leads to factorization over the entire
volume:

P ðfI1; . . . ; Ing j SÞ �
Y

x2 ~V

P ðfIlð�lðxÞÞgl¼1;...;n j SÞ

" #dx

; ð3Þ

where the exponent dx denotes the discretization step and
plays the role of a normalizer. It is introduced to ensure
the correct continuum limit and make the expression
invariant to refinement of the grid. In practice, the
probability values are usually smaller than 1. Hence, the
above product will tend to zero for increasing volume
resolutions since the number of multipliers will grow. For
example, if we double the number of voxels, the product
will be generally raised to the power of 2. The effect of this
modification will be neutralized by the exponent dx, which
will be halved.

In fact, the independence assumption is not fulfilled
since the appearance of a voxel can be affected by other
voxels in the line of sight. However, we neglect this
interdependence at this point and reintroduce it at a later
stage of the modeling process.1

According to a certain surface estimate S, the voxels

can be divided into two classes: lying inside an object or

belonging to the background. Hence, the volume V can

be expressed as V ¼ RS
obj [RS

bck, where RS
obj denotes the

surface interior and RS
bck the exterior region, respectively.

Analogously, we obtain for the discrete counterpart
~V ¼ ~RS

obj [
~RS
bck, where ~RS

obj and ~RS
bck are discretized

versions of RS
obj and RS

bck. Considering this partitioning,

we can proceed with

P ðfI1; . . . ; Ing j SÞ

�
Y

x2 ~RS
obj

P
��

Ilð�lðxÞÞ
�

l¼1;...;n
j x 2 RS

obj

�

2

6

4

3

7

5

dx

�
Y

x2 ~RS
bck

P
��

Ilð�lðxÞÞ
�

l¼1;...;n
j x 2 RS

bck

�

2

6

4

3

7

5

dx

:

ð4Þ

To simplify the notation, we denote

PobjðxÞ :¼ P
�

fIlð�lðxÞÞgl¼1;...;n j x 2 RS
obj

�

;

PbckðxÞ :¼ P
�

fIlð�lðxÞÞgl¼1;...;n j x 2 RS
bck

�

;
ð5Þ

for x 2 V (see Fig. 2). Now, plugging the results in (2) and
(4) into (1) gives the following expression:

Ŝ ¼ argmax
S2�

Y

x2 ~RS
obj

PobjðxÞ

0

B

@

1

C

A

dx

�
Y

x2 ~RS
bck

PbckðxÞ

0

B

@

1

C

A

dx

�P ðSÞ: ð6Þ

Note that PobjðxÞ and PbckðxÞ defined in (5) do not represent
the probability that x is part of object or background, but
rather the probability for observing certain colors in
respective projections given that x is part of the object or
the background. In particular, this implies that for an
arbitrary x 2 V , these probabilities will generally not sum to
1. This is an important point in the modeling process since it
allows us to use two different color distribution models for
foreground and background instead of a single one.

2.2 Joint Probabilities

Now, we are confronted with the question of how to
compute the joint probabilities given in (5). Such a
computation involves fusing hypotheses stemming from
different views. A straightforward way to accomplish this
task is to again assume independence of the image
observations. Taking visibility into account, we note that
the probability of a voxel being part of the foreground is
equal to the probability that all cameras observe this voxel
as foreground, whereas the probability of background
membership describes the probability of at least one
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1. The weaker assumption of a factorization not over all voxels but
merely over all lines of sight gives rise to a cost functional with integrals
over all image domains, as suggested in [36]. While this approximation is
more faithful, it does not lead to a globally optimizable cost functional and
does not entail uniqueness of solutions.

Fig. 2. Probabilistic volume intersection. Left: Two probabilities Pobj; Pbck are assigned to each voxel, explaining its projections onto the images with
respect to the provided color models for foreground and background, respectively. Right: Slices through the probability maps Pobj and Pbck for the
“bunny” sequence (see Fig. 6).



camera seeing background. This formulation can be
regarded as the probabilistic analog to classical silhouette
carving techniques, where a voxel is set transparent if it
projects on background in at least one of the input images.
Note that this is a conceptual difference to explicit visibility
estimation, where the current surface determines the state
of each voxel [36]. Following this train of thoughts, we
obtain the formulation

PobjðxÞ ¼
Y

n

i¼1

P
�

Iið�iðxÞÞjx 2 RS
obj

�

;

PbckðxÞ ¼ 1�
Y

n

i¼1

�

1� P
�

Iið�iðxÞÞjx 2 RS
bck

��

:

ð7Þ

The asymmetry in both expressions is due to the fact that
they describe different types of events. The expression for
PobjðxÞ relies on the assumption that the observed object is
completely visible in all of the images, i.e., no obstacles
block the field of view of the cameras to it. The overall
foreground score can then be obtained by simple multi-
plication of all image votes. The term PbckðxÞ requires more
care regarding the fact that a background voxel could be
occluded in some of the images by the object itself. Hence, a
simple multiplication of the single probabilities will not
work. Instead, we revert the foreground evidence of the
individual image responses with respect to the background
model. In this sense, the interdependence of voxels
neglected in (3) is now reintroduced.

A closer look at (7) reveals that it contains a bias
with respect to the number n of images. Since the
individual observation probabilities P ðIið�iðxÞÞ j x 2 RS

objÞ
and P ðIið�iðxÞÞ j x 2 RS

bckÞ are both bounded by 1 and
typically smaller than 1 for realistic scenarios, PobjðxÞ (and
PbckðxÞ) would tend to zero (or one) for n ! 1. This bias
disappears if we consider each camera separately to
approximate PobjðxÞ and PbckðxÞ:

PobjðxÞ � P
�

Iið�iðxÞÞ j x 2 RS
obj

�

8 i;

1� PbckðxÞ � 1� P
�

Iið�iðxÞÞ j x 2 RS
bck

�

8 i;
ð8Þ

and subsequently compute the geometric mean as an
average score, yielding

PobjðxÞ ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

n

i¼1

P
�

Iið�iðxÞÞ j x 2 RS
obj

�

s

;

PbckðxÞ ¼ 1� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

n

i¼1

�

1� P
�

Iið�iðxÞÞ j x 2 RS
bck

��

s

:

ð9Þ

A direct comparison to (7) shows that the proposed model
results in a normalizing root being introduced, which
makes both expressions invariant to the number of cameras.
The use of geometric mean is motivated by the nature of the
fusion process. For example, if one camera supplies weak
evidence for foreground membership (i.e., P ðIið�iðxÞÞ j x 2
RS

objÞ � 0), this will immediately decrease the overall
product and therewith the final value for Pobj. Analogously,
a strong background response (i.e., P ðIið�iðxÞÞ j x 2
RS

bckÞ � 1) of one of the cameras will drastically bring the
value of Pbck closer to 1. This coincides with the classical
visual hull computation, where a voxel is classified as

background if at least one of its projections is inside a
background region.

The probability of observing a certain color value in a
given image can be modeled by a parametric distribution
such as multivariate Gaussian:

P ðIið�iðxÞÞ j x 2 RS
objÞ � N ð�obj;�objÞ;

P ðIið�iðxÞÞ j x 2 RS
bckÞ � N ð�bck;�bckÞ;

ð10Þ

in sRGB color space. Here, �obj, �bck denote the mean
vectors and �obj, �bck the covariance matrices of both
regions. As previously mentioned, the parameters of the
color distributions are determined interactively by requir-
ing the user to mark object and background regions via
scribbles in one of the input images (see Section 4). Note
that Nð�obj;�objÞ and Nð�bck;�bckÞ stand for continuous
density functions. In order to derive corresponding prob-
ability values, a normalization over the entire discretized
color space has to be performed. This step is important
since it guarantees that the values for P ðIið�iðxÞÞ j x 2 RS

objÞ
and P ðIið�iðxÞÞ j x 2 RS

bckÞ are within the unit interval ½0; 1�
and validates the formulation in (9). Example probability
maps Pobj and Pbck are depicted in Fig. 2. Note that the
probability for foreground evidence is quite blurry, while
that of the background region is more distinct. This is due
to the nature of the silhouette fusion scheme (see (9)). As
the foreground probability map Pobj is estimated by simply
averaging the single observation probabilities, the obtained
values are diluted. In contrast, one high observation
probability with respect to the background model would
immediately result in a high value for Pbck.

It should be noted that the proposed probabilistic
framework is quite general and does not involve any
inherent assumptions about particular modeling of the
observation probabilities in (10). Alternatively to the
proposed formulation, the method in [12] or [32] could be
used instead to derive respective probability maps.

3 MAP ESTIMATION VIA ENERGY MINIMIZATION

3.1 Variational Formulation

Now, we come to the question of how the MAP estimation
problem in (6) can be solved. It can be converted to an
equivalent energy minimization problem that can be
solved exactly by means of established convex relaxation
techniques.

A standard approach to achieve that is to apply the
negative logarithm, which converts the maximization
problem in (6) to a minimization one. In a continuous
setting, this yields

EðSÞ ¼ �

Z

RS
obj

logPobjðxÞ dx

�

Z

RS
bck

logPbckðxÞ dx� logP ðSÞ;

Ŝ ¼ argmin
S2�

EðSÞ:

ð11Þ

Minimizing the above energy functional is equivalent to
maximizing the total a posteriori probability of all voxel
assignments. In the spirit of energy minimization, the first

KOLEV ET AL.: FAST JOINT ESTIMATION OF SILHOUETTES AND DENSE 3D GEOMETRY FROM MULTIPLE IMAGES 5



two terms can be interpreted as external costs and measure
the discrepancy between image observations and projec-
tions predicted by the model. The last term exhibits internal
energy costs and summarizes prior knowledge on the
surface geometry. In order to handle image perturbances
like sensor noise, imprecise camera calibration, and back-
ground clutter, this term is usually used to impose spatial
smoothness of the recovered surface. From a theoretical
point of view, a regularization term is often needed to
guarantee uniqueness of solutions [24]. This can be
achieved by setting

P ðSÞ ¼ e��jSj; ð12Þ

where � is a weighting constant and jSj denotes the
euclidean surface area. The euclidean metric could be
replaced by a more general Riemannian metric so as to
impose image edge alignment, for example, [15], [6]. Yet,
edge responses are provided separately by individual
observations and could degrade the reconstructions, espe-
cially in case of noisy or cluttered image data. For that
reason, we relied on the simple euclidean metric in our
regularization criterion. It should be mentioned that the
a priori model in (12) introduces a minimal surface bias,
even though it achieves a high degree of smoothness. This
could cause problems with thin or elongated structures,
depending on the value of the parameter �. Alternatively,
higher order shape characteristics like curvature could be
used instead, but this would make the optimization much
more challenging. To the best of our knowledge, to date
there is no approach allowing global minimization of
curvature in 3D. The choice of the minimal surface model
in (12) is motivated by its simplicity and global optimiz-
ability, as well as its high efficiency in suppressing noise. By
plugging (12) into the functional in (11), we finally obtain

EðSÞ ¼ �

Z

RS
obj

logPobjðxÞ dx

�

Z

RS
bck

logPbckðxÞ dxþ �jSj:

ð13Þ

Our goal is to minimize this functional.

3.2 Numerical Optimization

Following recent advances in convex optimization [7], we
observe that our functional at hand (13) is amenable to
global optimization. Important advantages of continuous
minimal surface optimization methods over graph cuts are
their straightforward parallelizability and accurate regular-
ization scheme [16], [19]. While a lot of efforts have been
made to parallelize graph cut algorithms [30], [22], [34],
there is usually no theoretical guarantee that the paralleli-
zation will be faster for every problem instance [11].
Moreover, graph cut optimization entails metrication errors,
which can be resolved by increasing the grid connectivity
[4] but at the expense of considerably higher memory
requirements. All these difficulties can naturally be circum-
vented by utilizing continuous alternatives. Indeed, con-
tinuous optimization techniques are particularly suitable
for our framework and justify the switch to a continuous
setting in the modeling process.

The first step is to represent the surface S implicitly by

the characteristic function u : V ! f0; 1g of RS
obj, i.e., u ¼

1RS
obj

and 1� u ¼ 1RS
bck
. A known advantage of this repre-

sentation is that changes in the topology of S are handled

automatically without reparametrization. Now, we obtain

the following constrained nonconvex energy minimization

problem corresponding to (13):

EðuÞ ¼

Z

V

log
PbckðxÞ

PobjðxÞ
uðxÞ dxþ �

Z

V

jruj dx ! min;

s:t:u 2 0; 1f g:

ð14Þ

The minimization problem stated in (14) is nonconvex

since the optimization is carried out over a nonconvex set of

binary functions. This difficulty can be circumvented by

relaxing the set of binary labeling functions to u 2 ½0; 1�.

This leads to a typical constrained convex minimization

problem for which a globally optimal solution can easily be

obtained. A key observation which makes such relaxation

techniques interesting is that thresholding its global mini-

mizer at some value within ð0; 1Þ gives a global minimizer

of the original nonconvex problem (14) (see [7] for more

details). The relaxed problem can be solved globally by any

iterative local optimization procedure. Even though the

particular choice of minimization method will not affect the

final result, it influences the speed of convergence. In our

implementation, we apply the primal-dual method pro-

posed in [25], explained in the following in more detail.
One can notice that the energy functional in (14) can be

written in the form

EðuÞ ¼

Z

V

fu dxþ �

Z

V

jruj dx; ð15Þ

where f : V ! IR summarizes the constant part not depen-

dent on u, i.e.,

f :¼ log
PbckðxÞ

PobjðxÞ
:

We proceed by switching to a dual formulation of the total

variation regularizer by means of an auxiliary variable

� : V ! IR3, which allows for the following conversion:

EðuÞ ¼

Z

V

fu dxþ � sup
j�j	1

Z

V

h�;rui dx

 !

: ð16Þ

Now, we obtain a new functional

Eðu; �Þ ¼

Z

V

fu dxþ �

Z

V

h�;rui dx ð17Þ

that should be minimized with respect to u and maximized

with respect to � under the constraints u 2 ½0; 1� and j�j 	 1.

This states a typical saddle point problem that can be solved

by a projected gradient descent/ascent strategy. Denoting

by Crel :¼ fu j u : V ! ½0; 1�g the set of relaxed labeling

functions and by K :¼ f� 2 IR3 j j�j 	 1g the unit ball, the

primal-dual optimization scheme can be described as

follows: We choose ðu0; �0Þ 2 Crel �K and let �u0 ¼ u0. We

choose two time steps �; � > 0. Then, we iterate for n 
 0:
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�nþ1 ¼ �Kð�
n þ � r�unÞ;

unþ1 ¼ �Crel
ðun þ �ð� divð�nþ1Þ � fÞÞ;

�unþ1 ¼ 2unþ1 � un;

ð18Þ

where �K and �Crel
denote projections onto the correspond-

ing sets. Both projections can be easily realized by simple
normalization and clipping, respectively. The r-operator
was discretized by means of forward differences on ~V and
the div-operator—with backward differences so as to ensure
correct integration by parts.

For sufficiently small time-step parameters, convergence
of the above iterative procedure can be proven [25]. In our
experiments, we observed stable behavior for � ¼ � ¼ 0:1.
Moreover, the parameter � balancing the weighting
between data fidelity term and smoothness was fixed to
1.8 throughout all our experiments.

4 EXPERIMENTS

We demonstrate the viability of the proposed approach on
multiple challenging synthetic and real-world image
sequences. In particular, we show that the suggested
probabilistic fusion scheme can handle objects of arbitrary
topology independent of initialization and offers signifi-
cant robustness to shading effects, camera sensor noise,
and background clutter, as frequently encountered in real
scenarios.

4.1 Insensitivity to Object Topology

To validate the importance of global optimization, we start
with a synthetic image sequence of two coupled tori (see
Fig. 3). Although the data set is not interesting from a
photometric point of view due to the contrasting appear-
ance of objects and background, it is intriguing from a
geometric point of view due to the complex topology of the
objects. We compare the proposed approach to stereoscopic
segmentation [36], which is an alternative local multiview
fusion scheme. As can be expected, the local optimization
procedure in [36], involving surface evolution at current
contour generators only, is highly sensitive to initialization.
As stated in [36], the method requires the initial surface to
intersect each of the holes of the final one in order to
converge to an accurate result. However, finding such an
initialization is not a trivial task since it implies knowledge
of the imaged objects. It is not surprising that stereoscopic
segmentation completely fails to recover the correct
topology starting from a sphere enclosing the two tori. In
contrast, the proposed approach, which does not depend on

initialization and always guarantees convergence to a global
optimum for the provided user input, quite accurately
captures the imaged geometry.

4.2 Robustness to Shading Effects and Camera
Sensor Noise

The next two experiments, illustrated in Figs. 4 and 6, show
the effect of shading effects like shadows and illumination
highlights on the 3D reconstruction process.

The first image sequence, depicted in Fig. 4, captures a
sow figurine.2 The data set is relatively challenging, even
though it does not create such an impression at first glance.
While the figurine is rosy and well distinguishable from the
surrounding gray environment, the numerous shading
effects like shadows and light reflections adulterate the
color and significantly diminish this discrepance. Further-
more, the images exhibit relatively bad color calibration
since they have been acquired by different camera devices.
Such effects usually cause misclassification of the respective
foreground pixels when performing individual image
segmentation (see Fig. 5), which in turn leads to overcarving
of the subsequently computed visual hull. The proposed
probabilistic fusion scheme, which avoids premature hard
labeling decisions by exploiting the entire amount of
available image information, is designed as a remedy to
similar frequently appearing difficulties. We emphasize the
benefits of the utilized outline coherency criteria by
showing a direct comparison to the classical two-step
silhouette integration method [2], [20] (see Fig. 4). In
particular, we used the approach in [33] to perform
individual image segmentations. It should be mentioned
that in addition to regional color cues, this method relies on
image edge information to increase the precision of the
segmentations. In both cases, we used the same user input
in one of the images, displayed in Fig. 4, to build the
underlying color models. Moreover, in both cases fore-
ground/background distributions were modeled by multi-
variate Gaussians. Note that even though individual user
interaction per view helps to overcome color calibration
problems, it doesn’t give any substantial improvements in
the case of shading effects and considerably increases the
interactive efforts required. Expectedly, the independent
silhouette fusion technique produces a rather poor recon-
struction. This is confirmed by individual image segmenta-
tions (see Fig. 10 for an example). In contrast, the proposed
probabilistic fusion method produces a quite accurate 3D
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2. The data set is publicly available at http://cvpr.in.tum.de/data/
datasets/3dreconstruction.

Fig. 3. Tori sequence. Left: Two out of 20 synthetic input images of resolution 640� 480. Middle: Multiple views of the reconstruction with
stereoscopic segmentation [36]. Right: Corresponding views of the reconstruction obtained by the proposed approach. Computation time: 3.54
seconds. Both methods were initialized with a sphere enclosing the objects. While stereoscopic segmentation gets stuck in a local minimum and
completely fails to capture the correct topology, the presented probabilistic fusion scheme accurately recovers the imaged geometry.



model under these challenging conditions. Even some of the
small-scale surface details are recognizable.

Similar conclusions can be drawn from the experiment
depicted in Fig. 6. The image sequence displays a red
ceramic bunny figurine. This time, illumination variations

cause less problems due to the diffuse reflectance proper-
ties of the material. For that reason, the independent
silhouette fusion approach already gives a satisfactory
result (see Fig. 6). Most of the small inaccuracies are due to
unclean locations on the figurine. We use this data set to
investigate the behavior of both methods (the proposed
probabilistic fusion and the independent silhouette fusion)
in case of camera sensor noise. To this end, noise within a
certain range was added randomly to the image color data.
We plotted the deviation of the computed 3D model from a
given ground truth at increasing noise range (see Fig. 7),
measured in units of sRGB color space (color values are
within ½0; 255�). As a ground truth, we used a visual hull of
the object computed from manually obtained segmenta-
tions. Note that the visual hull is only an approximation of
the physical object. Yet, it serves as a ground truth in this
case since it exhibits the case of perfect data. If ugt : V !
f0; 1g denotes an implicit labeling representing this ground
truth surface (being 1 within the interior region and 0
within the exterior) and u : V ! f0; 1g the obtained 3D
labeling, we measure the misalignment between them as

� ¼

R

V
jugtðxÞ � uðxÞj dx

R

V
ugtðxÞ dxþ

R

V
uðxÞ dx

: ð19Þ
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Fig. 4. Sow sequence. First row: Nine out of 27 input images of resolution 1;024� 768. The utilized user input is highlighted, whereas blue scribbles
mark foreground and red—background. Second row: Multiple views of the visual hull obtained with the classical independent silhouette fusion
technique. Third row: Corresponding views of the reconstruction result produced by the proposed approach. Computation time: 2.08 seconds. The
numerous shading effects, like shadows and light reflections on the object’s surface, as well as the bad color calibration of the cameras lead to
relatively poor independent segmentations of individual images (see Fig. 5). This, in turn, results in overcarving of the subsequently computed visual
hull. In contrast, the proposed probabilistic fusion method produces a very accurate 3D model under these challenging conditions. The figure is best
viewed in color.

Fig. 5. Independent image segmentations for the sow sequence (6 out of
27) and the user interaction in Fig. 4. False negatives are mainly caused
by shading effects like shadows and light reflections, whereas false
positives are due to variations in the background color. Expectedly, the
poor segmentation results produce a poor 3D model (see Fig. 4). Note,
however, that while false positives do not lead to reconstruction
inaccuracies in most cases, false negatives have a direct influence
due to overcarving along the respective viewing rays. The figure is best
viewed in color.



In particular, we have � 2 ½0; 1� with � ¼ 0 if and only if both

reconstructions are identical and � ¼ 1 if u is the empty set.

Two important observations can be made when analyzing

the graphs in Fig. 7. First, it is evident that the noise levels at
which both compared approaches start to degrade are quite
different. While the independent silhouette fusion method
shows a notable deviation at noise range of 20 color space
units, the accuracy of the probabilistic one is unaffected up
to noise range of 50 units. The superior resilience to camera
sensor noise of the proposed probabilistic formulation is
additionally emphasized by its generally smooth behavior
for ascending noise levels, which is in contrast to the jumpy
performance of its opponent.

4.3 Robustness to Background Clutter

While the image sequences considered so far capture a
more or less homogeneous background, the next two data
sets take a further step and increase the degree of difficulty
by picturing typical real-world backgrounds spanning a
wide range of colors.

The first sequence, depicted in Fig. 8, illustrates a statue,
imaged in front of a blue poster, in the Academic Art
Museum in Bonn, Germany. Although the poster helps to
separate the captured statue from the others in the back-
ground, the object is not completely separable in color space
due to its similarity to the pedestal. Since the goal was the
precise reconstruction of the statue, the pedestal under-
neath was marked as background by the provided user
interaction (see Fig. 8). Expectedly, this diminishes the
discriminative power of both color distributions. An
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Fig. 6. Bunny sequence. Left: Seven out of 36 input images of resolution 640� 480. The utilized user input is highlighted, whereas blue
scribbles mark the foreground and red the background. Right, first row: Multiple views of the visual hull obtained with the classical
independent silhouette fusion technique. Right, second row: Corresponding views of the reconstruction result produced by the proposed
approach. Computation time: 4.41 seconds. Although the traditional silhouette fusion approach gives a relatively accurate reconstruction in this
case, some small imprecisions are still notable, in particular caused by unclean locations on the figurine. The concurrent probabilistic fusion
scheme produces an impeccable 3D model. The figure is best viewed in color.

Fig. 7. Robustness to camera sensor noise. The accuracy of the
proposed probabilistic approach and the traditional independent silhou-
ette fusion procedure for the image sequence in Fig. 6 is investigated for
ascending levels of image noise. The noise is added randomly and
measured in terms of its application range in units of sRGB color space.
The precision of the reconstruction is computed as the deviation from a
provided ground truth surface. See text for more details.



additional challenge is posed by the severe intensity
variations, which are due to the fact that the photographs
were taken at different times of the day. Despite all of these
difficulties, the proposed approach produces a relatively
accurate reconstruction result, even though it exhibits some
small imprecisions (e.g., at the basement). In fact, the
estimated 3D model turns out to be precise enough to
initialize a stereo-refinement process and obtain a highly
accurate 3D model (see Fig. 8). Thereby, for the stereo-based
reconstruction, we used the method in [19].

The second image sequence, depicted in Fig. 9, displays a

bronze bust sculpture of Robert Sauer. As can be seen from

the example pictures, the background continually changes

including the surrounding building interior and hence a very

wide range of colors. This significantly exacerbates the

separability of the sculpture in individual images, even

thoughmost of the objects in the backgroundare relatively far

apart from it. Additional difficulties are caused by the

complex reflectance properties of the material. Once again,

the proposed approach produces a quite accurate result

under these challenging conditions. Even though the recon-

struction exhibits some small-scale artifacts (e.g., at the

basement) and some oversmoothing effects (e.g., the specta-

cle frame), the shape of the bust is clearly recognizable.
The accuracy of the computed 3D models is confirmed

by the image segmentations obtained by projecting them

onto the input views (see Fig. 10). In case of background

clutter, this leads to dramatic improvements over the naive
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Fig. 8. Statue sequence. Left: Four out of 36 images of resolution 1;536� 1;024. The utilized user interaction is superimposed in the last image (blue
scribbles mark the foreground and red the background). Right, first row: Multiple views of the estimated color-based reconstruction. Right, second
row: Stereo-refined reconstruction by the method in [19], initialized with the above result. Note the color similarity between the object and the
pedestal as well as the severe intensity variations. The figure is best viewed in color.

Fig. 9. Bust sequence. Left: Three out of 36 input images of resolution 1;296� 864 and superimposed user interaction (blue scribbles mark the
foreground and red the background). Right: Multiple views of the 3D reconstruction obtained with the proposed approach. Computation time: 4.26
seconds. Note the wide range of background colors as well as the complex reflectance properties of the material. The figure is best viewed in color.



isolated segmentation approach and clearly demonstrates

the potential of the proposed probabilistic silhouette

coherency criteria. This observation is additionally empha-

sized by a quantitative evaluation over the entire image

sequences, shown in Fig. 11. To this end, ground truth

segmentations were obtained by labeling the images

manually. The segmentation error was computed as

err ¼
pfalse

ptrue þ pfalse
; ð20Þ

where ptrue and pfalse denote the number of correctly

classified and misclassified pixels in all views, respectively.

Note that err 2 ½0; 1�. The independent segmentation meth-

od demonstrates poor performance for all data sets except

for the “bunny” sequence due to shading effects, illumina-

tion variations, and background clutter. In contrast, the

proposed probabilistic fusion approach shows clear super-

iority and gives accuracy improvements ranging from

factor 3 (for the “bunny” sequence) to factor 46 (for the

“statue” sequence). Note that while the segmentation error

is negligible for the “sow” and “bunny” sequences,

acquired in lab conditions, it increases for the “statue”

and “bust” sequences, generated in more complex environ-

ments, but to an acceptable extent. These results provide an

explicit justification for the exploration of various coherency

criteria in the context of multiview segmentation.

4.4 User Interaction

The provided user interaction is visualized for all real
experiments in Figs. 4, 6, 8, and 9. It is evident that the
proposed approach gets by with only a few roughly
specified scribbles in one of the input images. This suggests
that the method is not very sensitive to user intervention,
which has been confirmed in our experiments.

Aspreviouslymentioned,we relied on singleGaussians in
our modeling since all of our test objects are single colored.
Multivariate Gaussians minimize the interaction efforts
while achieving a substantial degree of robustness to model
deviations. We also experimented with Gaussian mixture
models. However, we observed that the results gradually
degrade for more than two mixture modes due to overfitting
effects. Note that the user-specified scribbles occupy only a
small portion compared to the entire amount of pixel data.
Yet, Gaussian mixture models or kernel density estimation
can still be preferable in case of multicolored objects.

It should be emphasized that all demonstrated data sets
could successfully be handled, e.g., by the independent
silhouette fusion scheme or the method in [6] with the
appropriate amount of user interaction on a per-view basis.
In contrast, the proposed approach stands out by its
capability of producing an accurate reconstruction from
only a few scribbles in one of the input images. This
property reveals its high practical value, especially in case
of long sequences containing multiple hundreds or thou-
sands of photographs.

4.5 Computational Time

As previously mentioned, the proposed approach was
designed with focus on not only robustness but also
computational efficiency. In particular, we make use of
recent progress in parallel computing with a GPU
implementation of the method. Note that its ingredients
enable parallelization over the volume grid since all
involved computations are at a voxel basis. Moreover, it
can be observed that the overall computational time
scales linearly with both the number of input images and
the volume resolution. Runtimes for all demonstrated
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Fig. 11. Accuracy of individual image segmentations. The proposed
probabilistic approach is compared to the naive independent segmenta-
tion method. The probabilistic fusion scheme was evaluated by
projecting the final 3D model onto the image planes. Ground truth
segmentations were obtained by labeling the images manually. Note the
tremendous improvement in segmentation accuracy, achieved by
exploiting probabilistic silhouette coherency criteria.

Fig. 10. Segmentation of individual images of the sequences in Figs. 4, 6,
8, and 9. First column: One of the input images. Second column:
Interactive segmentation with the method in [33]. Third column:
Interactive segmentation with the proposed approach, obtained by
projecting the computed 3D model onto the image. Even though the
estimated silhouette-coherent segmentations are not pixel precise due to
the use of 3D regularization and the discrepancy between image
resolution and volumetric resolution, the silhouettes are registered
accurately and offer dramatic improvements over independent 2D
segmentations.



experiments, measured on a NVIDIA Tesla C2070, can be
found in Table 1. In our GPU implementation, we
exclusively used global memory to store all input images
and volumetric data. Even though we tried to employ
shared memory in the optimization step, exploiting the
neighboring structure of the underlying PDEs (18), this
didn’t lead to a notable runtime reduction. Note that the
computational time of the presented method does not
depend on the image resolution (ignoring the time for
loading the images) but only on the number of views. In all
test cases, volumetric resolution was in the range between 8
and 21 million voxels.

It should be recalled that the input of the proposed

approach consists not only of the image sequence and the

provided user interaction but also of a specification of a

bounding box containing the object of interest. Although a

tight specification is not necessary for the method to work,

it influences the precision of the computed 3D model and

hence the computational time (a loose bounding box

requires a high volume resolution). One way to obtain a

bounding box estimate is to use the 3D point cloud,

produced by classical structure-from-motion techniques

which are needed to calibrate the input views.

5 CONCLUSION

We presented a novel energy minimization approach for

interactive joint silhouette extraction and 3D reconstruction

from a number of calibrated 2D camera views. The energy

model is derived from a probabilistic setting via Bayesian

inference and is optimized globally using convex relaxation.

The probabilistic formulation avoids making hard decisions

about silhouette occupancy based on single views and

allows us to optimally take into account color information

from all input images. In addition, it provides a novel

decoupling scheme to account for the interdependence

between voxels, which gives rise to a Bayesian inference

problem and allows to compute the globally optimal

reconstruction. We experimentally demonstrated that the

proposed method compares favorably to state-of-the-art

silhouette-based reconstruction methods in that it is more

robust to noise, background clutter, shading effects, and

camera sensor perturbations. Moreover, it does not require

initialization and therefore easily handles 3D shapes of

complex topology. Making use of a GPU implementation,

robust interactive reconstructions were computed with

runtimes of up to 4.41 seconds.

REFERENCES

[1] X. Bai and G. Sapiro, “A Geodesic Framework for Fast Interactive
Image and Video Segmentation and Matting,” Proc. IEEE Int’l
Conf. Computer Vision, 2007.

[2] B. Baumgart, “Geometric Modeling for Computer Vision,” PhD
thesis, Dept. of Computer Science, Stanford Univ., 1974.

[3] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr, “Interactive
Image Segmentation Using an Adaptive GMMRF Model,” Proc.
European Conf. Computer Vision, pp. 428-441, 2004.

[4] Y. Boykov and V. Kolmogorov, “Computing Geodesics and
Minimal Surfaces via Graph Cuts,” Proc. IEEE Int’l Conf. Computer
Vision, pp. 26-33, 2003.

[5] Y.Y. Boykov and M.P. Jolly, “Interactive Graph Cuts for Optimal
Boundary & Region Segmentation of Objects in N-D Images,”
Proc. IEEE Int’l Conf. Computer Vision, vol. 1, pp. 105-112, 2001.

[6] N.D.F. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla,
“Automatic 3D Object Segmentation in Multiple Views Using
Volumetric Graph-Cuts,” Proc. 18th British Machine Vision Conf.,
vol. 1, pp. 530-539, 2007.

[7] T. Chan, S. Esedolu, and M. Nikolova, “Algorithms for Finding
Global Minimizers of Image Segmentation and Denoising Mod-
els,” SIAM J. Applied Math., vol. 66, no. 5, pp. 1632-1648, 2006.

[8] A.X. Falcao, J. Stolfi, and R.A. Lotufo, “The Image Foresting
Transform: Theory, Algorithms, and Applications,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 19-29,
Jan. 2004.

[9] J.-S. Franco and E. Boyer, “Fusion of Multi-View Silhouette Cues
Using a Space Occupancy Grid,” Proc. IEEE Int’l Conf. Computer
Vision, 2005.

[10] Y. Furukawa and J. Ponce, “Accurate, Dense, and Robust Multi-
View Stereopsis,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, June 2007.

[11] L.M. Goldschlager, R.A. Shaw, and J. Staples, “The Maximum
Flow Problem Is Log Space Complete for p,” Theoretical Computer
Science, vol. 21, pp. 105-111, 1982.

[12] L. Grady, “Random Walks for Image Segmentation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1768-
1783, Nov. 2006.

[13] L. Guan, J.S. Franco, and M. Pollefeys, “3D Occlusion Inference
from Silhouette Cues,” Proc. IEEE Int’l Conf. Computer Vision and
Pattern Recognition, 2007.

[14] C. Hernandez and F. Schmitt, “Silhouette and Stereo Fusion for 3D
Object Modeling,” Computer Vision and Image Understanding,
vol. 96, no. 3, pp. 367-392, 2004.

[15] R. Keriven, “A Variational Framework to Shape from Contours,”
Technical Report 2002-221, CERMICS, 2002.

[16] M. Klodt, T. Schoenemann, K. Kolev, M. Schikora, and D.
Cremers, “An Experimental Comparison of Discrete and Con-
tinuous Shape Optimization Methods,” Proc. European Conf.
Computer Vision, Oct. 2008.

[17] K. Kolev, T. Brox, and D. Cremers, “Robust Variational Segmenta-
tion of 3D Objects from Multiple Views,” Proc. DAGM Symp.
Pattern Recognition, K. Franke et al., eds., pp. 688-697, Sept. 2006.

[18] K. Kolev and D. Cremers, “Integration of Multiview Stereo and
Silhouettes via Convex Functionals on Convex Domains,” Proc.
European Conf. Computer Vision, Oct. 2008.

[19] K. Kolev, M. Klodt, T. Brox, and D. Cremers, “Continuous Global
Optimization in Multiview 3D Reconstruction,” Int’l J. Computer
Vision, vol. 84, no. 1, pp. 80-96, Aug. 2009.

[20] A. Laurentini, “The Visual Hull Concept for Visual-Based Image
Understanding,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 16, no. 2, pp. 150-162, Feb. 1994.

[21] Y. Li, J. Sun, and H.-Y. Shum, “Video Object Cut and Paste,” ACM
Trans. Graphics, vol. 24, no. 3, pp. 595-600, 2005.

[22] J. Liu and J. Sun, “Parallel Graph-Cuts by Adaptive Bottom-Up
Merging,” Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, 2010.

[23] W.N. Martin and J.K. Aggarwal, “Volumetric Descriptions of
Objects from Multiple Views,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 5, no. 2, pp. 150-158, Mar. 1983.

[24] D. Mumford and J. Shah, “Optimal Approximations by Piecewise
Smooth Functions and Associated Variational Problems,” Comm.
Pure and Applied Math., vol. 42, pp. 577-685, 1989.

[25] T. Pock, D. Cremers, H. Bischof, and A. Chambolle, “An
Algorithm for Minimizing the Piecewise Smooth Mumford-Shah
Functional,” Proc. IEEE Int’l Conf. Computer Vision, 2009.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

TABLE 1
Data Sets and Runtimes

for All Demonstrated Experiments

The computational times were measured on an NVIDIA Tesla C2070
graphics card.



[26] M. Potmesil, “Generating Octree Models of 3D Objects from Their
Silhouettes from a Sequence of Images,” Computer Vision, Graphics,
and Image Processing, vol. 40, no. 1, pp. 1-29, 1987.

[27] C. Rother, V. Kolmogorov, and A. Blake, “GrabCut: Interactive
Foreground Extraction Using Iterated Graph Cuts,” ACM Trans.
Graphics, vol. 23, no. 3, pp. 309-314, 2004.

[28] C. Rother, V. Kolmogorov, T. Minka, and A. Blake, “Cosegmenta-
tion of Image Pairs by Histogram Matching—Incorporating a
Global Constraint into MRFs,” Proc. IEEE Int’l Conf. Computer
Vision and Pattern Recognition, pp. 993-1000, 2006.

[29] D. Snow, P. Viola, and R. Zabih, “Exact Voxel Occupancy with
Graph Cuts,” Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 345-353, 2000.

[30] P. Strandmark and F. Kahl, “Parallel and Distributed Graph Cuts
by Dual Decomposition,” Proc. Int’l Conf. Computer Vision and
Pattern Recognition, 2010.

[31] R. Szeliski, “Rapid Octree Construction from Image Sequences,”
Computer Vision, Graphics, and Image Processing, vol. 58, no. 1,
pp. 23-32, 1993.

[32] J.K. Udupa and P.K. Saha, “Fuzzy Connectedness and Image
Segmentation,” Proc. IEEE, vol. 91, no. 10, pp. 1649-1669, Oct.
2003.

[33] M. Unger, T. Pock, D. Cremers, and H. Bischof, “TVSeg—
Interactive Total Variation Based Image Segmentation,” Proc.
British Machine Vision Conf., Sept. 2008.

[34] V. Vineet and P.J. Narayanan, “Cuda Cuts: Fast Graph Cuts on the
Gpu,” Proc. Computer Vision and Pattern Recognition Workshop,
pp. 1-8, 2008.

[35] J. Wang, P. Bhat, R.A. Colburn, M. Agrawala, and M.F. Cohen,
“Interactive Video Cutout,” ACM Trans. Graphics, vol. 24, no. 3,
pp. 585-594, 2005.

[36] A. Yezzi and S. Soatto, “Stereoscopic Segmentation,” Proc. Eighth
IEEE Int’l Conf. Computer Vision, vol. 1, pp. 59-66, July 2001.

Kalin Kolev received the BS and MS (Diplom)
degrees in computer science from the University
of Bonn, Germany, in 2002 and 2005, respec-
tively. Since January 2006, he has been working
toward the PhD degree in the Computer Vision
Group at the University of Bonn (until November
2009) and TU München (since December 2009).
His research interests include multiview 3D
reconstruction, statistical approaches, and con-
tinuous optimization.

Thomas Brox received the PhD degree in
computer science from Saarland University,
Germany, in 2005. Subsequently, he spent two
years as a postdoctoral researcher at the
University of Bonn, Germany, and one year as
a temporary faculty member at the University of
Dresden, Germany. He was a postdoctoral
fellow in the Computer Vision Group of Jitendra
Malik at the University of California, Berkeley, for
two years. Since 2010, he has headed the

Computer Vision Group at the Albert-Ludwigs-University Freiburg. His
research interest is in computer vision with special focus on video
analysis, particularly optical flow estimation, motion segmentation,
learning and detection in videos. In 2004, he received the Longuet-
Higgins Best Paper Award at ECCV for his work on optical flow
estimation.

Daniel Cremers received the MS (Diplom)
degree in theoretical physics (1997) from the
University of Heidelberg and the PhD degree in
computer science (2002) from the University of
Mannheim, Germany. Subsequently, he spent
two years as a postdoctoral researcher at the
University of California, Los Angeles, and one
year as a permanent researcher at Siemens
Corporate Research in Princeton, New Jersey.
From 2005 until 2009, he headed the Computer

Vision Group at the University of Bonn, Germany. Since 2009, he has
been a full professor at TU München. He has received several awards,
in particular the Best Paper of the Year 2003 by the Pattern Recognition
Society, the Olympus Award 2004, and the 2005 UCLA Chancellor’s
Award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KOLEV ET AL.: FAST JOINT ESTIMATION OF SILHOUETTES AND DENSE 3D GEOMETRY FROM MULTIPLE IMAGES 13


