
IEEE TRANSACTIONS ON S I G N 4 L PROCESSIUG. VOI. 40. hO. 3. MARCH 1992

Fast &Dimensional Tree Algorithms for Nearest
Neighbor Search with Application to Vector

Quantization Encoding
V. Ramasubramanian and Kuldip K. Paliwal. Member, [E€€

Abstract-In this paper, fast search algorithms are proposed
and studied for vector quantization encoding using the K-di-
mensional (K-d) tree structure. Here, the emphasis is on the
optimal design of the K-d tree for efficient nearest neighbor
search in multidimensional space under a bucket-Voronoi in-
tersection search framework. Efficient optimization criteria and
procedures are proposed for designing the K-d tree, for the
case when the test data distribution is available (as in vector
quantization applications in the form of training data) as well
as for the case when the test data distribution is not available
and only the Voronoi intersection information is to be used.
The proposed optimization criteria and bucket-Voronoi inter-
section search procedure are studied in the context of vector
quantization encoding of speech waveform and are empirically
observed to achieve constant search complexity for O(log N)
tree depths. Comparisons are made with other optimization
criteria-the maximum product criterion and Friedman etal.’s
optimization criterion-and the proposed criteria are found to
be more efficient in reducing the search complexity. Under the
framework used for obtaining the proposed optimization cri-
teria, a geometric interpretation is given for the maximum
product criterion explaining the reasons for its inefficiency with
respect to the proposed optimization criteria.

I. INTRODUCTION

N EAREST neighbor search consists of determining the
closest point to a query point among N points in

K-dimensional (K-d) space. This search is widely used in
several areas such as pattern classification, nonparametric
estimation, and data compression using vector quantiza-
tion. Reducing the complexity of nearest neighbor search
is of considerable interest in these areas, and particularly
in vector quantization encoding. In this paper, we discuss
fast nearest neighbor search in the context of vector quan-
tization.

Vector quantization is a powerful data compression
technique which has become very popular recently in a
number of areas such as speech coding, image coding,
and speech recognition 111-[4]. Vector quantization has
the potential to achieve coding performance close to the
rate-distortion limit with increasing vector dimension.

V . Ramasubramanian is with the Computer Systems and Communica-
Manuscript received May 2 , 1990; revised January 17, 1991.

tions Group, Tala Institute of Fundamental Research, Bombay-400 005,
India.

K . K . Paliwal is with AT&T Bell Laboratories. Murray Hill. NJ 07974,
on leave from the Tata Institute of Fundamental Research, Bombay. India.

IEEE Log Number 9105654.

However, the utilization of vector quantizers is severely
limited by its encoding complexity which increases ex-
ponentially with dimension K [1]-141. Vector quantiza-
tion encoding is the minimum-distortion quantization of a
vector x = (x , , . . . , x K) (referred to as the test vector).
using a given set of N K-dimensional codevectors (called
the codebook C = {c, = ,, , . . of size N) , under some
distance measure d (x , y). This involves finding the near-
est neighbor of x i n C, given by q (x) = c k : d (x , c k) I
d (x , c j) , j = 1 , . . . , N , which requires N vector distance
computations d (x , c,) using the exhaustive full search for
a codebook of size N . The codebook size N is related to
the dimension K and bit-rate r (bits/sample) as N = 2Kr
and the complexity of encoding x increases exponentially
with K and r . Thus, the problem of reducing the compu-
tational complexity of vector quantization encoding be-
comes important for realizing the full potential of vector
quantization and for rendering it practically useful for real-
time applications.

An important approach towards fast nearest neighbor
search in K-dimensions is the use of data structures which
facilitate fast search of the codebook which is normally
unstructured. In this context, the K-d (K-dimensional) tree
structure developed by Bentley [5] is a powerful structure
which has been used recently for fast nearest neighbor
search [6]-[13]. This multidimensional binary tree struc-
ture was originally used by Bentley to carry out fast as-
sociative searches on multidimensional data for answer-
ing a wide range of information retrieval queries such as
intersection query, region search, exact match, partial and
closest match queries from files with multiple key rec-
ords. The optimization of the K-d tree during its design is
a very important issue which decides the efficiency of the
tree in reducing the search complexity. The optimization
of the tree involves the choice of the dividing hyperplane
for each nonterminal node in the tree such that the result-
ing tree structure when used for nearest neighbor search
using a specified search procedure yields the minimum
search time complexity. This issue has been addressed in
[61-[101.

In [6], Friedman er al. proposed general prescriptions
for optimizing the tree to minimize the expected search
time under a backtracking search procedure. The algo-
rithm based on this optimization and backtracking search

RAMASUBRAMANIAK A N D P A L I W A L . FAST K-DIMENSIOYAL TREE ALGORITHMS 519

has an O(log N) average complexity performance. How-
ever, the back-tracking search has high computational
overhead and the average complexity bound has a 2K de-
pendence. In many practical applications such as real-time
vector quantization encoding, the worst case complexity
is also of considerable importance. in addition to average
computational complexity. In particular, in vector quan-
tization applications where it is of interest to use large
values of K for r -i 1 b/sample, the codebook size is N
5 2K and the backtracking search with a performance
bound of the order of 2K will offer a bad worst case per-
formance. Moreover. the optimization was developed un-
der the restriction that no knowledge of the test data dis-
tribution is available and, as a result. does not truly
minimize the expected search time for any particular dis-
tribution. The approach also does not provide any means
of optimization for a given distribution even if it is known
a priori.

An alternate approach to the use of the K-d tree struc-
ture for fast nearest neighbor search is the bucket-Voronoi
intersection framework. Here each leaf (or bucket) of the
tree is associated with a set of codevectors whose Voronoi
regions intersect with the region defined by the bucket
region. The search involves first locating the bucket con-
taining the test vector and subsequently performing a full
search among the set of codevectors associated with the
bucket. The bucket-Voronoi intersection based search
procedure is simple and direct and can offer significant
complexity reduction over the algorithm based on a back-
tracking search which has high computational overheads
and worst case complexity. The design of the K-d tree
under this framework has to consider the Voronoi infor-
mation explicitly and it is important to obtain efficient op-
timization procedures for this. The fast search procedures
reported in [7]-[10] fall within this framework with par-
ticular emphasis on the optimization of the K-d tree. In
[11]-[13], the optimization prescribed by Friedman et al .
[6] is used to organize the training data into buckets for
performing fast agglomerative clustering and the empha-
sis here was more on exploiting the partitioning and space
localization offered by the K-d tree in the form of buckets.

In the paper. we address the issue of optimizing the
K-d tree under the bucket-Voronoi intersection search in
detail, with particular reference to the optimization pro-
cedures proposed by us in the preliminary reports [9],
[lo]. The paper is organized as follows. In Section 11, we
describe the basic K-d tree structure. In Section 111, we
briefly describe the optimization and backtracking search
procedure of Friedman et al . [6] . Section IV describes the
bucket-Voronoi intersection framework. In Section V, we
consider the optimization of the K-d tree under the bucket-
Voronoi intersection in detail. Section V-A addresses the
optimization given the test data distribution and presents
the exact optimization criterion (EOC) proposed by us in
[9]. Here, the optimization involves minimizing the ex-
pected search complexity using both the statistical and
geometric information available in the form of test data
distribution and Voronoi regions of the given codevec-

tors. This results in the most direct optimization possible
in the minimization of the expected search time locally at
every node of the K-d tree when the test data distribution
is known. In the case of the vector quantization, infor-
mation about the test data distribution is available in the
form of training data on which the quantizer is designed
by using algorithms such as the Linde-Buzo-Gray algo-
rithm [151. This training data is used for the optimization
of the tree. However, in most other practical cases where
a priori knowledge of the test data distribution is not
available, this procedure cannot be applied and there is a
need for good generalized optimization criteria which do
not require the test data distribution. Section V-B ad-
dresses this problem of efficient optimization of the tree
for the general case when the test data distribution is not
known. Here, we present the generalized optimization
criterion (GOC) proposed in [lo] which uses only the Vo-
ronoi information. This criterion is obtained based on a
geometric interpretation of the optimization problem using
a direct characterization of the number of Voronoi inter-
sections in the left and right partitions as a function of the
partition location. In Section VI, we consider the maxi-
mum product criterion (MPC) used in [7], [8]. We give a
geometric interpretation of the MPC and explain the rea-
sons for its inefficiency with respect to the GOC optimi-
zation criterion. In Section VII, we describe the experi-
ments and results obtained in the context of vector
quantization of speech waveform. The conclusions are re-
ported in Section VIII.

11. THE K-DIMENSIONAL (K-d) TREE
The K-d tree is a generalization of the simple one-di-

mensional binary tree. In the general case of K-dimen-
sions, the U3 space is split into two half spaces by means
of a hyperplane orthogonal to one of the K coordinate
axes. Such a hyperplane H, represented in general by H
= {x E K : ~ , = h } , defines the two half spaces, RL and
RR as RL = (x E R K : x , 5 h } and RR = (x E 6 i K : x , 2
h } . This partitioning hyperplane is represented by just two
scalar quantities: 1) j , the index to the coordinate axis
orthogonal to the plane, and 2) h, the location of the plane
on this axis. Any vector point x can now be located with
respect to the dividing plane H by a single scalar com-
parison of the form x, 5 11, i .e., the vector’sjth compo-
nent value with the partition value h. The initial region
corresponds to the root of the tree at layer 1 and the two
subregions RL and RR obtained by the division correspond
to the left and right sons at layer 2. Each of these two half
spaces are successively divided by hyperplanes orthogo-
nal to the coordinate axes and d such successive divisions
starting with the initial region as the root at layer 1 creates
a tree of depth d with 2d terminal regions termed “buck-
ets” at the (d + 1)th layer. Every nonterminal node is
associated with a region and a partitioning hyperplane of
the form x :x , = h , which needs storage of just two scalar
quantities (j , h) at each node. Given any vector in 6 i K , a
sequence of d scalar comparisons of the vector’sjth corn-
ponent value with the partitioning hyperplane (j. h) at

520 IEEE T R A N S A C T I O N S ON SIGNAL P R O C E S S I V G . VOL. 40. N O 3. L l A R C H 1992

M E 0 C

1 1
I,

(b)
Fig. I , Example of K-d tree partition

that node leads to the leaf (or bucket) containing the vec-
tor. Thus, a K-d tree structure of depth d partitions the
R K space into 2d disjoint rectangular regions (buckets)
and allows identification of the bucket containing a given
vector x in just d scalar comparisons.

The basic structure of K-d tree is illustrated in Fig. 1
for a planar case. The root region ABCD is divided by
hyperplane EF into two halves. Fig. l(b) shows the cor-
responding tree of depth 3 generated by divisions of these
two regions by various hyperplanes orthogonal to one of
the coordinate axes x , or x?. A vector x = { x , , x 2 } is
located to be in the bucket region IEQR after 3 scalar
comparisons: x, with EF. x? with I J , andx, with QR. Sim-
ilarly, the path corresponding to a vector located in bucket
region LKHF will consist of a comparison sequence with
the hyperplanes EF. GH, and KL.

111. FRIEDMAN-BENTLEY-FINKEL (FBF) OPTIMIZATION
A N D BACKTRACKING SEARCH PROCEDURE

Here we briefly describe the optimization and back-
tracking search procedure proposed by Friedman et ai.
[6] . The prescription for the choice of the partitioning hy-
perplane at every nonterminal node of the tree considers
the codevectors lying within the region represented by the
node to be partitioned and constitutes a local optimiza-
tion. The direct application of the FBF optimization for
the case of vector quantization encoding will be as fol-
lows: i) the axis along which the corresponding code-
vector components have the maximum variance is chosen
as the discriminant axis and ii) the median of the corre-
sponding codevector component distribution on the cho-
sen axis is chosen as the partition value. The variance and
median are computed using codevectors within the region
to be divided. The optimization results in a balanced bi-

nary tree, with each bucket containing equal number of
codevectors.

The general nature of the search consists in first finding
a tentative (current) nearest neighbor of the given test vec-
tor x from among the small set of codevectors within the
bucket containing x and then in determining the actual
nearest neighbor from among other buckets which overlap
with the current nearest neighbor ball. The overall search
is carried out by a recursive procedure which implicitly
performs a backtracking to move from one overlapping
bucket to another, the overlap being detected by abounds-
overlap-ball test. The termination is checked by a ball-
within-bounds test at the root of every subtree that has
been examined completely, i . e . , each of the buckets
within this region has either been searched. or ignored
after verifying that the nearest neighbor ball does not
overlap with it.

The backtracking procedure has a high computational
overhead, dominated by the bounds-overlap-ball test.
which is essentially a vector distance computation. Under
this search strategy, the expected search time minimiza-
tion was formulated in the form of minimizing the average
number of buckets which overlap with the current nearest
neighbor ball. The exact analysis of such an optimization
formulation was intrinsically difficult due to the limitation
that the search was of a backtracking nature, in addition
to the restriction that the test vector distribution is un-
known. This rendered the performance analysis obtuse and
indirect. Moreover, the analysis did not directly yield the
main prescriptions for the optimal division of a region and
these were provided by means of qualitative considera-
tions.

IV. BUCKET-VOROSOI INTERSECTION FRAMEWORK
USING K-d TREES

The implicit geometric interpretation of the nearest
neighbor search in terms of the Voronoi regions of a given
set of codevectors is an important paradigm for structure
based fast search. Given a set of N codevectors along with
a specified distance measure, the entire space is parti-
tioned into N disjoint regions. known as Voronoi regions.
with each codevector associated with one region. The Vo-
ronoi region yi associated with a codevector c, contains
all points in 63 nearer to c, than any other codevector
and is the nearest neighbor locus region of cJ . The Vo-
ronoi region V, is defined as V, = {x E RK: q(r) = c , }
or 6 = {x E a K : d (x . c j) I d (x , c!), i = 1, . . . , N } .
The Voronoi region V, is a convex region formed by the
intersection of the halfspaces {H(c , . c,), i = 1, * * , N ,
j # i } , given by VJ = n j , H(c,, c ,) , where H(c, , c i) is
the set of points closer to c, than c, . For the Euclidean
distance, H(cJ, c ,) is the half-space containing c, formed
by the perpendicular bisector plane of CICi, the line con-
necting ci and c , . Fig. 2(a) illustrates the idea of the Vo-
ronoi region associated with a point in the plane (CR ’) for
the Euclidean distance and Fig. 2(b) shows the Voronoi
partition for the given set of points.

.,~ ~~~~ ~ ~ - .- - - -- .- .~ ~

RAMASUBRAMANIAK A N D P A L I W A L ' FAST K-DIMENSIONAL TREE ALGORITHMS 5 2 I

(b)
Fig . 2 . Example of Voronol partition. (a) Jllustrates the idea of the Vo-

distance. (b) The Voronoi partition for the given set of points.
ronoi region associated with B pomt on the plane (a') for the Euclidean

Thus if the test vector x is contained in a Voronoi re-
gion v,, the associated codevector cj will be the nearest
neighbor of x. In order to determine the nearest neighbor
of the test vector it is thus sufficient to determine the Vo-
ronoi region containing it: with the associated codevector
being its nearest neighbor. Direct approaches in determin-
ing the region containing x are complex and do not pro-
vide any computational saving over the distance-based
exhaustive full search. The problem of fast identification
of the Voronoi region containing a test vector in multi-
dimensional space thus becomes important. An attempt
made by Cheng et al . [14] to apply this approach using
Voronoi projections showed considerable promise, but re-
quired large storage and high computation and memory
access overheads.

In this context. the K-d tree has a very good space lo-
calization property, allowing very fast identification of the
test vector in localized regions with very low overheads.
The buckets and the Voronoi regions provide two inde-
pendent partitionings of the same space using disjoint re-
gions. Under the condition that the test vector is contained
within the bounds of a particular bucket region. the test
vector can be present only in one of the Voronoi regions
having a nonempty intersection with the bucket. A search
among the codevectors associated with these Voronoi re-
gions is sufficient to determine the actual nearest neigh-
bor. As the size of the bucket becomes smaller, the num-
ber of Voronoi regions which intersect with the bucket
also reduces, thus lessening the search complexity con-
siderably. Fig. 3 illustrates the bucket-Voronoi intersec-
tions obtained by the intersection of the K-d tree parti-
tioning shown in Fig. 1 and the Voronoi partitioning
shown in Fig. 2 . For a test vector x located in the bucket
IEQR. it is sufficient to search among the codevectors

It

I
i

I I I I I I I
A F I D

L,

Flg. 3. Bucket-Voronoi intersections corresponding to example.

(marked in circles) whose Voronoi regions intersect with
the region IEQR. These codevectors are associated with
the bucket IEQR and for test vectors in this bucket, the
search cost is reduced from a full-search cost of 16 to 5.
subsequent to just 3 scalar comparisons. It can be ob-
served that the complexity can be reduced further by in-
creasing the tree depth to reduce the bucket sizes with a
consequent reduction in the number of Voronoi regions
intersecting with a bucket. The location of the hyper-
planes is the most important issue here as this determines
the extent of Voronoi intersections with the buckets
formed by the tree. This forms the main issue of the op-
timization of the tree under the bucket-Voronoi intersec-
tion framework and is discussed in the following sections.

V. OPTIMIZATION OF THE K-d TREE FOR BUCKET-
VORONOl INTERSECTION SEARCH

For a K-d tree of depth d, the root region is partitioned
into M (= 2 d) disjoint rectangular regions. { B , . i = 1,

in 63 '. Let pi = p (x E E,) , Let 1 2 , be the number of
codevectors whose corresponding Voronoi regions have a
nonempty intersection with E , , Thus, given x E E , . a
search among these ni codevectors yields the nearest
neighbor of x; the cost of search. then, given x E B,, is
n, . The average cost of search for bucket Bi is p , n , . The
expected cost of search over all x is E = E;! I p i n , . Min-
imization of E corresponds to a global optimization prob-
lem involving the variables pi and ni, i = 1, * * - 1 M ,
which are functions of the partition choice at every non-
terminal node in the tree. For a tree of depth d, the global
optimization thus involves a joint optimization of the (2"
- 1) variable pairs (j , h) . The axis choicej has an integer
range of 1 to K and the partition value h has a continuous
real range within the bounds of the region to be divided,
which. in turn, are determined by the partition choice at
the nodes above i t i n the tree. The global optimization
problem is thus extremely complex and, therefore, it be-
comes necessary to employ means for constructing a near
optimal (in the sense of minimum expected search time)
tree. One such approach is to minimize the expected
search at every node in an independent way and this re-
sults in a local optimization of the individual binary di-
visions at every node. In the local optimization of the K-

. . . , M } . Let p (x) be the joint probability density of x

d tree, the search complexity is minimized as much as
possible at every nonterminal node division of the tree.
We consider the local optimization problem in detail in
the following.

A . Optimization with Test Data Distribution-Exact
Optimization Criterion (EOC)

Let R be a bounded region in 63 ', defined as R = {x E
6 i K : a , I x, I b j , j = I , * * * , K } . to be divided into
two subregions RL and RR by a hyperplane normal to one
of the coordinate axis. For some such hyperplane {x:x,
= h; a, I h 5 b,} (represented as (j! h) henceforth), the
subregions are defined as RL(j , h) = {x E R : x j ,S h } and
RR(j , h) = {x E R : x , > h } . This is illustrated in Fig. 4.
Conditioned by x E R , let p L = p (x E RL) /p (x E R) and
pR = p (x E R R) / p (x E R) with p L + p~ = 1. Let n, nL,
and nR be the number of Voronoi regions having a non-
empty intersection with R , RL, and RR, respectively. p L ,
p R , nL, and nR are functions of (j , h) with nL I n and n~
I n and n 5 nL + nR I 2n. For x E R , given x E RL or
x E Re, the search complexity is reduced from n to nL or
nR. Given x E R , the determination of whether x E RL or
x E RR requires only one comparison of the form x, 5 h ,
the division thus resulting in a complexity reduction after
just one scalar comparison. The expected search com-
plexity for x E R , given only x E R is E(R) = n and the
expected search complexity using the division (j , h) is

E(R, j , h) = P L (~ , h) n ~ (j , h) + P R (~ , h) n ~ (j , h) .
For an ideal division (j , h) such that p L = pR = 1 / 2 and
n L = nR = n / 2 we get E(R , j , h) = n / 2 and the expected
search time using the division will be thus half of that
needed for a search without the division. The ideal divi-
sion considered above is practically unlikely as the inev-
itable splitting of Voronoi cells rules out the possibility
of nL = nR = n / 2 . Moreover, p L , n L , and nR are functions
of h (for anyj) independently and i t is highly unlikely for
them to obtain these values for the same h . Therefore, it
is necessary to consider these functions jointly in deter-
mining the optimal division (j , h) and the optimal choice
of the partitioning hyperplane (j , h)* can be chosen as
the one which minimizes E(R , j , h) over all possible (j ,
h) : 1 5 j 5 K and a, 5 II 5 b,. This criterion, which
we refer to here as the exact optimization criterion (EOC),
is then given by

(j . h)* = arg min E(R, j, h) .
u, z h 5 b!
I S J S K

The functional dependence of p L , nL , and nR on (j : h) is
completely determined by the distribution of the test vec-
tors and the Voronoi intersection regions within the re-
gion of interest. The above optimization has to be carried
out by an exhaustive search over all possible (j , h) using
the functions pL(j , h) , nL(j, h) , and nR(j , h) precomputed
for the region. It is thus necessary to find p L , nL. and nR
for any (j , h) . p L (j . h) is obtained as

p L (j . h) = p (x E R : x , < h)

~ ~~

- 1

Fig. 4 . Typical blnary panltionmg of a region at a nontermmal node.

from a large training data set. by first forming separate
histograms for each of the component axis using the data
belonging to the region R. For any nonterminal node the
test vectors lying within the region to be divided are found
by using the tree built so far above the node. n L and ~ I R
can be determined for any value of (j , h) using the pro-
jections of the Voronoi intersection regions on the coor-
dinate axes. For the n Voronoi intersections having a non-
empty intersection with the region R , their n projections
on to a coordinate axis j correspond to n overlapping in-
tervals (I",, Pi, . * * , P i) (Fig. 5) . The lower and upper
boundary points (P j , L , of the projection interval
P{ of the Voronoi intersection region VI inside the region
R are given by

P ! , ~ = min x, = min x j : q (x) = c,

= max x, = max x, : q (x) = c,
and

XEV, X E R

x E v r€R

For any h , nL(h) and nR(h) could be computed using these
projection boundaries: n,(h) is the number of lower
boundaries less than h and nR(h) is the number of upper
boundaries greater than h. The projection estimates for
each region to be partitioned can be obtained either ana-
lytically or through a Monte Carlo approach by encoding
a large amount of training data or uniformly distributed
points falling within the region as adopted in Cheng et al.
[14] or Cheng and Gersho 171. The projection estimates
are obtained for each region to be divided by encoding the
points that fall within the region. The estimates so ob-
tained will be approximate, but have been found to be
quite acceptable when obtained using sufficiently large
data. The process of histogram formation and projection
estimation can be combined together. thus requiring just
one pass through the training data being used to carry out
the optimal division at each node.

B. Oprimization Without Test Data Distribution-
Generalized Optimization Criterion (GOC)

Under the condition that the test data distribution p (x)
is not known, i t is not possible to minimize the expected

RA,VASUBRAMANIAh A N D PALIWAL: FAST K-DIMENSIONAL TREE ALGORITHMS 523

1 I
I II I I l l I 1

'IO X16

L L U L U L U L u L u L u u L U

Fig. 5. Voronoi intersection regions and their projections (dashed lines
show projection of region V , lo intenjal P,: only some projection lines are
sho*n to avoid cluttering).

'I %% % W r !,h 4 4.1, 4 2 & ~ l .

search complexity using EOC described above. The Vo-
ronoi intersection numbers nL(h) and nR(h) are the only
quantities that could be used in the optimization, and the
objective of a good criterion would be to find a partition
such that both nL and nR are as small as possible. The
problem of obtaining a good criterion which represents
the net complexity reduction due to a division in this case
requires careful consideration due to the inevitable split-
ting of Voronoi regions for any division. In this section,
we consider the division problem by characterizing the
behavior of n,(h), nR(h) as a function of h. as h varies
from a, to b,. Then, using a geometric interpretation of
this in the nL-nR plane we obtain an efficient optimization
criterion which uses only n,(h) and nR(h).

Given that n Voronoi regions have a nonempty inter-
section with the region R, their tt projections on to a co-
ordinate axis correspond to n overlapping intervals (Pi,

jection boundaries (x , , x?, . . . , .r2J with a natural or-
dering (x , < x2 < . . . < x2, ,) . Each of these boundaries
could be labeled as a lower (L) or upper (U) boundary
according to whether it corresponds to the lower or upper
edge of a Voronoi projection. We assume these bounda-
ries to be distinct. These boundaries then divide the (a,,
b,) range into (2n - 1) continguous intervals (I , , I>, . * * ,
I?!,- I) .

The behavior of n,(h) and nR(h) as It varies from a, to
b, is as follows (Fig. 6(b)): At h = a i , n,(h) = 0 and
/ lR(h) = n ; at h = a, + E , nL(h) = 1 and nR(h) = n . AS h
varies across an interval boundary x , , if x , is a lower
boundary (15). a new Voronoi region gets included in the
left region R,(h) and nL(h) steps up by 1: there is no

P?, * . . , P,J (Fig. 6(a)). These are equivalent to 2n pro-

change in the status of the number of Voronoi regions in
the right region &(h) and hence nR(h) does not change.
If x , is an upper boundary (U), a Voronoi region gets ex-
cluded from the right region RR(h) and nR(h) steps down
by 1; nL(h) does not change. When h varies between two
adjacent interval boundaries (x , , x , I ,) (i.e., within an in-
terval I ,) , there is no change in the status of the number
of Voronoi intersections in both the left and right regions
and hence n,(h) and nR(h) remain constant. At h = b, -
E , nL(h) = n and nR(h) = 1 ; at h = bj , n,(h) = n and

The function (n,(h) - nR(h)) behaves as follows as h
varies from a, to b, (Fig. 6(c)): At h = a, + E , (nL(h) -
nR(h)) = - (n - 1) and at h = b, - E , (n,(h) - nR(h)) =
(n - 1). As h varies across a lower boundary, nL(h) in-
creases by 1 while nR(h) remains constant and hence (nL(lz)
.- nR(h)) increases by 1. As h varies across an upper
boundary, nR(h) decreases by I while nL(h) remains con-
stant and hence (nL(It) - nR(h)) increases by 1 again. Thus
when h crosses an interval boundary, irrespective of
whether it is a lower or upper boundary, (nL(h) - nR(h))
increases by 1. Within an interval, as n , (h) and nR(h) both
remain constant, (n,(h) - nR(h)) also remains constant.

flR(h) = 0.

Thus, starting from -(n - 1) at I,, (nL(h) - nR(h)) in-
creases in steps of 1 as h crosses every interval boundary.
finally reaching a value of (n - 1) at I,,, - I . At any inter-
val [,, (nL(h) - n&)) = - (n - 1) + (I - 1). At 1 = n ,
i .e. , at the interval I,,, (n,(h) - nR(h)) = 0 and let n,(h)
= nR(h) = m,. Thus for any Iz E I,,, the division corre-
sponds to a balanced division with equal number of Vo-
ronoi regions intersecting with both the left and right re-
gions. Moreover. for any h E Z,,, the expected search
complexity E(h) = mJ as can be seen by using nL(h) =
nR(h) = mj in E@) = p(h)nL(h) + (1 - p(h))nR(h). (Since
no information about p (h) has been used, this value of
E(h) is not the minimum possible on the ax i s j ; this might
lie at some other location of h.) It can also be noted that
for the division h E f,, since nL(h) = nR(h) = m j , the
worst case complexity corresponding to the division is also
9 .

Thus, given that a balanced division with n,(h) = nR(h)
= m, can always be achieved on any axis j at the interval
Z,,, and that the expected and worst case complexity for
this division is given by mi, a good optimization criterion
for the final partition would be to choose the axis which
has the minimum mj over all j = 1, - * * , K. We now
obtain a general refinement of this criterion using a geo-
metric interpretation of the division problem in the nL+zR

plane using the functional behavior of n,(h) and nR(h) de-
scribed above. This also provides additional insight into
the optimization problem.

Considering nL(h) and nR(h) as parametric in h , (nL(h),
nR(h)) for any h can be represented as a point in the nL-nR
plane. The region of interest is the nL-nR plane where such
points could lie is first obtained: Clearly, 0 5 n L I n and
0 5 nR 5 n . Now, let NL(h) and NR(h) be the number of
Voronoi regions entirely (i .e.$ not split by the division at
h) in the left and right regions, respectively. Let N,(h) be
the number of Voronoi regions split by the division at h .
Henceforth, for convenience, we shall refer to nL(h) ,
ndh) , NL(h) , NR(h). and N d h) simply as nL, nR* NL, NR,
and N s , ignoring the explicit reference to the functional
dependence on h unless necessary and useful. Clearly, NL
+ NR + N , = n for all h . and nL = NL + N s and nR =
NR + N,. N!, + NR + N s = n is the same as nL + nR =
n + N s and with 0 5 Ns 5 n , rzL + nR is bounded as n
I r z L + nR s 2 n . nL + nR = n corresponds to all divi-
sions for which no Voronoi regions are split, i .e., N s =
0; and nL + nR = 2n corresponds to the worst case divi-
sion when all the n Voronoi regions are split, i.e., N s =
n. The resulting region for (nL, nR) points is thus given by
0 s nL I n , 0 5 nR s n and n I nL + nR I 2n. This
is shown as the region ABC in Fig. 7 .

The behavior of the point (n,(h), tzR(h)) as h varies from
a, to bj can now be obtained. As h varies within an interval
f,, n,(h) and nR(h) remain constant and correspondingly.
the (nL , nR) point remains as a point in the nL+R plane.
When h varies across an interval boundary, x i . i .e . , moves
from one interval (I,) to the next (I , i) , (n L , nR) changes
to (n, + 1, nR) if xi is a lower boundary or to (nL, nR -
1) if .x, is an upper boundary. As h varies from uj to b,,

Fig. 7 . Geometric interpretation of the proposed GOC i n the)?,-aR plane.

(nL(h), nR(h)) starts from the (0, n) point and traverses a
path which consists of changes of step 1 in directions par-
allel to the coordinate axis n, or r~~ as h varies across the
interval boundaries, finally reaching the (n , 0) point when
h reaches bj. This is illustrated in Fig. 7 where we show
the path of (nL, nR) for the example shown in Fig. 6. This
is essentially a plot of nL(h) versus nR(h) from Fig. 6(b).
Corresponding to the interval I,,, where, nL = tzR = ml,
the (nL, nR) path intersects the nL = nR line OB at (mi ,
m,). In the interval Zn, i .e., x, 5 h s x,, + ,, the (nL , nR)
path stays at the value of (mi, m j) . For distinct interval
boundaries, the (nL, nR) path for a given coordinate axis j
is completely determined by the boundary label sequence
on that axis. The example path illustrated in Fig. 7 for the
axisj , corresponds to the label sequence (LLULLUU . . .
LULU . . . LULUU). For some other axis k , the general
behavior of nL(h) and nR(h) will be as described earlier,
but the specific path of (nL, nR) will be now different since
the label sequence of the 2n interval boundaries will be
different. A typical example of the (nL, tzR) path for an-
other axis k is also shown in Fig. 7 . This intersects the nL
= nR line at (mk, mk) and the optimization criterion men-
tioned earlier will choose the balanced division on thejth
axis in preference to the kth axis division since mi < m,, .

In general, the optimization criterion mentioned above
can be described geometrically as follows: The nL = n R
line within the region ABC represents all possible bal-
anced divisions starting from the ideal (n / 2 , n / 2) divi-
sion to the worst case division of (n , n). The K balanced
divisions (mi, m,) of the region from the K coordinate axis

manner between (n / 2 , n / 2) and (n . n) along the line.
j = 1, , K lie on this nL = nR line ordered in some

. ..

RAMASUBRAMANIAN AND PALIWAL FAST K-DIMENSIONAL TREE ALGORITHMS 5 2 5

Since any point (nL, nR) lies on the line nL + nR = n +
N s which runs arallel to the nL + nR = n line at a dis-
tance of N s / P 2 , the ordering of the balanced division on
the nL = nR line indicates the number of Voronoi regions
split (N s) by that division. The final partition chosen as
the balanced division (m j , m,) with smallest mi, is the
lowest in the ordering. This is closest to the ideal (n / 2 ,
n / 2) point along the nL = nR line and corresponds to a
balanced division with the least number of Voronoi re-
gions split.

A more general form of this optimization criterion is
obtained by considering the constant contour lines of the
function InL - n R (, which are of the form (n L - nR(= c.
These are a pair of lines nL - nR = c and nL - nR = - c
which tun parallel to the nL = nR line at a distance of
InL - n R l / A . For small values of c , the InL - nR(= c
lines lie close to the nL = nR line. (For c = 0 , this is just
the nL = nR line.) In choosing the optimal partition on a
given axis, we could then use the condition of min InL -
nR/ instead of nL - nR = 0. This is a more general crite-
rion which encompasses the nL - nR = 0 condition while
retaining the basic idea that, from the (nL, nR) path for a
given axis, the division which is closest to the nL = nR
line should be chosen. This generalization allows for good
unbalanced divisions to be chosen whenever balanced di-
visions are not possible, a situation which arises in prac-
tice when interval boundaries are not distinct.

Under this criterion for choosing the partitions on each
of the coordinate axes, the criterion for choosing the final
partition from the K candidate partitions has to be modi-
fied to handle possible unbalanced divisions which lie in
a thin region around the nL = nR line. For this, the Eu-
clidean distance between a candidate division (nL, nR) and
the (n /2 , n / 2) point in the nL-nR plane can be used to
locate the division closest to the ideal (n / 2 , n / 2) divi-
sion. Based on these considerations, we finally get the
following dual constraint which we refer to as the gener-
alized optimization criterion (GOC):

1) For each coordinate axis j = 1, * , K, the opti-
mal partition hj*, for that axis is chosen as the one with
minimum InL - nR/ .

2) From the K candidate partitions (j , h;"), j = 1,

region is chosen as the one whose corresponding (n L , n R)

division is closest to the (n /2 , n /2) point, in the mini-
mum Euclidean distance sense, where n is the number of
Voronoi regions intersecting with the region to be parti-
tioned.

In order to carry out the above optimization, nL and nR
are determined for any value of h using the projections of
the Voronoi intersections within the region to be parti-
tioned as described in Section V-A for the exact optimi-
zation criterion.

At the end of the optimization using EOC or GOC, each
bucket has a codevector list (henceforth referred to as
bucket-Voronoi intersection list or BVI list) associated
with it corresponding to the Voronoi regions intersecting
with the bucket. The nearest neighbor search for any given

. . . , K so obtained, the final partition (k , h,*) for the

test vector proceeds in two phases: first, identifying the
bucket containing the test vector and, then, searching
within the list of codevectors associated with the bucket.
The resulting solution will be optimal if the intersection
list is obtained correctly. The tree depth can be increased
indefinitely, with the search complexity decreasing mon-
otonicaily, limited only by the storage requirements. The
worst case complexity is merely the largest bucket size,
which decreases with iccreasing tree depth, bounded in
the limit by the maximum number of Voronoi regions
which have a vertex in common. For a tree of depth d.
the total storage is 2(2d - 1) + (6 + 1)2" or simply
(3 + 6)2d, where & is the average bucket size. An increase
in depth by one results i n just one extra scalar comparison
in bucket identification and a doubling of storage. The
high storage requirements do not pose a major problem.
since only O(d) actual memory access is needed during
the search.

The complexity of the nearest neighbor search can be
reduced by using a partial distance search [161 within the
bucket. Further reduction results by using an ordered list
[171 in each bucket where the codevectors are arranged in
the order of decreasing probability of being the nearest
neighbor for a test vector belonging to the bucket. This
information can be obtained if the test data distribution is
available as in the case of optimization using EOC.

VI. THE MAXIMUM PRODUCT CRITERION (MPC)

Here we discuss the maximum product criterion used
in [7] and [8] for the optimization of the K-d tree using
only the Voronoi intersection information under the
bucket-Voronoi intersection search. The BHT (binary hy-
perplane testing) algorithm in [7] is essentially a K-d tree
structure where the partitioning hyperplanes are general
(K - 1) dimensional hyperplanes with arbitrary orienta-
tion and are not constrained to be orthogonal to the co-
ordinate axes as in the case of the standard K-d tree. In
this structure. K + I coefficients are needed to represent
the general K - 1 dimensional hyperplane at each node
and hence requires considerably higher storage than the
standard K-d tree. Locating the test vector with respect to
the partitioning hyperplane has to be done by a dot prod-
uct with the hyperplane coefficients and this requires K
multiplies and one comparison at each node. as opposed
to just one scalar comparison with the use of the standard
K-d tree. The optimization problem also is rendered more
difficult by the use of general hyperplanes with arbitrary
orientation. The algorithm is reported to have complexity
of the order of (r - l) K + 2 K and the 2 K bound limits the
usefulness of the algorithm only for bit rates I' > I . I n [8]
the standard K-d tree structure is used to realize a more
efficient structure than that used in the BHT algorithm.
However, the general tree structure used in both these
works are the same and the optimization procedure for the
design of the tree chooses the partitioning hyperplane as
the one which maximizes the product N L N R over all the K
coordinate axes, N,- and N , being the number of Voronoi

526 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40. NO 3. MARCH 1992

regions entirely on the left and right regions, respectively.
Here, we give a geometric interpretation of this maximum
product optimization criterion (MPC) in the nL-nR plane
and compare it with the GOC criterion proposed here.

For any division h, 0 5 NL 5 n and 0 5 NR 5 n .
Moreover, since NL + NR + N , = n , we have NL + NR
= n - Ns and thereby, 0 I NL + NR 5 n. Thus, for any
division h , (NL, NR) will lie in the region given by 0 I
NL 5 n , 0 5 NR 5 n and 0 cc NL + NR 5 n which is
shown as region AOC in Fig. 8. Since the actual search
complexity is determined by nL and nR and not by NL and
N R , we wish to interpret the MPC in the nL-nR plane. For
this purpose, the nL-nR region described earlier is shown
in Fig. 8 as the region ABC along with the NL-NR region
for ease of interpretation. For any given point E(NL, NA)
in the NL-NR region (AOC): the corresponding F(nL, nA)
point in the nL-ItR region (ABC) is obtained by using the
relation nL = n - NR and nR = n - NL. (This follows
from the fact that nL = NL + Ns, nR = NR + Ns and N L
+ NR + N s = n .) The points E and F lie on the NL + NR
= n - Ns and nL + nR = n + Ns lines, respectively,
which run parallel to the NL + NR = n (same as the nL +
nA = n) line at the distance of N s / h as shown in Fig.
8. Therefore, given E(NL, NR), the corresponding point
F(nL. nR) lies at a distance of J ? N ~ along the line con-
taining E and parallel to the n L = nR line. Thus, for any
given E(NL, NR) in the (NL, NR) region the corresponding
point F(nL? nR) in the (n L , nR) region is simply a reflection
of E about the nL + nR = n line.

We interpret the MPC using the constant value con-
tours of the function NL NR. The NL NR = C contours for
C = C,, C,, and C, with C3 > C, > C , are shown in
Fig. 8. The corresponding contours in the nL-nR plane are
obtained by reflecting these NL NR = C contours about the
nL + nR = n line. These are also shown in Fig. 8. The
MPC chooses points lying on the NLNR curves with the
maximum C. For instance, MPC would choose the divi-
sion corresponding to NLNR = C3 as the optimal partition
in preference to other divisions which lie on NLNR = C,
and NLNR = C2. It is easily seen that the point which has
the absolute maximum of N L N R = n2/4 is the (n / 2 , n / 2)
point denoted by D . This ideal division is unlikely due to
the inevitable splitting of the Voronoi regions, and hence
the next best choice would be to choose balanced divi-
sions with the least split, i .e., minimum Ns value. Since
the distance of any point to the point D along the nL = nR
line is proportional to Ns , such “balanced least split” di-
visions would correspond to a point closest to D on the nL
= nR line and will have a value of NLNR = c with c less
than the maximum n 2 / 4 value. However. the function
NLNR = c has a large spread about the nL = t?R line. even
for small reductions in C and due to this even for a good
division along the nL = nR line with a small N,, several
other highly unbalanced divisions (far away from the n L

= nR line) with the same NLNR value would compete for
selection as the optimal division. Consequently, the MPC
might choose divisions which are far from the nL = nR
line in preference over points which are closer to the n,-

. - .

\

NL
___c

Fig. 8 . Geometric lnterpretatlon of the maximum product criterion.

= nR line and this will result in highly unbalanced divi-
sions with poor complexity reductions since one of the
subregions will have a large number of Voronoi regions.

In contrast to MPC, the optimization criterion GOC will
have better complexity reduction as it seeks to construct
the most balanced tree with the lowest expected search
complexity, by first explicitly choosing divisions as close
to the nL = nR line as possible; and from each coordinate
axis, subsequently choosing the division which is closest
to the ideal (n / 2 , n / 2) point.

VII. EXPERIMENTS A N D RESULTS

In this paper, we study the complexity reduction per-
formance of the proposed optimization criteria EOC and
GOC in the context of vector quantization using speech
data. Here we present the performance results of the var-
ious optimization criteria EOC, GOC, and MPC devel-
oped specifically under the bucket-Voronoi intersection
(BVI) search. We also show the performance of the op-
timization proposed by Friedman et al. with the back-
tracking search as in the original algorithm [6] as well as
with bucket-Voronoi intersection search.

First, we compare the performance of the following al-
gorithms: i) EOC-the exact optimization criterion with
BVI search, ii) GOC-the generalized optimization cri-
terion with BVI search, iii) MPC-the maximum product
criterion with BVI search [7]. [8]. iv) FBF-BCK-the
Friedman-Bentley-Finkel (FBF) algorithm with its back-
tracking search [6] . and v) FBF-BVI-the FBF optirni-
zation used for bucket-Voronoi intersection search. The
complexity is measured in terms of the number of multi-
plications per sample which is also the effective codebook
size or the number of distance calculations per vector for
a squared error distance. For BVI search, the complexity
of search for a test vector is simply the full-search cost

R A M A S U B R A M A N I A N A N D P,ALIWAL: FAST K-DIMENSIONAL T R E E ALGORITHMS 521

500i T

10 I I I
8 9 10

T r e e d e p t h (d i

(a)

Flg. 9. Comparison of different K-d tree optimization criterion and search procedures. (a) N ' versus d . (b) N1, versus d. Di
mension K = 8. codebook size N = 1024. data used: 50 s of speech (50 000 vectors outside of the design data).

for searching within the codevectors in the BVI list of the
bucket containing the test vector. The average complexity
is obtained as an average over a large number of test vec-
tors. For the FBF-BCK algorithm with backtracking
search, the complexity is the number of codevectors
checked. The overall complexity of FBF-BCK is actually
much higher, i f the effective number of bounds-overlap-
ball tests (which is essentially a distance computation)
made during the backtracking search is also considered.

In Figs. 9 (a) and (b), the expected search time (N ')
and worst case search time (N k) performances of these
five algorithms (EOC, GOC, MPC. FBF-BCK, and FBF-
BVI) are shown for vector dimension K = 8 and codebook
size N = 1024 for tree depths 8, 9, and 10. Here the K-d
tree was optimized using 150 000 vectors (150 s of speech
from multiple speakers sampled at 8 kHz) and the results
shown are obtained for 50 000 vectors of data (different
from the data used for optimization). The codebook was
generated from 200 s of data using the LBG algorithm
[151 (splitting procedure) under the squared error crite-
rion.

It can be observed that EOC offers the best complexity
reduction as it uses the test data distribution and has the
best expected search minimization possible. It sets the
performance limit achievable and can be used here as a
reference for the performances of the other optimizations
which do not use the test data distribution. GOC performs
very close to EOC. The MPC-based tree performs poorly
in comparison to GOC. The very poor worst case perfor-
mance of the FBF optimization with backtracking search
can be clearly observed. In comparison. the proposed op-

timizations with the BVI search have an excellent ex-
pected and worst case performance, both of them showing
a monotonic decrease with increase in tree depth. The
FBF-BVI, where the partitioning obtained by FBF opti-
mization on the codevectors is used in a bucket-Voronoi
intersection search performs quite efficiently and has a
complexity close to that of GOC, which handles the Vo-
ronoi information explicitly. It even performs better than
the MPC. The good performance of FBF optimization un-
der the bucket-Voronoi intersection search, despite not
being optimized using the Voronoi information explicitly,
can possibly be attributed to the fact that the partitioning
generated by this optimization is such that each bucket
encloses an equal number of codevectors. The corre-
sponding Voronoi regions will be located centrally and
prominently within the bucket. along with only a small
number of intersections from adjacent Voronoi regions.
This can result in uniform bucket sizes and, consequently,
in the good efficiency of FBF optimization under BVI
search.

In Table I, we show the complexity reduction efficiency
of the proposed Optimization criteria EOC and GOC un-
der BVI search for tree depth d = log N in terms of the
average complexity (N ') , average complexity with par-
tial-distance search [161 (N ' -PD) and worst case com-
plexity (Nb) using codebooks of size N = 32, 64, 128,
2-56? 512, and 1024 and vector dimension K = 8. For
each case, the K-d tree was optimized using 150 000 vec-
tors. The table shows N ' , N'-PD, and Nbfor 50 000 vec-
tors of data (different from the data used for optimization)
and N ' for the 150 000 vectors of data used for optimi-

TABLE 1
Pk.RFORIIA\CE OF PROPOSFD O P T l M l Z A T l O Z CRITERIA EOC AN0 GOC FOR
TRFE DEPTH d = LOG N . DIVEhSlOh K = 8: CODEBOOK SIZE h' 32, 64,

128, 256, 512, 1024

EOC GOC

Data
Data I I1 Data I

Data
11

.V d . Y ' .V'-PD N;, h" . X ' ,C'-PD ,V; h"
- -

32 5 7.3 3 . 6 12 7 .0 9 .4 4 .1 12 9.3
64 6 8 .3 4.2 19 7.8 11.7 5 .0 15 11.7

256 8 1 1 . 1 5 6 22 10.5 16.6 7.3 21 16.8

1024 10 11.7 6 . 4 20 11.5 17.4 7.9 28 18.1
512 9 12.2 6.4 26 1 1 . 8 18.4 7 .9 26 19.0

128 7 10.5 5 . 1 21 10.2 14.0 5 . 8 17 14.1

Data I-Outside design data: 50 000 vectors of speech.
Data Il-Inside deslgn data: I50 000 vectors of speech.

zation. Here it can be seen that both EOC and GOC can
achieve a constant expected and worst case complexity for
tree depths of 0 (log N) . In addition, the average com-
plexity for both the inside- and outside-optimization data
are very nearly the same, indicating the sufficiency of op-
timization and the consistently in the performance of the
algorithms. The worst case complexity is identical for in-
side- and outside-optimization data.

In Table 11, we show the performance of the proposed
criteria with respect to dimensionality. Here, the perfor-
mance efficiency is shown for a codebook of size N =
1024 and vector dimensions K = 2, 4. 6, 8, and 10 with
tree depth of d = log N = 10 for each dimension. For
each case, the K-d tree was optimized using 1-50 000 vec-
tors. The table shows N ' , N '-PD, and N for 50 000 vec-
tors of data (different from the data used for optimization)
and N ' for the 150 000 vectors of data used for optimi-
zation. Here, it can be seen that both EOC and GOC
achieve constant expected and worst case complexity for
tree depths of 0 (log N) over the various dimensions. The
sufficiency of optimization and performance consistency
of the algorithms over the various dimensions is again in-
dicated by the almost identical average complexity for the
inside- and outside-optimization data.

In Table 111, we show the performance of the proposed
EOC and GOC with respect to full search for K = 8 and
N = 1024 in terms of average, worst case complexity.
and storage. The results are obtained for 50 000 vectors
of speech data. The K-d tree algorithm using BVI search
under the EOC and GOC optimizations can be seen to
offer excellent complexity reduction over the full search
with very low average and worst case complexity though
at the cost of increased storage. The total storage required
by these algorithms for a tree of depth d, is about (3 +
b)2d, where 6 is the average bucket size. The average
number of multiplications, additions (subtractions). and
comparisons per sample ((macs) measure [141) are also
shown. The full search has a (macs) complexity of [N ,
N (2 K - I) / K , (N - 1) / K] and the BVI search has a
complexity [N ' , N'(2K - l) / K . (N ' - 1 + d) / K] ,

TABLE 11
PERFORMAWE OF PROPOSED OPTlhllZATlON C R I T E R I A EOC A N D GOC FOR

DIMEKSIOKS K = 2, 4, 6. 8. 10. CODEBOOK S I Z E N = 1024: TREE
DEPTH d = log ,Y = 10

EOC GOC

Data Data
Data I I1 Data I I1

- -
K N ' N ' - P D A';. , Y ' N ' N ' - P D I%'; N '

2 2.6 2 .0 19 2 .5 3 ,7 3.0 I2 3.7
4 8.0 5 . 2 16 7.9 11.6 6.9 17 12.1
6 11.7 6 . 5 2 1 11.9 16.1 8.0 26 16.9

10 12.4 6 . 7 23 12.5 18.3 8.3 29 19.1
8 11.7 6.4 20 11.5 17.4 7.9 28 18.1

Data 11-Inside design data: 150 000 vectors of speech.
Data I-Outside design data: 50 000 vectors of speech.

TABLE Ill
COMPARISON OF PROPOSED OPTIMIZATIO\ CRITERIA EOC 4VD GOC FOR

TREE DEPTH^ L O G N WITH FCLL-SE4RCH. DlhlEHSlON K = 8:
CODEBOOK SIZE h' = 1024. DATA 50 000 VECTORS OF SPEECH

-
N ' V I , b Total Storage m a c

EOC 11.7 20 11.3 22834 11.7 21.9 2.6
GOC 17.4 28 12.1 23695 17.4 32.6 3.3
Full-search 1024 1024 - 8192 1024 1920 127.9

where N ' is the average number of codevectors examined
by the BVI search procedure and the additional d com-
parisons are incurred for locating the bucket containing
the test vector. The significant reduction in the overall
complexity offered by the BVI search using EOC and
GOC optimizations over full search can be noted from
this.

In Fig. 10, we show the effect of the amount of data
used for bucket-Voronoi intersection list generation for a
tree optimized by EOC. Given the codevectors and an op-
timized tree, the BVI list can in principle be generated by
determining the Voronoi regions intersecting with each
bucket analytically. Here, as described earlier. the BVI
list is generated by encoding a large set of training (or,
design) data. If the data used for BVI list generation is
small, it can be insufficient for detecting all the Voronoi
intersections within each bucket. Consequently, the ex-
clusion of codevectors whose Voronoi intersections ac-
tually intersect with the buckets will result in encoding
errors when the tree is used for encoding new test data
using the BVI search. This in turn will reflect as lower
signal-to-noise ratio (SNR) in comparison to the full-
search SNR. At the same time, since the bucket sizes will
be quite small. the average complexity during search will
be very low. The sufficiency of data used for the BVI list
generation can be established by increasing the data used
for BVI list generation until the SNR performance of the
BVI search on the test data set (different from the design
data set) is the same as or admissibly close to its full-
search SNR, and when the average and worst complexity
of search (or, alternately, simply the average bucket size

RAMASUBRAMAUIAN AUD PALIWAL: FAST K-DIMENSIONAL TREE ALGORITHMS

25 50 75 100 125 110

fb)

50 7 5 100 125 150
Dolo ~ ~ ~ e I ~ l O ' v e ~ t o r ~ 1

(C)

and worst case complexity. and (c) average bucket size for 50 000 vectors
Fig. I O . Sufficiency of data for BVI list generation. (a) SNR. (b) average

outside of the design data as a function of number of inside-design vectors
used in BV1 list generation for EOC. Dimension K = 8, codebook size N
= 1024. tree depth d = I O .

of the tree) shows no appreciable increase. We show this
for the experiments reported here with K = 8 and N =
1024 using upto 150 000 vectors of data for BVI list gen-
eration. The data used for generating the BVI list was in-
creased from 25 000 vectors to 150 000 vectors in steps
of 25 000 vectors. We show the SNR, average complexity
(N ') , worst case complexity (Nty) for 50 000 vectors out-
side the design data. Also shown is the average bucket
size (E) in the tree for each data size. For small data sizes
(25 000 vectors) the SNR difference can be seen to be
quite high (about 1.17 dB) which reduces to a very small
difference of about 0.2 dB when 150 000 vectors are used.
The average, worst case complexity and average bucket
size can all be seen to register a gradual increase until they
saturate showing the sufficiency of 150 000 vectors for
BVI list generation.

In Fig. 11, we show the histograms of number of code-
vectors searched for the BVI search under the EOC, GOC,
MPC, and FBF optimizations and the backtracking search
(FBF-BCK) under the FBF optimization. The histograms
were obtained for K = 8 and N = 1024 with a tree depth
of d = log N = I O using 50 000 vectors outside of the
design data. The histogram gives the probability that a
given number of codevectors N ' will be searched for a
given test vector. In general, this histogram reveals the
characteristics of the search efficiency in the following
manner: The maximum of the range of N ' over which the
histogram extends is the worst case complexity and a

EOC

lSJ

GOC

FBF-BVI

Fig. 11. Histograms of number of codevectors searched for (a) EOC, (b)
GOC. (c) MPC, (d) FBF-BVI, and (e) FBF-BCK algorithms. Dimension
K = 8, codebook size N = 1024, tree depth d = 10. Data used: 50 000
vectors outside of the design data.

spread of the histogram over a large range of N ' indicates
high worst case complexity behavior of the search. More
importantly, the location of high probability modes in the
histogram corresponds to the dominant values of N ' the
search is likely to have. and mainly determines the aver-
age complexity behavior of the search. Here, it can be
seen that EOC has the narrowest histogram with one high-
probability mode located at a small N ' value. The GOC
has a slightly larger spread and has modes of lower prob-
ability located at a relatively higher N ' . However, it can
be noted that the GOC histogram shows a significant mode
very close to that of EOC attributing to its close overall
performance to EOC. In comparison. MPC has a very
large spread with a very high probability mode at the max-
imum (worst case) number of codevectors. FBF-BVI also
has large spreads but does not suffer from any high prob-
ability mode at higher N ' values. The backtracking search
FBF-BCK has a good average complexity behavior with
high probabilities at the lower end of N' with the histo-
gram tapering down uniformly to zero t i l l its maximum

530 IEEE TRANSACTIONS OK SIGSAL PROCESSISG. VOL 40. NO 3. MARCH 1992

N ' . However, the spread of the histogram is very high
due to the high worst case complexity of the backtracking
search. For FBF-BCK here, the histogram is shown for
the overall complexity including the effective bounds-
overlap-ball tests made (which is essentially a distance
computation as mentioned earlier); this makes the actual
overall worst case complexity of the search significantly
higher (807) than that shown in Fig. 9 (542) for only the
number of codevectors examined.

So far, we have discussed the performance of different
optimization criteria for the design of the K-d tree and
shown that the EOC and GOC criteria offer an efficient
and improved complexity reduction for nearest neighbor
search. We have not yet talked about the complexity of
the optimization procedures for these criteria. Though it
is not a very important issue as it is done only during the
design phase, some comments about it are in order here.
The main computational step in the GOC optimization
procedure at each node is the determination of the Vo-
ronoi intersections within the region to be partitioned and
their revised projection estimates. This can be done with
a small amount of computational cost provided the nearest
neighbors of all the vectors used in the optimization pro-
cess are precomputed and stored. The EOC optimization
procedure requires, in addition to the projection esti-
mates, the conditional histograms from the training data
for getting the p (h) values needed to find the minimum
expected search complexity E(k) on each coordinate axis.
Since the projection estimates and histograms can be ob-
tained in the same pass through the data used for optimi-
zation, the EOC optimization procedure is only slightly
more complex than the GOC optimization procedure. The
FBF optimization procedure is the least complex as it does
not require any projection estimates and probability com-
putations. It directly deals with the codevectors and re-
quires only the computation of variance and median of the
coordinates of codevectors inside the region to be parti-
tioned. However, it will be of interest to find means for
making the EOC and GOC optimization procedures faster
and less complex while retaining their efficient perfor-
mance under the bucket-Voronoi intersection search.

VIII. COWLUSIONS
In this paper, we have addressed the issue of fast near-

est neighbor search is multidimensional space using the
K-d tree data structure with particular emphasis on the
optimization of the tree under a bucket-Voronoi intersec-
tion framework for fast vector quantization. We have pre-
sented two efficient optimization criterion and procedures
for designing the K-d tree-one for the case when the test
data distribution is available, as in vector quantization ap-
plications in the form of training data, and the other when
the test data distribution is not available and only the Vo-
ronoi intersection information is to be used. The proposed
algorithm is studied in the context of vector quantization
encoding of speech and is empirically observed to achieve
constant expected search complexity for 0 (log N) tree
depths. The bucket-Voronoi intersection search frame-

work and the proposed optimizations are shown to be more
efficient than the backtracking search proposed earlier by
Friedman et al. The proposed optimization criteria are also
shown to be more efficient than the maximum product cri-
terion (MPC) used recently. Under the framework used
for obtaining the proposed optimization criterion. we have
given a geometric interpretation of the MPC with reasons
for its inefficiency.

REFERENCES

4-29, Apr. 1984.
R. M . Gray. "Vector quantization." / € E € ASSP Mu&, 101. I. pp.

A , Gersho and V . Cuperman. "Vector quantization: A pattern match-
ing technique for speech coding." IEEE Cornmurl. M a g . , vol. 2 1, pp.

1. Makhoul, S. Roucos, and H . Gish. "Vector quantization in speech
15-21. Dec. 1963.

coding," Pror. /€€E. vol. 73, pp. 1555-1588. Nov. 1985.
K . KY Paliwal and V . Ranlasubrdmanian. "Vector quantization ~n
speech coding: A revlew," Indian. J. Techno/ . , vel. 24. pp. 613-
621, Oct. 1986.
I . L. Bentley, "Multidimensional binaq search trees used for asso-
ciative searching." Commrrn. Ass. Compur. Mach. . vol. 18. no. 9.
pp. 509-517. Sept. 1975.
I. H. Friedman. J . L . Bentley, and R. A. Finkel. "An algor~thm for

Math. Software, vol. 3. no. 3. pp. 209-226. Sept. 1977.
finding best matches i n logarithmic expected time," ACM Trans.

nearest neighborpattern matching." in Proc. IEEEICASSP '86. 1986.
D. Y. Cheng and A . Gersho. "A fast codebook search algorithm for

pp, 265-268.
A. Lowry. S.Q.A.M.A. Hossain. and W , Mlllar. " B ~ n a ~ y search trees

2208.
for vector quantization," in Pror. / € € E ICASSP '87 1987. pp. 2205-

V. Ramasubramanian and K . K . Paliwal, "An optimized K-d tree
algorithm for fast vector quanlization of speech," in Sigrzul Process-
~ n g IV: Theories and Applications. J . L. Lacoume et a/. , Eds. Nonh-
Holland, 1988, pp. 875-878; also in Proc. EUSIPCO '88 (Grenoble,
France), Sept. 1988.
V. Ramasubramanian and K . K . Paliwal. "A generalized optimiza-

IEEE Region 10ln t . ConJ TENCON'89, Nov. 1989. pp. 565-568.
tion of the K-d tree for fast nearest neighbor search," in Proc. 41h

W. H . Equitz, "Fast algorithms for vector quantization picture cod-
Ing," master's thesis. Mass. Insr. Technol., June 1984,
W . H . Equitz. "Fast algorithms for vector quantization picture cod-
ing," in Proc. IEEE lCASSP'87, 1987. pp. 725-728.
W . H. Equitz. "A new vector quant~zatinn clustering algonthm."
IEEE Trans. A C O U ~ I . , Speech, SiqnalProcessing, vol. 37. no. I O . pp.

D . Y . Cheng. A . Gersho. B. Ramamurthi, and Y . Shoham. "Fast
1568-1575. Oct. 1989.

Proc. IEEEICASSP' X4, kol , I . Mar. 1984. pp. 9.1 1.1-9.1 1.4.
search algorithms for vector quantization and pattern matching." in

Y. Linde. A . Buzo. and R . M . Gray. "An algorithm for vector quan-
tization design." / €€E Trmns. Crirnrnun.. \ol . COM-28. pp. 84-95.
Jan. 1980.
C . D. Bei and R M Gra) , "An impro\sment ot the minimum dis-
tortion encoding algor~thm for kector quantization." IEEE 7 r m s
Commun., vol. CO,M-33. pp. 1132-1 133. Oct. 1985.
K . K . Paliwal and V . Kamasuhramanian. "Erect of ordering the
codebook on the eficienc) of the partial distance search algorithm for
vector quantization." IEEE Truns. Cornrnur~.. LOI. COM-37. pp. 538-
540. May. 1989.

V. Ramasubramanian was born in Coimbatore.

degree in applied science from the PSG College
India. on >larch 24, 1962. He received the B.Sc.

of Technology. Coimbatore. India. in 1981 and
the B .E . degree in electron~cc and cornmunica-
t iom engineering from the Indian lnatltute of Sci-
ence. Bangalore. Indid. i n 1984. Currently. he IS
w o r k ~ n g toward the P h . D . degree at the Tata I n -
stitute of Fundamental Research. Bombaq. HIS re-
search activities have been mainly in the area o f
speech coding using vector quantlration and I a s i

RAMASUBRA.MASIAN AND PALIWAL: FAST K-DIMENSIONAL TREE ALGORITHMS 53 I

algorithms for nearest neighbor search. His main research interests are in
the areas of speech recognition, speech coding, and neural networks for
pattern recognition.

Kuldip K. Paliwal ("89) was born in Aligarh.
India, in 1952. He received the B . S . degree from
Agra University, India, in 1969. the M.S. degree
from Aligarh University, India. in 1971. and the
Ph.D. degree from Bombay University, India, in
1978.

Since August 1972, he has been with Tata In-
stitute of Fundamental Research, Bombay, India,
where he has worked on various aspects of speech
processing: speech recognition, speech coding,
and speech enhancement. From September 1982

to October 1984, he was an NTNF fellow at the Department of Electrical
and Computer Engineering, Norwegian Institute of Technology, Trond-
heim, Norway. He was a Visiting Scientist at the Department of Commu-

tember 1982 and January to March 1984, and at the Electronics Research
nications and Neuroscience, University of Keele, U .K . , from June to Sep-

Laboratory (ELAB). Nonvegian Institute of Technology, Trondheim, Nor-
way. from April to July 1987, April to July 1988, and March to May 1989.

Research Department, AT&T Bell Laboratories, Murray Hill, NJ. His work
Since May 1989, he has been working as a consultant at the Acoustics

b/frame vector quantization of linear predictive coding parameters, better
has been concentrated on fast search algorithms for vector quantization, 24

feature analysis and distance measures for speech recognition, and robust
spectral analysis techniques. His current research interests are directed to-
wards automatic speech recognition using hidden Markov models and neural
networks.

-1 -Til

