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Fast &Dimensional Tree Algorithms for Nearest 
Neighbor Search with  Application  to Vector 

Quantization Encoding 
V. Ramasubramanian  and  Kuldip K.  Paliwal. Member, [E€€ 

Abstract-In this  paper,  fast  search  algorithms  are  proposed 
and  studied for vector  quantization  encoding using the K-di- 
mensional (K-d) tree  structure.  Here,  the  emphasis is  on the 
optimal design of the K-d tree  for efficient nearest  neighbor 
search in multidimensional  space  under  a  bucket-Voronoi  in- 
tersection search  framework. Efficient optimization  criteria  and 
procedures are proposed  for  designing  the K-d tree,  for  the 
case when the  test  data  distribution is available  (as in vector 
quantization  applications in the  form of training  data)  as well 
as  for  the case when the test data  distribution is not available 
and only the  Voronoi  intersection  information is to be used. 
The  proposed  optimization  criteria  and  bucket-Voronoi  inter- 
section search  procedure  are  studied in the  context of vector 
quantization  encoding of speech waveform and  are  empirically 
observed to  achieve  constant  search complexity for O(log N )  
tree  depths.  Comparisons are made with  other  optimization 
criteria-the  maximum  product  criterion  and  Friedman etal.’s 
optimization  criterion-and  the  proposed  criteria  are  found  to 
be more efficient in reducing  the  search  complexity.  Under  the 
framework used for  obtaining  the  proposed  optimization  cri- 
teria,  a  geometric  interpretation is given for the  maximum 
product  criterion  explaining  the  reasons  for  its inefficiency with 
respect  to  the  proposed  optimization  criteria. 

I.  INTRODUCTION 

N EAREST  neighbor  search  consists of determining the 
closest  point  to  a  query  point  among N points  in 

K-dimensional  (K-d)  space.  This  search is widely  used  in 
several  areas  such  as  pattern  classification,  nonparametric 
estimation,  and  data  compression  using  vector  quantiza- 
tion.  Reducing  the  complexity  of  nearest  neighbor  search 
is of considerable  interest in  these  areas,  and  particularly 
in  vector  quantization  encoding.  In  this  paper,  we  discuss 
fast  nearest  neighbor  search in the  context of  vector  quan- 
tization. 

Vector  quantization  is  a  powerful  data  compression 
technique  which  has  become  very  popular  recently  in  a 
number of areas  such  as  speech  coding,  image  coding, 
and  speech  recognition 111-[4]. Vector  quantization has 
the  potential  to  achieve  coding  performance  close  to  the 
rate-distortion  limit  with  increasing  vector  dimension. 
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However,  the  utilization of vector  quantizers is severely 
limited by its encoding  complexity  which  increases  ex- 
ponentially  with  dimension  K [1]-141. Vector  quantiza- 
tion  encoding is the  minimum-distortion  quantization of a 
vector x = (x , ,  . . . , x K )  (referred to as the  test vector). 
using  a  given  set  of N K-dimensional  codevectors  (called 
the  codebook C = {c, = ,, , . . of size N ) ,  under  some 
distance  measure d ( x ,  y). This  involves  finding  the  near- 
est  neighbor of x i n  C, given by q ( x )  = c k :  d ( x ,  c k )  I 
d ( x ,  c j ) , j  = 1 ,  . . . , N ,  which  requires N vector  distance 
computations d ( x ,  c,) using  the  exhaustive full search  for 
a  codebook of  size N .  The  codebook  size N is related  to 
the  dimension  K  and  bit-rate r (bits/sample)  as N = 2Kr 
and  the  complexity  of  encoding x increases  exponentially 
with K  and r .  Thus, the  problem of reducing  the  compu- 
tational  complexity of vector  quantization  encoding  be- 
comes  important  for  realizing  the full potential  of  vector 
quantization  and  for  rendering it practically  useful  for  real- 
time  applications. 

An  important  approach  towards  fast  nearest  neighbor 
search  in  K-dimensions is the  use  of  data  structures  which 
facilitate  fast  search of the  codebook  which is normally 
unstructured. In this  context, the K-d (K-dimensional)  tree 
structure  developed by Bentley [ 5 ]  is  a  powerful  structure 
which  has  been  used  recently  for  fast  nearest  neighbor 
search  [6]-[13].  This  multidimensional  binary  tree  struc- 
ture  was  originally  used by Bentley  to  carry  out  fast  as- 
sociative  searches  on  multidimensional  data for answer- 
ing a  wide  range of information  retrieval  queries  such  as 
intersection  query,  region  search,  exact  match,  partial  and 
closest  match  queries  from files with  multiple  key  rec- 
ords.  The  optimization  of  the K-d tree  during its design is 
a very  important  issue  which  decides  the  efficiency  of  the 
tree in reducing  the  search  complexity.  The  optimization 
of  the  tree  involves  the  choice of the  dividing  hyperplane 
for each  nonterminal  node  in  the  tree  such  that  the  result- 
ing tree  structure  when  used for nearest  neighbor  search 
using  a  specified  search  procedure  yields  the  minimum 
search  time  complexity.  This  issue  has  been  addressed in 
[61-[101. 

In [6], Friedman er al.  proposed  general  prescriptions 
for optimizing  the  tree  to  minimize  the  expected  search 
time  under  a  backtracking  search  procedure.  The  algo- 
rithm  based on  this  optimization  and  backtracking  search 
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has  an  O(log N )  average  complexity  performance.  How- 
ever, the  back-tracking  search  has  high  computational 
overhead  and  the  average  complexity  bound  has  a 2K de- 
pendence.  In  many  practical  applications  such  as  real-time 
vector  quantization  encoding,  the  worst  case  complexity 
is  also of considerable  importance. in addition to average 
computational  complexity.  In  particular, in  vector  quan- 
tization  applications  where it is of  interest  to  use  large 
values  of K for r -i 1 b/sample, the  codebook  size  is N 
5 2K and  the  backtracking  search with a  performance 
bound  of  the  order  of 2K will  offer  a  bad  worst  case  per- 
formance.  Moreover.  the  optimization  was  developed un-  
der the  restriction  that  no  knowledge of the  test  data  dis- 
tribution  is  available  and,  as  a  result.  does  not  truly 
minimize  the  expected  search  time  for  any  particular  dis- 
tribution.  The  approach  also  does not  provide  any  means 
of optimization  for  a  given  distribution  even if it is known 
a priori. 

An alternate  approach to the  use of the K-d tree  struc- 
ture  for  fast  nearest  neighbor  search is the  bucket-Voronoi 
intersection  framework.  Here  each leaf (or bucket) of the 
tree is associated  with  a  set  of  codevectors  whose  Voronoi 
regions  intersect  with  the  region  defined by the  bucket 
region.  The  search  involves first locating  the  bucket  con- 
taining  the  test  vector  and  subsequently  performing  a full 
search  among  the  set  of  codevectors  associated  with  the 
bucket.  The  bucket-Voronoi  intersection  based  search 
procedure  is  simple  and  direct  and  can  offer  significant 
complexity  reduction  over  the  algorithm  based  on  a  back- 
tracking  search  which  has  high  computational  overheads 
and  worst  case  complexity.  The  design  of  the K-d tree 
under  this  framework  has  to  consider  the  Voronoi  infor- 
mation  explicitly  and it is important  to  obtain  efficient  op- 
timization  procedures  for  this.  The  fast  search  procedures 
reported in [7]-[10] fall within  this framework with  par- 
ticular  emphasis on the  optimization of  the  K-d  tree.  In 
[11]-[13], the optimization  prescribed by Friedman et  al .  
[6] is used  to  organize  the  training  data  into  buckets  for 
performing  fast  agglomerative  clustering  and  the  empha- 
sis  here  was  more  on  exploiting  the  partitioning  and  space 
localization  offered by the  K-d  tree in the  form  of  buckets. 

In  the paper. we address  the  issue of  optimizing  the 
K-d  tree  under  the  bucket-Voronoi  intersection  search  in 
detail, with particular  reference  to  the  optimization  pro- 
cedures  proposed by us  in the  preliminary  reports  [9], 
[lo].  The  paper is organized as follows. In  Section 11, we 
describe  the  basic K-d tree  structure. In  Section 111, we 
briefly describe  the  optimization  and  backtracking  search 
procedure  of  Friedman et al .  [ 6 ] .  Section IV describes  the 
bucket-Voronoi  intersection  framework. In Section V, we 
consider  the  optimization  of  the  K-d  tree  under  the  bucket- 
Voronoi  intersection in  detail.  Section  V-A  addresses  the 
optimization  given  the  test  data  distribution  and  presents 
the  exact  optimization  criterion (EOC) proposed by us  in 
[9].  Here,  the  optimization  involves  minimizing the ex- 
pected  search  complexity  using  both  the  statistical  and 
geometric  information  available  in  the  form  of  test  data 
distribution  and  Voronoi  regions  of  the  given  codevec- 

tors.  This  results in the  most  direct  optimization  possible 
in the  minimization  of  the  expected  search  time  locally at 
every  node of the K-d tree  when  the  test  data  distribution 
is known. In the  case  of  the  vector  quantization,  infor- 
mation  about  the test data  distribution is available in the 
form  of  training  data  on  which  the  quantizer is designed 
by using  algorithms  such  as  the  Linde-Buzo-Gray  algo- 
rithm [ 151. This  training  data is used for  the  optimization 
of the tree.  However, in most other  practical  cases  where 
a priori knowledge of the  test  data  distribution is not 
available,  this  procedure  cannot be  applied  and  there  is  a 
need for  good  generalized  optimization  criteria which do 
not  require  the  test  data  distribution.  Section  V-B  ad- 
dresses  this  problem  of  efficient  optimization  of  the  tree 
for the  general  case  when  the  test  data  distribution  is  not 
known.  Here, we  present  the  generalized  optimization 
criterion (GOC) proposed  in [lo] which  uses  only  the Vo- 
ronoi information.  This  criterion  is  obtained  based  on a 
geometric  interpretation  of  the  optimization  problem  using 
a  direct  characterization of  the  number  of  Voronoi  inter- 
sections  in  the left and  right  partitions  as  a  function  of  the 
partition  location.  In  Section  VI,  we  consider  the  maxi- 
mum product  criterion (MPC) used  in [7], [8]. We  give  a 
geometric  interpretation of the MPC and  explain  the  rea- 
sons  for  its  inefficiency with  respect  to  the GOC optimi- 
zation  criterion.  In  Section  VII,  we  describe  the  experi- 
ments  and  results  obtained in the  context  of  vector 
quantization  of  speech  waveform.  The  conclusions  are re- 
ported in Section  VIII. 

11. THE K-DIMENSIONAL (K-d) TREE 
The K-d tree is a  generalization of the  simple  one-di- 

mensional  binary  tree. In  the  general  case  of  K-dimen- 
sions,  the U3 space is split  into  two  half  spaces by means 
of a  hyperplane  orthogonal  to  one of  the  K  coordinate 
axes.  Such  a  hyperplane H, represented  in  general by H 
= {x E K : ~ ,  = h } ,  defines  the  two  half  spaces, RL and 
RR as RL = (x E R K : x ,  5 h }  and RR = (x E 6 i K : x ,  2 
h } .  This  partitioning  hyperplane  is  represented by just  two 
scalar  quantities: 1) j ,  the  index  to  the  coordinate  axis 
orthogonal  to  the  plane,  and 2) h,  the  location of the  plane 
on this  axis.  Any  vector  point x can  now  be  located  with 
respect  to  the  dividing  plane H by a  single  scalar  com- 
parison  of  the  form x, 5 11, i .e.,  the vector’sjth  compo- 
nent  value  with  the  partition  value h. The  initial  region 
corresponds  to  the  root of the  tree  at  layer  1  and  the  two 
subregions RL and RR obtained by the  division  correspond 
to  the  left  and  right  sons  at  layer 2. Each of these  two half 
spaces  are  successively  divided by hyperplanes  orthogo- 
nal to the  coordinate  axes  and d such  successive  divisions 
starting  with  the  initial  region  as  the  root  at  layer 1 creates 
a tree  of  depth d with 2d terminal  regions  termed  “buck- 
ets”  at  the (d + 1)th layer.  Every  nonterminal  node is 
associated  with  a  region  and  a  partitioning  hyperplane  of 
the form x :x ,  = h ,  which  needs  storage  of  just  two  scalar 
quantities ( j ,  h)  at each  node.  Given any vector in 6 i K ,  a 
sequence  of d scalar  comparisons  of  the  vector’sjth corn- 
ponent  value  with  the  partitioning  hyperplane (j. h )  at 
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Fig. I ,  Example of K-d tree partition 

that  node leads to the leaf (or bucket)  containing  the  vec- 
tor.  Thus, a  K-d tree  structure  of  depth d partitions  the 
R K  space  into 2d disjoint  rectangular  regions  (buckets) 
and  allows  identification of  the  bucket  containing a  given 
vector x in just d scalar  comparisons. 

The  basic  structure  of K-d tree  is  illustrated in Fig. 1 
for a planar  case.  The root  region ABCD is  divided by 
hyperplane EF into two  halves.  Fig.  l(b)  shows  the  cor- 
responding  tree  of  depth 3 generated by divisions  of  these 
two  regions by various  hyperplanes  orthogonal  to  one  of 
the  coordinate  axes x ,  or  x?. A vector x = { x , ,  x 2 }  is 
located to be in the  bucket  region IEQR after 3 scalar 
comparisons: x, with EF. x? with I J ,  andx,  with QR. Sim- 
ilarly,  the path  corresponding  to  a  vector  located in bucket 
region LKHF will consist  of a comparison  sequence  with 
the  hyperplanes EF. GH,  and KL. 

111. FRIEDMAN-BENTLEY-FINKEL  (FBF)  OPTIMIZATION 
A N D  BACKTRACKING  SEARCH  PROCEDURE 

Here  we briefly describe  the  optimization and  back- 
tracking  search  procedure  proposed by Friedman et ai.  
[ 6 ] .  The  prescription  for  the  choice  of  the  partitioning  hy- 
perplane  at  every  nonterminal  node  of  the  tree  considers 
the codevectors  lying  within  the  region  represented by the 
node to be  partitioned  and  constitutes a local  optimiza- 
tion.  The  direct  application  of  the  FBF  optimization  for 
the case  of  vector  quantization  encoding will be  as  fol- 
lows:  i) the axis  along  which  the  corresponding  code- 
vector  components  have  the  maximum  variance  is  chosen 
as the  discriminant  axis  and  ii)  the  median of the  corre- 
sponding  codevector  component  distribution  on the  cho- 
sen axis  is  chosen  as  the  partition  value.  The  variance  and 
median  are computed  using  codevectors  within  the  region 
to be divided.  The  optimization results  in  a  balanced  bi- 

nary tree, with each  bucket  containing  equal  number  of 
codevectors. 

The  general  nature  of the search  consists in first finding 
a tentative  (current)  nearest  neighbor of the given test vec- 
tor x from  among the small  set  of  codevectors  within  the 
bucket  containing x and  then in determining  the  actual 
nearest  neighbor  from  among  other  buckets which overlap 
with  the current  nearest  neighbor  ball.  The  overall  search 
is  carried  out by  a recursive  procedure  which  implicitly 
performs  a  backtracking  to  move  from  one  overlapping 
bucket  to  another,  the  overlap  being  detected by abounds- 
overlap-ball  test.  The  termination  is  checked by a ball- 
within-bounds test at  the root  of  every subtree  that  has 
been  examined  completely, i . e . ,  each of the  buckets 
within this  region  has  either  been  searched.  or  ignored 
after  verifying that the  nearest  neighbor ball does  not 
overlap  with  it. 

The  backtracking  procedure  has a  high  computational 
overhead,  dominated by the  bounds-overlap-ball  test. 
which  is  essentially a vector  distance  computation.  Under 
this  search  strategy,  the  expected  search  time  minimiza- 
tion  was  formulated in the  form  of  minimizing  the  average 
number  of  buckets  which  overlap  with  the  current  nearest 
neighbor  ball.  The  exact  analysis  of  such  an  optimization 
formulation  was  intrinsically difficult due to the limitation 
that  the  search  was  of a  backtracking  nature, in addition 
to  the  restriction  that  the test vector  distribution  is  un- 
known.  This  rendered the  performance  analysis  obtuse  and 
indirect.  Moreover,  the  analysis  did not directly  yield  the 
main  prescriptions for the optimal  division  of a  region  and 
these  were  provided by means  of  qualitative  considera- 
tions. 

IV.  BUCKET-VOROSOI  INTERSECTION  FRAMEWORK 
USING K-d TREES 

The  implicit  geometric  interpretation  of the  nearest 
neighbor  search in terms of the  Voronoi  regions of a given 
set of codevectors  is  an  important  paradigm  for  structure 
based  fast  search.  Given a set  of N codevectors  along  with 
a  specified distance  measure,  the  entire  space  is parti- 
tioned  into N disjoint  regions.  known  as  Voronoi  regions. 
with each  codevector  associated  with  one  region.  The Vo- 
ronoi region yi associated  with a codevector c, contains 
all  points in 63 nearer  to c, than  any  other  codevector 
and  is  the  nearest  neighbor  locus  region  of cJ .  The Vo- 
ronoi  region V, is  defined  as V, = {x E RK: q(r) = c , }  
or 6 = {x E a K : d ( x .  c j )  I d ( x ,  c!), i = 1, . . . , N } .  
The  Voronoi  region V, is  a  convex  region  formed by the 
intersection  of  the  halfspaces {H(c ,  . c, ), i = 1, * * , N ,  
j # i } ,  given by VJ = n j  , H(c,, c , ) ,  where H(c, ,  c i )  is 
the  set  of  points  closer  to c, than c, .  For  the  Euclidean 
distance,  H(cJ, c , )  is  the  half-space  containing c, formed 
by the  perpendicular  bisector  plane  of CICi, the  line  con- 
necting ci and c , .  Fig.  2(a)  illustrates  the  idea  of the Vo- 
ronoi region  associated  with a  point in the  plane (CR ’) for 
the  Euclidean  distance  and Fig.  2(b)  shows the  Voronoi 
partition for  the  given  set of points. 

.,~ ~~~~ ~ ~ - .- - - -- .- .~ ~ 
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(b) 
Fig .  2 .  Example of Voronol  partition.  (a)  Jllustrates  the  idea of the Vo- 

distance. (b) The Voronoi  partition  for the given  set of points. 
ronoi region associated  with B pomt on the  plane (a') for the  Euclidean 

Thus if the  test  vector x is contained  in  a  Voronoi  re- 
gion v,, the  associated  codevector cj will  be the  nearest 
neighbor  of x. In order  to  determine  the  nearest  neighbor 
of the  test vector it is thus  sufficient  to determine  the  Vo- 
ronoi  region  containing it: with the  associated  codevector 
being its nearest  neighbor.  Direct  approaches in determin- 
ing the  region  containing x are  complex  and  do  not  pro- 
vide  any  computational  saving  over  the  distance-based 
exhaustive  full  search.  The  problem of  fast  identification 
of the  Voronoi  region  containing  a  test  vector  in  multi- 
dimensional  space  thus  becomes  important.  An  attempt 
made by Cheng et al .  [14] to  apply  this  approach  using 
Voronoi  projections  showed  considerable  promise,  but  re- 
quired  large  storage  and  high  computation  and  memory 
access  overheads. 

In this  context.  the K-d  tree  has  a  very  good  space  lo- 
calization  property,  allowing  very  fast  identification of the 
test vector in localized  regions  with  very  low  overheads. 
The  buckets  and  the  Voronoi  regions  provide  two  inde- 
pendent  partitionings of the same  space  using  disjoint  re- 
gions.  Under  the  condition that  the  test vector  is  contained 
within  the  bounds  of a  particular  bucket  region.  the  test 
vector  can  be  present  only  in  one  of  the  Voronoi  regions 
having  a  nonempty  intersection  with  the  bucket.  A  search 
among  the  codevectors  associated with  these  Voronoi  re- 
gions is sufficient  to determine the  actual  nearest  neigh- 
bor. As the  size  of  the  bucket  becomes  smaller,  the  num- 
ber  of  Voronoi  regions  which  intersect  with  the  bucket 
also  reduces,  thus  lessening the search  complexity  con- 
siderably.  Fig. 3 illustrates  the  bucket-Voronoi  intersec- 
tions  obtained by the  intersection of the  K-d  tree  parti- 
tioning  shown  in  Fig. 1 and  the  Voronoi  partitioning 
shown in  Fig. 2 .  For a test  vector x located in the  bucket 
IEQR. it is sufficient to  search  among  the  codevectors 

It  
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Flg. 3. Bucket-Voronoi  intersections  corresponding  to  example. 

(marked  in  circles)  whose  Voronoi  regions  intersect  with 
the  region IEQR. These  codevectors  are  associated with 
the  bucket IEQR and  for test  vectors in this  bucket, the 
search  cost is reduced  from  a  full-search  cost  of 16 to 5. 
subsequent  to  just 3 scalar  comparisons. It can  be  ob- 
served  that  the  complexity  can  be  reduced  further by in- 
creasing  the  tree  depth to reduce  the  bucket  sizes  with  a 
consequent  reduction in the  number  of  Voronoi  regions 
intersecting  with  a  bucket.  The  location of the  hyper- 
planes is the  most  important  issue  here  as  this  determines 
the  extent of Voronoi  intersections with the  buckets 
formed by the  tree.  This  forms  the main  issue  of  the  op- 
timization of the  tree  under the bucket-Voronoi  intersec- 
tion framework  and is discussed in  the  following  sections. 

V. OPTIMIZATION OF THE K-d TREE FOR BUCKET- 
VORONOl  INTERSECTION  SEARCH 

For a K-d  tree  of  depth d,  the  root  region is partitioned 
into M (  = 2 d )  disjoint  rectangular  regions. { B , .  i = 1, 

in 63 '. Let pi = p (x E E, ) ,  Let 1 2 ,  be the  number  of 
codevectors  whose  corresponding  Voronoi  regions  have a 
nonempty  intersection  with E , ,  Thus,  given x E E , .  a 
search  among  these ni codevectors  yields  the  nearest 
neighbor  of x; the  cost  of  search.  then,  given x E B,,  is 
n, . The  average  cost of search  for  bucket Bi is p , n ,  . The 
expected  cost  of  search  over  all x is E = E;! I p i n , .  Min- 
imization  of E corresponds  to  a  global  optimization prob- 
lem  involving  the  variables pi and ni,  i = 1, * * - 1 M ,  
which are  functions of the  partition  choice  at  every  non- 
terminal  node  in  the  tree. For a  tree  of  depth d,  the  global 
optimization  thus  involves  a  joint  optimization  of  the (2" 
- 1) variable  pairs ( j ,  h) .  The  axis  choicej has  an  integer 
range  of 1 to K and  the  partition  value h has a  continuous 
real  range  within  the  bounds of the  region  to be divided, 
which.  in  turn,  are  determined by the  partition  choice at 
the  nodes  above i t  i n  the tree.  The  global  optimization 
problem is thus  extremely  complex and,  therefore, it be- 
comes  necessary  to  employ  means  for  constructing  a  near 
optimal  (in  the  sense  of  minimum  expected  search  time) 
tree.  One  such  approach is to  minimize  the  expected 
search  at  every  node in an  independent way and  this  re- 
sults  in  a  local  optimization  of  the  individual  binary  di- 
visions  at  every  node. In the  local  optimization of the K- 

. . .  , M } .  Let p ( x )  be the  joint  probability  density  of x 



d  tree,  the  search  complexity is minimized  as much  as 
possible  at  every  nonterminal  node  division  of  the  tree. 
We  consider  the  local  optimization  problem  in  detail in 
the following. 

A .  Optimization  with  Test  Data  Distribution-Exact 
Optimization  Criterion  (EOC) 

Let R be a  bounded  region  in 63 ', defined  as R = {x E 
6 i K : a ,  I x, I b j ,  j = I ,  * * * , K } .  to be  divided  into 
two  subregions RL and RR by a  hyperplane  normal  to  one 
of the  coordinate  axis.  For  some  such  hyperplane {x:x, 
= h;  a, I h 5 b,} (represented as (j! h)  henceforth),  the 
subregions  are  defined  as RL( j ,  h)  = {x E R : x j  ,S h }  and 
RR(j ,  h )  = {x E R : x ,  > h } .  This  is  illustrated  in  Fig. 4. 
Conditioned by x E R ,  let p L  = p ( x  E RL) /p (x  E R)  and 
pR = p ( x  E R R ) / p ( x  E R )  with p L  + p~ = 1. Let n, nL, 
and nR be the  number  of  Voronoi  regions  having  a  non- 
empty  intersection  with R ,  RL, and RR, respectively. p L ,  
p R ,  nL, and nR are  functions of ( j ,  h)  with nL I n and n~ 
I n and n 5 nL + nR I 2n. For x E R ,  given x E RL or 
x E Re, the  search  complexity  is  reduced  from n to nL or 
nR. Given x E R ,  the  determination of  whether x E RL or 
x E RR requires  only  one  comparison of  the  form x, 5 h ,  
the  division  thus  resulting in a  complexity  reduction  after 
just  one  scalar  comparison.  The  expected  search  com- 
plexity  for x E R ,  given  only x E R is E(R) = n and  the 
expected  search  complexity  using  the  division ( j ,  h)  is 

E(R,  j ,  h )  = P L ( ~ ,  h ) n ~ ( j ,  h )  + P R ( ~ ,  h ) n ~ ( j ,  h ) .  
For an  ideal  division ( j ,  h )  such  that p L  = pR = 1 / 2  and 
n L  = nR = n / 2  we  get E(R ,  j ,  h )  = n / 2  and  the  expected 
search  time  using  the  division  will  be  thus  half  of  that 
needed for  a  search  without the division.  The  ideal  divi- 
sion  considered  above is practically  unlikely  as  the  inev- 
itable  splitting  of  Voronoi  cells  rules  out  the  possibility 
of nL = nR = n / 2 .  Moreover, p L ,  n L ,  and nR are  functions 
of h (for  anyj) independently  and i t  is highly  unlikely  for 
them to obtain  these  values  for  the  same h .  Therefore, it 
is necessary  to consider  these  functions  jointly in deter- 
mining  the  optimal  division ( j ,  h )  and  the  optimal  choice 
of the  partitioning  hyperplane ( j ,  h)* can  be  chosen  as 
the  one  which  minimizes E(R ,  j ,  h )  over  all  possible ( j ,  
h ) :  1 5 j 5 K and a, 5 II 5 b,. This  criterion, which 
we refer  to  here  as  the  exact  optimization  criterion (EOC), 
is then  given by 

( j .  h)* = arg min E(R, j, h) .  
u, z h 5 b! 
I S J S K  

The  functional  dependence of p L ,  nL ,  and nR on ( j :  h)  is 
completely  determined by the  distribution  of  the  test  vec- 
tors  and  the  Voronoi  intersection  regions  within  the re- 
gion  of  interest.  The  above  optimization  has  to  be  carried 
out by an exhaustive  search  over  all  possible ( j ,  h )  using 
the  functions pL( j ,  h ) ,  nL( j, h ) ,  and nR( j ,  h )  precomputed 
for  the  region. It is thus  necessary  to  find p L ,  nL. and nR 
for  any ( j ,  h ) .  p L ( j .  h )  is obtained  as 

p L ( j .  h )  = p ( x  E R : x ,  < h )  

~ ~~ 

- 1  

Fig. 4 .  Typical blnary panltionmg of a region at a nontermmal node. 

from  a  large  training  data  set. by first forming  separate 
histograms  for  each  of  the  component  axis  using  the  data 
belonging  to  the  region R.  For  any  nonterminal  node  the 
test  vectors  lying  within  the  region to be  divided  are  found 
by using  the  tree  built so far  above  the  node. n L  and ~ I R  
can  be  determined for any  value of ( j ,  h )  using  the  pro- 
jections  of  the  Voronoi  intersection  regions on the  coor- 
dinate  axes.  For  the n Voronoi  intersections  having  a  non- 
empty  intersection  with  the  region R ,  their n projections 
on  to  a  coordinate  axis j correspond  to n overlapping  in- 
tervals (I",, Pi, . * * , P i )  (Fig. 5 ) .  The  lower  and  upper 
boundary  points ( P j , L ,  of  the  projection  interval 
P{ of the  Voronoi  intersection  region VI inside  the  region 
R are  given by 

P ! , ~  = min x, = min x j :  q ( x )  = c, 

= max x, = max x, : q ( x )  = c, 
and 

XEV, X E R  

x E v r€R 

For any h ,  nL(h) and nR(h) could  be  computed  using  these 
projection  boundaries: n,(h) is  the number  of  lower 
boundaries  less  than h and nR(h) is the  number of upper 
boundaries  greater than h. The  projection  estimates  for 
each  region  to  be  partitioned  can  be  obtained  either  ana- 
lytically or through  a  Monte  Carlo  approach by encoding 
a  large  amount of training  data  or  uniformly  distributed 
points  falling  within  the  region  as  adopted in Cheng et al. 
[14] or  Cheng  and  Gersho 171. The  projection  estimates 
are  obtained  for  each  region  to  be  divided by encoding  the 
points  that fall within  the  region.  The  estimates so ob- 
tained  will  be  approximate,  but  have  been  found to be 
quite  acceptable when  obtained  using  sufficiently  large 
data.  The  process  of  histogram  formation and  projection 
estimation  can  be  combined  together.  thus  requiring  just 
one  pass  through  the  training  data  being  used  to  carry  out 
the  optimal  division  at  each  node. 

B. Oprimization  Without  Test  Data  Distribution- 
Generalized  Optimization  Criterion (GOC) 

Under  the  condition that  the  test  data  distribution p ( x )  
is not  known, i t  is not possible to minimize  the  expected 
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Fig. 5. Voronoi  intersection  regions and their  projections  (dashed  lines 
show  projection of region V ,  lo intenjal P,: only some  projection  lines  are 
sho*n to avoid  cluttering). 
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search  complexity  using EOC described  above.  The  Vo- 
ronoi  intersection  numbers nL(h) and nR(h) are  the  only 
quantities  that  could  be  used  in  the  optimization,  and  the 
objective  of  a  good  criterion  would  be  to  find  a  partition 
such  that  both nL and nR are  as  small  as  possible.  The 
problem  of  obtaining  a  good  criterion  which  represents 
the  net  complexity  reduction  due to a  division  in  this  case 
requires  careful  consideration  due to the  inevitable  split- 
ting  of  Voronoi  regions for  any  division. In  this  section, 
we consider  the  division  problem by characterizing  the 
behavior  of n,(h), nR(h) as a  function  of h. as h varies 
from a, to b,. Then, using a  geometric  interpretation  of 
this in  the nL-nR plane we obtain  an  efficient  optimization 
criterion  which  uses  only n,(h) and nR(h).  

Given  that n Voronoi  regions  have  a  nonempty  inter- 
section  with  the  region R,  their tt projections  on  to  a  co- 
ordinate  axis  correspond to n overlapping  intervals (Pi, 

jection  boundaries ( x , ,  x?, . . . , .r2J with a  natural or- 
dering ( x ,  < x2 < . . . < x2, , ) .  Each  of  these  boundaries 
could  be  labeled  as  a  lower ( L )  or  upper (U) boundary 
according to whether it corresponds to  the  lower or upper 
edge of a  Voronoi  projection. We assume  these  bounda- 
ries to be distinct.  These  boundaries  then  divide  the (a,, 
b,) range  into (2n - 1) continguous  intervals ( I , ,  I>, . * * , 
I?!,- I ) .  

The  behavior  of n,(h) and nR(h)  as It varies  from a, to 
b, is as  follows (Fig.  6(b)): At h = a i ,  n,(h) = 0 and 
/ lR(h) = n ;  at h = a, + E ,  nL(h)  = 1 and nR(h) = n .  AS h 
varies  across  an  interval  boundary x , ,  if x ,  is a  lower 
boundary (15). a new  Voronoi  region  gets  included in the 
left region R,(h) and nL(h)  steps  up by 1: there is no 

P?, * . . , P,J (Fig.  6(a)).  These  are  equivalent  to 2n  pro- 

change in  the  status  of  the  number of Voronoi  regions in 
the  right  region &(h) and  hence nR(h) does not change. 
If x ,  is an  upper  boundary (U), a  Voronoi  region  gets  ex- 
cluded  from  the right  region RR(h) and nR(h) steps  down 
by 1; nL(h)  does not change.  When h varies  between  two 
adjacent  interval  boundaries ( x , ,   x ,  I ,) (i.e.,  within  an  in- 
terval I , ) ,  there  is  no  change in the  status of  the  number 
of  Voronoi  intersections  in  both  the  left  and  right  regions 
and  hence n,(h) and nR(h) remain  constant. At h = b, - 
E ,  nL(h) = n and nR(h) = 1 ; at h = bj , n,(h) = n and 

The  function (n,(h) - nR(h))  behaves  as  follows as h 
varies  from a, to b, (Fig.  6(c)): At h = a, + E ,  (nL(h)  - 
nR(h)) = - ( n  - 1) and  at h = b, - E ,  (n,(h) - nR(h)) = 
(n  - 1). As h varies  across  a  lower  boundary, nL(h) in- 
creases by 1 while nR(h) remains  constant  and  hence (nL(lz) 
.- nR(h))  increases by 1. As h varies  across  an  upper 
boundary, nR(h) decreases by I while nL(h)  remains  con- 
stant  and  hence (nL(It) - nR(h)) increases by 1 again.  Thus 
when h crosses  an  interval  boundary,  irrespective of 
whether it is a  lower or upper  boundary, (nL(h)  - nR(h)) 
increases by 1. Within  an  interval,  as n , ( h )  and nR(h)  both 
remain constant, (n,(h) - nR(h))  also  remains  constant. 

flR(h) = 0. 



Thus,  starting  from -(n - 1) at I,, (nL(h)  - nR(h)) in- 
creases in steps  of 1 as h crosses  every  interval  boundary. 
finally  reaching  a  value  of ( n  - 1) at I,,, - I .  At any  inter- 
val [,, (nL(h)  - n&)) = - (n  - 1) + ( I  - 1).  At 1 = n ,  
i .e. ,  at the  interval I,,, (n,(h) - nR(h))  = 0 and let n,(h) 
= nR(h) = m,. Thus  for any Iz E I,,, the  division  corre- 
sponds to a  balanced  division  with  equal  number  of  Vo- 
ronoi  regions  intersecting  with  both  the  left  and  right  re- 
gions.  Moreover.  for any h E Z,,, the expected  search 
complexity E(h) = mJ as  can  be  seen by using nL(h) = 
nR(h) = mj in E@) = p(h)nL(h) + (1  - p(h))nR(h). (Since 
no  information  about p ( h )  has  been  used,  this  value of 
E(h) is not the  minimum  possible  on  the ax i s j ;  this  might 
lie  at  some  other  location of h. )  It can  also be  noted  that 
for the  division h E f,, since nL(h) = nR(h) = m j ,  the 
worst case  complexity  corresponding  to  the  division  is  also 
9 .  

Thus, given  that a  balanced  division  with n,(h) = nR(h) 
= m, can always  be  achieved  on any axis j at  the  interval 
Z,,, and  that  the expected  and worst case  complexity  for 
this  division is given by mi, a  good  optimization  criterion 
for the  final  partition  would  be to choose  the  axis which 
has  the minimum mj over all j = 1,  - * * , K. We now 
obtain  a  general  refinement of this  criterion  using  a  geo- 
metric  interpretation of the  division  problem  in  the nL+zR 

plane  using  the  functional  behavior  of n,(h) and nR(h) de- 
scribed  above.  This  also  provides  additional  insight  into 
the  optimization  problem. 

Considering nL(h)  and nR(h) as  parametric  in h ,  (nL(h), 
nR(h)) for  any h can  be  represented  as  a  point  in  the nL-nR 
plane.  The  region  of  interest is the nL-nR plane  where  such 
points  could  lie  is first obtained:  Clearly, 0 5 n L  I n and 
0 5 nR 5 n .  Now, let NL(h) and NR(h) be the  number of 
Voronoi  regions  entirely (i .e.$ not  split by the  division  at 
h )  in  the left  and right regions,  respectively. Let N,(h) be 
the  number  of  Voronoi  regions  split by the  division  at h .  
Henceforth,  for  convenience, we shall  refer to nL(h ) ,  
ndh) ,  NL(h) ,  NR(h).  and N d h )  simply  as nL, nR* NL,  NR, 
and N s ,  ignoring  the  explicit  reference  to  the  functional 
dependence  on h unless  necessary  and  useful.  Clearly, NL 
+ NR + N ,  = n for  all h .  and nL = NL + N s  and nR = 
NR + N,. N!, + NR + N s  = n is  the  same  as nL + nR = 
n + N s  and  with 0 5 Ns 5 n ,  rzL + nR is bounded  as n 
I r z L  + nR s 2 n .  nL + nR = n corresponds to all divi- 
sions  for  which  no  Voronoi  regions  are  split, i .e.,  N s  = 
0; and nL + nR = 2n corresponds  to  the  worst  case  divi- 
sion  when  all  the n Voronoi  regions  are  split,  i.e., N s  = 
n. The  resulting  region  for (nL, nR) points  is  thus  given by 
0 s nL I n ,  0 5 nR s n and n I nL + nR I 2n. This 
is shown  as  the  region ABC in Fig. 7 .  

The  behavior of the  point (n,(h), tzR(h)) as h varies  from 
a, to bj can  now  be obtained. As h varies  within  an  interval 
f,, n,(h) and nR(h) remain  constant  and  correspondingly. 
the (nL ,  nR) point  remains as a  point in  the nL+R plane. 
When h varies  across  an  interval  boundary, x i .  i .e . ,  moves 
from  one  interval (I,) to the next ( I ,  i ) ,  ( n L ,  nR) changes 
to (n, + 1, nR) if xi  is a  lower  boundary  or  to (nL,  nR - 
1) if .x, is an upper  boundary.  As h varies  from uj to b,, 

Fig. 7 .  Geometric  interpretation of the  proposed GOC i n  the )?,-aR plane. 

(nL(h), nR(h)) starts  from  the (0, n)  point  and  traverses  a 
path  which  consists of changes of step 1 in directions  par- 
allel  to  the  coordinate  axis n, or r~~ as h varies  across  the 
interval  boundaries, finally  reaching  the ( n ,  0) point  when 
h reaches bj. This is illustrated  in  Fig. 7 where we  show 
the path  of (nL, nR) for  the  example  shown in Fig.  6.  This 
is essentially  a plot of nL(h) versus nR(h) from  Fig.  6(b). 
Corresponding  to  the  interval I,,, where, nL = tzR = ml, 
the (nL, nR) path  intersects  the nL = nR line OB at (mi ,  
m,). In  the  interval Zn,  i .e.,  x, 5 h s x,, + ,, the (nL ,   nR)  
path stays  at  the  value  of (mi, m j ) .  For  distinct  interval 
boundaries,  the (nL,  nR) path for  a  given  coordinate  axis j 
is completely  determined by the  boundary  label  sequence 
on  that axis.  The  example path  illustrated  in  Fig. 7 for the 
axisj ,  corresponds  to  the  label  sequence (LLULLUU . . . 
LULU . . . LULUU). For  some  other  axis k ,  the  general 
behavior  of nL(h) and nR(h) will  be as  described  earlier, 
but  the  specific  path  of (nL, nR) will  be  now  different since 
the  label  sequence  of  the 2n interval  boundaries  will be 
different. A typical  example of the (nL, tzR) path for  an- 
other  axis k is  also  shown in Fig. 7 .  This  intersects  the nL 
= nR line  at (mk,  mk) and  the  optimization  criterion  men- 
tioned  earlier will choose  the  balanced  division on thejth 
axis in preference  to  the kth axis  division  since mi < m,, . 

In general,  the  optimization  criterion  mentioned  above 
can be described  geometrically  as  follows:  The nL = n R  
line  within  the  region ABC represents  all  possible  bal- 
anced  divisions  starting  from the  ideal ( n / 2 ,  n / 2 )  divi- 
sion  to the  worst  case  division  of ( n ,  n).  The K balanced 
divisions (mi, m,) of  the  region  from  the K coordinate  axis 

manner  between ( n / 2 ,  n / 2 )  and ( n .  n )  along the line. 
j =  1, , K lie  on  this nL = nR line  ordered in some 

. .. 
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Since  any  point (nL,   nR)  lies  on  the  line nL + nR = n + 
N s  which  runs  arallel to  the nL + nR = n line  at  a  dis- 
tance  of N s /  P 2 ,  the  ordering  of the  balanced  division  on 
the nL = nR line  indicates  the  number  of  Voronoi  regions 
split ( N s )  by that  division.  The final  partition  chosen as 
the  balanced  division ( m j ,  m,) with  smallest mi, is the 
lowest in the  ordering.  This  is  closest  to  the  ideal ( n / 2 ,  
n / 2 )  point  along the nL = nR line  and  corresponds  to  a 
balanced  division  with  the  least  number  of  Voronoi  re- 
gions  split. 

A  more  general  form of  this  optimization  criterion  is 
obtained by considering  the  constant  contour  lines of  the 
function InL - n R ( ,  which  are of the form ( n L  - nR( = c. 
These  are  a  pair  of  lines nL - nR = c and nL - nR = - c  
which  tun  parallel  to  the  nL = nR line  at  a  distance of 
InL - n R l / A .  For  small  values of c ,  the InL - nR( = c 
lines  lie  close  to  the nL = nR line. (For c = 0 ,  this  is  just 
the nL = nR line.) In  choosing  the  optimal  partition  on  a 
given  axis,  we  could  then  use  the  condition of min InL - 
nR/ instead  of  nL - nR = 0. This  is  a  more  general  crite- 
rion  which encompasses  the nL - nR = 0 condition  while 
retaining  the  basic  idea  that,  from  the (nL, nR) path for  a 
given  axis,  the  division  which is closest  to  the nL = nR 
line  should  be  chosen.  This  generalization  allows  for  good 
unbalanced  divisions  to  be  chosen  whenever  balanced  di- 
visions are not possible,  a  situation  which  arises in  prac- 
tice  when  interval boundaries  are  not  distinct. 

Under  this  criterion  for  choosing  the  partitions  on  each 
of  the coordinate  axes,  the  criterion for choosing  the final 
partition  from  the K candidate  partitions  has  to  be  modi- 
fied to  handle  possible  unbalanced  divisions  which lie in 
a thin  region  around  the nL = nR line. For this,  the Eu- 
clidean  distance  between a candidate  division (nL, nR) and 
the (n /2 ,  n / 2 )  point  in  the nL-nR plane  can be used to 
locate  the  division  closest  to  the  ideal ( n / 2 ,  n / 2 )  divi- 
sion. Based  on  these considerations, we  finally get  the 
following  dual  constraint  which  we  refer  to  as  the  gener- 
alized  optimization  criterion  (GOC): 

1) For each  coordinate  axis j = 1,  * , K,  the  opti- 
mal partition hj*, for  that  axis is chosen  as  the  one with 
minimum InL - nR/  . 

2)  From  the K candidate  partitions ( j ,  h;" ), j = 1, 

region  is chosen  as the one  whose  corresponding ( n L ,  n R )  

division is closest  to  the (n /2 ,   n /2 )  point, in the  mini- 
mum  Euclidean  distance  sense,  where n is the  number  of 
Voronoi  regions  intersecting  with  the  region  to be parti- 
tioned. 

In order to  carry  out  the  above  optimization, nL and nR 
are  determined  for  any  value  of h using  the  projections  of 
the  Voronoi  intersections  within  the  region  to  be  parti- 
tioned  as  described in Section  V-A  for  the  exact  optimi- 
zation  criterion. 

At the end of  the  optimization  using  EOC or GOC, each 
bucket  has  a  codevector list (henceforth referred  to as 
bucket-Voronoi  intersection  list or BVI list)  associated 
with it corresponding  to  the  Voronoi  regions  intersecting 
with  the bucket.  The  nearest  neighbor  search  for any  given 

. . .  , K so obtained,  the final  partition ( k ,  h,*) for  the 

test vector  proceeds in two  phases:  first,  identifying  the 
bucket  containing  the  test  vector  and,  then,  searching 
within  the list of codevectors  associated with  the  bucket. 
The  resulting  solution  will  be  optimal if the  intersection 
list is obtained  correctly.  The  tree  depth  can be  increased 
indefinitely,  with  the  search  complexity  decreasing  mon- 
otonicaily,  limited  only by the storage  requirements.  The 
worst  case  complexity  is  merely  the  largest  bucket  size, 
which decreases with iccreasing  tree  depth,  bounded in 
the  limit by the  maximum  number  of  Voronoi  regions 
which  have a  vertex in common. For a tree  of  depth d. 
the  total  storage is 2(2d - 1) + (6 + 1)2" or simply 
(3 + 6)2d, where & is  the average  bucket  size. An increase 
in depth by one  results i n  just  one  extra  scalar  comparison 
in  bucket  identification  and a doubling of storage.  The 
high storage  requirements do not  pose  a  major  problem. 
since  only O(d) actual  memory  access is needed  during 
the  search. 

The  complexity  of  the  nearest  neighbor  search can be 
reduced by using a partial  distance  search [ 161 within the 
bucket.  Further  reduction  results by using  an  ordered  list 
[ 171 in  each  bucket  where  the  codevectors  are  arranged in 
the  order of  decreasing  probability  of  being  the  nearest 
neighbor  for  a  test  vector  belonging  to  the  bucket.  This 
information  can  be  obtained if the  test data  distribution is 
available as in  the  case  of  optimization  using EOC. 

VI. THE MAXIMUM PRODUCT CRITERION (MPC) 

Here  we  discuss  the  maximum  product  criterion used 
in [7] and [8] for  the  optimization of the K-d tree  using 
only  the  Voronoi  intersection  information  under  the 
bucket-Voronoi  intersection  search.  The  BHT  (binary  hy- 
perplane  testing)  algorithm  in  [7] is essentially  a K-d  tree 
structure  where  the  partitioning  hyperplanes  are  general 
(K - 1) dimensional  hyperplanes with  arbitrary  orienta- 
tion  and  are  not  constrained to be orthogonal  to  the co- 
ordinate  axes  as in the  case of the  standard K-d tree. In  
this  structure. K + I coefficients  are  needed  to  represent 
the  general K - 1 dimensional  hyperplane  at each  node 
and  hence  requires  considerably  higher  storage  than  the 
standard K-d tree.  Locating  the test vector with  respect  to 
the  partitioning  hyperplane  has  to be done by a  dot  prod- 
uct with the  hyperplane  coefficients  and  this  requires K 
multiplies  and  one  comparison  at  each  node.  as  opposed 
to just  one  scalar  comparison with the use  of  the  standard 
K-d tree.  The  optimization  problem  also is rendered  more 
difficult by the  use  of  general  hyperplanes  with  arbitrary 
orientation.  The  algorithm is reported to have  complexity 
of the  order of ( r  - l ) K  + 2 K  and  the 2 K  bound  limits  the 
usefulness  of  the  algorithm  only  for  bit  rates I' > I .  I n  [8] 
the  standard K-d tree  structure is used  to  realize a more 
efficient  structure  than  that  used in  the BHT algorithm. 
However, the  general  tree  structure  used in both  these 
works  are  the  same  and  the  optimization  procedure  for  the 
design of the  tree  chooses  the  partitioning  hyperplane  as 
the  one  which  maximizes  the  product N L N R  over all the K 
coordinate  axes, N,- and N ,  being the  number of Voronoi 
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regions  entirely  on  the left and  right regions,  respectively. 
Here, we  give  a  geometric  interpretation of this  maximum 
product  optimization  criterion  (MPC)  in  the nL-nR plane 
and  compare it with  the GOC  criterion  proposed  here. 

For  any  division h,  0 5 NL 5 n and 0 5 NR 5 n .  
Moreover,  since NL + NR + N ,  = n ,  we  have NL + NR 
= n - Ns  and  thereby, 0 I NL + NR 5 n. Thus,  for any 
division h ,  (NL,  NR) will  lie in the  region  given by 0 I 
NL 5 n ,  0 5 NR 5 n and 0 cc NL + NR 5 n which is 
shown  as  region  AOC  in  Fig. 8. Since  the  actual  search 
complexity is determined by nL and nR and  not by NL and 
N R ,  we wish to  interpret  the  MPC in  the nL-nR plane.  For 
this  purpose,  the nL-nR region  described  earlier  is  shown 
in  Fig. 8 as  the  region ABC along with the NL-NR region 
for  ease of interpretation.  For any  given  point E(NL,   NA) 
in the NL-NR region  (AOC):  the  corresponding F(nL, nA) 
point  in the nL-ItR region (ABC)  is  obtained by using  the 
relation nL = n - NR and nR = n - NL. (This  follows 
from  the  fact  that nL = NL + Ns,  nR = NR + Ns and N L  
+ NR + N s  = n . )  The  points E and F lie on the NL + NR 
= n - Ns  and nL + nR = n + Ns lines,  respectively, 
which  run  parallel  to the NL + NR = n (same  as  the nL + 
nA = n)  line  at  the  distance of N s / h  as shown  in Fig. 
8. Therefore,  given E(NL,  NR), the  corresponding  point 
F(nL. nR) lies  at  a  distance  of J ? N ~  along the line  con- 
taining E and  parallel  to  the n L  = nR line.  Thus,  for any 
given E(NL,  NR) in  the (NL,  NR) region  the  corresponding 
point F(nL? nR) in  the ( n L ,  nR) region is simply  a  reflection 
of E about  the nL + nR = n line. 

We  interpret  the  MPC using the  constant  value  con- 
tours of the  function NL NR. The NL  NR = C contours  for 
C = C,, C,, and C, with C3 > C, > C ,  are  shown in 
Fig. 8. The  corresponding  contours  in  the nL-nR plane  are 
obtained by reflecting  these NL  NR = C contours  about  the 
nL + nR = n line.  These  are  also  shown in Fig. 8. The 
MPC  chooses  points  lying on the NLNR curves with  the 
maximum C. For  instance, MPC would  choose  the  divi- 
sion  corresponding  to NLNR = C3 as  the  optimal  partition 
in  preference to other  divisions which lie on NLNR = C, 
and NLNR = C2. It is  easily  seen  that  the  point  which  has 
the absolute  maximum  of N L N R  = n2/4 is  the ( n / 2 ,  n / 2 )  
point  denoted  by D .  This  ideal  division  is  unlikely  due  to 
the  inevitable  splitting of the  Voronoi  regions,  and  hence 
the  next  best choice  would be  to choose  balanced  divi- 
sions  with  the  least  split, i .e.,  minimum Ns value.  Since 
the  distance  of  any  point  to  the  point D along  the nL = nR 
line is proportional  to Ns ,  such  “balanced  least  split”  di- 
visions  would correspond  to  a  point  closest to D on the nL 
= nR line  and  will  have  a  value  of NLNR = c with c less 
than the  maximum n 2 / 4  value.  However. the  function 
NLNR = c has  a  large  spread  about  the nL = t?R line.  even 
for  small  reductions  in C and  due to this  even  for  a  good 
division  along  the nL = nR line with a  small N,, several 
other highly  unbalanced  divisions  (far  away  from  the n L  

= nR line)  with  the  same NLNR value  would compete  for 
selection  as  the  optimal  division.  Consequently,  the MPC 
might choose  divisions  which  are  far  from the nL = nR 
line in preference  over  points  which  are  closer to the n,- 

. - .  

\ 

NL 
___c 

Fig. 8 .  Geometric  lnterpretatlon of the maximum product criterion. 

= nR line  and  this  will  result in  highly  unbalanced  divi- 
sions  with  poor  complexity  reductions  since  one of  the 
subregions will  have a  large  number  of  Voronoi  regions. 

In  contrast  to MPC, the  optimization  criterion  GOC  will 
have  better  complexity  reduction  as it seeks  to  construct 
the most balanced  tree  with  the  lowest  expected  search 
complexity, by first explicitly  choosing  divisions  as  close 
to  the nL  = nR line  as  possible;  and  from  each  coordinate 
axis,  subsequently  choosing  the  division  which is closest 
to  the  ideal ( n / 2 ,  n / 2 )  point. 

VII. EXPERIMENTS A N D  RESULTS 

In this  paper, we  study  the  complexity  reduction  per- 
formance  of  the  proposed  optimization  criteria  EOC  and 
GOC in the  context of vector  quantization  using  speech 
data.  Here we  present  the  performance  results of  the  var- 
ious  optimization  criteria EOC,  GOC, and  MPC  devel- 
oped  specifically  under  the  bucket-Voronoi  intersection 
(BVI)  search.  We  also  show  the  performance of the  op- 
timization  proposed by Friedman et al. with  the  back- 
tracking  search  as in the  original  algorithm [6] as  well as 
with  bucket-Voronoi  intersection  search. 

First, we compare  the  performance of  the  following  al- 
gorithms: i) EOC-the  exact  optimization  criterion  with 
BVI search,  ii) GOC-the generalized  optimization  cri- 
terion  with  BVI  search, iii) MPC-the  maximum  product 
criterion  with  BVI  search [7]. [8]. iv)  FBF-BCK-the 
Friedman-Bentley-Finkel (FBF) algorithm  with its back- 
tracking  search [6] .  and  v)  FBF-BVI-the FBF  optirni- 
zation  used for  bucket-Voronoi  intersection  search.  The 
complexity is measured  in  terms of the  number of multi- 
plications  per  sample which is also  the  effective  codebook 
size  or  the  number  of  distance  calculations  per  vector  for 
a  squared  error  distance.  For BVI search,  the  complexity 
of search  for  a  test  vector is simply  the  full-search  cost 
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Flg. 9. Comparison of different K-d tree optimization  criterion and search procedures.  (a) N '  versus d .  (b) N1, versus d. Di 
mension K = 8. codebook size N = 1024.  data  used:  50 s of speech  (50  000  vectors  outside of the  design  data). 

for  searching  within  the  codevectors  in  the  BVI list of  the 
bucket  containing  the  test  vector.  The  average  complexity 
is obtained  as  an  average  over  a  large  number  of  test  vec- 
tors.  For  the  FBF-BCK  algorithm  with  backtracking 
search,  the  complexity  is  the  number of codevectors 
checked.  The  overall  complexity of FBF-BCK is actually 
much higher, i f  the  effective  number  of  bounds-overlap- 
ball  tests  (which is essentially  a  distance  computation) 
made  during  the  backtracking  search is also  considered. 

In Figs. 9 (a)  and (b),  the  expected  search  time ( N ' )  
and  worst case  search  time ( N k )  performances of  these 
five  algorithms (EOC,  GOC,  MPC.  FBF-BCK,  and  FBF- 
BVI)  are  shown  for  vector  dimension K = 8 and  codebook 
size N = 1024  for  tree  depths 8, 9, and  10.  Here  the K-d 
tree  was optimized  using  150 000 vectors  (150 s of  speech 
from  multiple  speakers  sampled  at 8 kHz) and  the  results 
shown  are  obtained  for 50 000 vectors  of  data  (different 
from the  data  used  for  optimization).  The  codebook was 
generated  from  200 s of data  using  the  LBG  algorithm 
[ 151 (splitting  procedure)  under  the  squared  error  crite- 
rion. 

It can  be observed that EOC offers the best  complexity 
reduction  as it  uses  the test data  distribution  and  has  the 
best  expected  search  minimization  possible. It sets  the 
performance  limit  achievable  and  can  be  used  here  as  a 
reference  for  the  performances of  the  other  optimizations 
which do not  use the test data  distribution.  GOC  performs 
very  close  to  EOC.  The  MPC-based  tree  performs poorly 
in  comparison  to  GOC.  The very poor  worst  case  perfor- 
mance  of  the  FBF  optimization with backtracking  search 
can  be  clearly  observed. In comparison.  the  proposed  op- 

timizations  with  the  BVI  search  have  an  excellent  ex- 
pected and  worst  case  performance, both  of  them  showing 
a  monotonic  decrease  with  increase  in  tree  depth.  The 
FBF-BVI,  where  the  partitioning  obtained by FBF  opti- 
mization  on  the  codevectors is used in a  bucket-Voronoi 
intersection  search  performs  quite  efficiently  and  has  a 
complexity  close  to  that  of GOC, which  handles  the  Vo- 
ronoi  information  explicitly. It even  performs  better than 
the MPC.  The good  performance of FBF  optimization  un- 
der  the  bucket-Voronoi  intersection  search,  despite not 
being  optimized  using  the  Voronoi  information  explicitly, 
can  possibly  be  attributed  to  the  fact  that  the  partitioning 
generated by this  optimization is such  that  each  bucket 
encloses  an  equal  number of codevectors.  The  corre- 
sponding  Voronoi  regions  will  be  located  centrally  and 
prominently  within  the  bucket.  along  with  only  a  small 
number  of  intersections  from  adjacent  Voronoi  regions. 
This can  result in uniform  bucket  sizes  and,  consequently, 
in  the good efficiency  of FBF  optimization  under BVI 
search. 

In Table I, we  show  the  complexity  reduction  efficiency 
of  the  proposed  Optimization  criteria  EOC  and  GOC un- 
der BVI  search  for  tree  depth d = log N in terms  of  the 
average  complexity ( N ' ) ,  average  complexity  with  par- 
tial-distance  search [ 161 (N ' -PD)  and  worst  case  com- 
plexity (Nb)  using  codebooks of size N = 32,  64,  128, 
2-56? 512, and  1024  and  vector  dimension  K = 8. For 
each  case,  the K-d tree  was  optimized  using  150 000 vec- 
tors.  The  table  shows N ' ,  N'-PD, and Nbfor   50 000 vec- 
tors  of  data  (different  from  the  data  used  for  optimization) 
and N '  for the  150 000 vectors of data  used  for optimi- 



TABLE 1 
Pk.RFORIIA\CE OF PROPOSFD O P T l M l Z A T l O Z  CRITERIA EOC AN0 GOC FOR 
TRFE DEPTH d = LOG N .  DIVEhSlOh K = 8: CODEBOOK  SIZE h' 32,  64, 

128, 256,  512,  1024 

EOC GOC 

Data 
Data I I1 Data I 

Data 
11 

.V d . Y '  .V'-PD N;, h" . X '  ,C'-PD ,V; h" 
- - 

32 5 7.3 3 . 6  12 7 .0   9 .4   4 .1  12 9.3 
64 6 8 .3  4.2 19 7.8 11.7 5 .0  15 11.7 

256 8 1 1 . 1  5  6 22 10.5 16.6 7.3 21 16.8 

1024 10 11.7 6 . 4  20 11.5 17.4 7.9 28 18.1 
512 9  12.2  6.4  26 1 1 . 8  18.4  7 .9  26  19.0 

128 7  10.5 5 . 1  21  10.2  14.0 5 . 8  17 14.1 

Data I-Outside design data: 50 000 vectors of speech. 
Data Il-Inside deslgn  data: I50 000 vectors of speech. 

zation.  Here it can  be  seen  that  both  EOC  and  GOC  can 
achieve  a  constant  expected  and  worst  case  complexity  for 
tree  depths  of 0 (log N ) .  In addition,  the  average  com- 
plexity for both  the inside-  and  outside-optimization  data 
are  very  nearly the  same,  indicating  the sufficiency  of  op- 
timization  and  the  consistently in the  performance  of  the 
algorithms.  The  worst  case  complexity  is  identical  for  in- 
side-  and  outside-optimization  data. 

In Table 11, we  show  the  performance  of  the  proposed 
criteria  with  respect  to  dimensionality.  Here,  the  perfor- 
mance  efficiency is shown  for  a  codebook of size N = 
1024 and  vector  dimensions  K = 2, 4. 6, 8,  and 10 with 
tree  depth of d = log N = 10 for  each  dimension.  For 
each  case, the  K-d  tree  was optimized  using 1-50 000 vec- 
tors.  The  table  shows N ' , N '-PD, and N for 50 000 vec- 
tors  of data  (different  from  the  data  used  for  optimization) 
and N ' for  the 150 000 vectors of data used for  optimi- 
zation.  Here, it  can  be  seen  that  both EOC and  GOC 
achieve  constant  expected  and  worst  case  complexity  for 
tree  depths  of 0 (log N )  over  the  various  dimensions.  The 
sufficiency of optimization  and  performance  consistency 
of  the algorithms  over  the  various  dimensions  is  again  in- 
dicated by the  almost  identical  average  complexity for  the 
inside-  and  outside-optimization  data. 

In Table 111, we  show  the  performance  of  the  proposed 
EOC  and  GOC with  respect  to full search  for  K = 8 and 
N = 1024 in terms of average,  worst  case  complexity. 
and  storage.  The results are  obtained  for 50 000 vectors 
of  speech  data.  The K-d  tree  algorithm  using  BVI  search 
under  the  EOC  and  GOC  optimizations  can  be  seen  to 
offer  excellent  complexity  reduction  over  the  full  search 
with  very low average  and worst case  complexity  though 
at the cost of  increased  storage.  The  total  storage  required 
by these  algorithms  for  a  tree  of  depth d,  is  about (3 + 
b)2d, where 6 is the  average  bucket  size.  The  average 
number  of  multiplications,  additions  (subtractions).  and 
comparisons  per  sample  ((macs)  measure [ 141) are  also 
shown.  The  full  search has a (macs)  complexity of [ N ,  
N ( 2 K  - I ) / K ,  ( N  - 1 ) / K ]  and  the  BVI  search  has a 
complexity [ N ' ,  N'(2K - l ) / K .  (N '  - 1 + d ) / K ] ,  

TABLE 11 
PERFORMAWE OF PROPOSED OPTlhllZATlON C R I T E R I A  EOC A N D  GOC FOR 

DIMEKSIOKS K = 2, 4,   6.   8.   10.  CODEBOOK S I Z E  N = 1024: TREE 
DEPTH d = log ,Y = 10 

EOC GOC 

Data Data 
Data I I1 Data I I1  

- - 
K N '  N ' - P D  A';. , Y '  N '  N ' - P D  I%'; N '  

2 2.6  2 .0  19 2 .5  3 ,7  3.0 I2 3.7 
4 8.0  5 . 2  16 7.9 11.6 6.9 17 12.1 
6  11.7 6 . 5  2 1  11.9 16.1 8.0 26 16.9 

10 12.4 6 . 7  23 12.5 18.3 8.3 29 19.1 
8 11.7 6.4 20 11.5 17.4 7.9 28 18.1 

Data 11-Inside design data: 150 000 vectors of speech. 
Data I-Outside design data: 50 000 vectors of speech. 

TABLE Ill 
COMPARISON OF PROPOSED OPTIMIZATIO\  CRITERIA EOC 4VD GOC FOR 

TREE  DEPTH^ L O G N  WITH FCLL-SE4RCH. DlhlEHSlON K = 8: 
CODEBOOK SIZE h' = 1024. DATA 50 000 VECTORS OF SPEECH 

- 
N '  V I ,  b Total  Storage m a c 

EOC 11.7 20 11.3 22834 11.7 21.9 2.6 
GOC 17.4 28 12.1 23695 17.4 32.6 3.3 
Full-search 1024 1024 - 8192 1024 1920 127.9 

where N '  is the  average  number of codevectors  examined 
by the  BVI  search  procedure  and  the  additional d com- 
parisons  are  incurred  for  locating  the  bucket  containing 
the  test  vector.  The  significant  reduction  in  the  overall 
complexity  offered by the  BVI  search  using  EOC  and 
GOC optimizations  over  full  search  can  be noted from 
this. 

In Fig. 10, we  show  the  effect of  the  amount of  data 
used  for  bucket-Voronoi  intersection  list  generation  for  a 
tree  optimized by EOC. Given  the  codevectors  and an op- 
timized  tree,  the BVI list can in principle  be  generated by 
determining  the  Voronoi  regions  intersecting with each 
bucket  analytically.  Here,  as  described  earlier. the  BVI 
list is generated by encoding  a  large set of training  (or, 
design)  data. If  the  data  used  for  BVI  list  generation  is 
small, it can be  insufficient for  detecting all the  Voronoi 
intersections  within  each  bucket.  Consequently,  the  ex- 
clusion  of  codevectors  whose  Voronoi  intersections  ac- 
tually  intersect  with  the  buckets  will  result  in  encoding 
errors  when  the  tree is used  for  encoding  new  test  data 
using  the  BVI  search.  This in turn  will  reflect as  lower 
signal-to-noise  ratio (SNR) in comparison to the full- 
search SNR. At  the  same  time,  since  the  bucket  sizes will 
be  quite  small.  the  average  complexity  during  search  will 
be  very low. The sufficiency  of data used for  the  BVI list 
generation  can  be  established by increasing  the  data  used 
for BVI list generation  until  the SNR performance of the 
BVI  search on the  test data  set  (different  from  the  design 
data  set) is the  same  as  or  admissibly  close to its full- 
search SNR, and  when  the average  and  worst  complexity 
of  search (or,  alternately,  simply  the  average  bucket  size 
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and worst case  complexity. and ( c )  average  bucket size for 50 000 vectors 
Fig. I O .  Sufficiency  of data  for BVI  list generation.  (a) SNR.  (b) average 

outside of the  design  data  as a function of number of inside-design  vectors 
used in  BV1 list generation  for  EOC.  Dimension K = 8, codebook  size N 
= 1024. tree  depth d = I O .  

of  the  tree)  shows no appreciable  increase.  We  show  this 
for  the experiments  reported  here with K = 8 and N = 
1024 using  upto  150 000 vectors  of  data  for  BVI  list  gen- 
eration.  The  data used for  generating  the BVI list was  in- 
creased  from  25 000 vectors  to  150 000 vectors  in  steps 
of  25 000 vectors.  We  show  the SNR, average  complexity 
( N ' ) ,  worst case  complexity (Nty)  for 50 000 vectors  out- 
side  the  design  data. Also shown is the  average  bucket 
size ( E )  in  the  tree  for  each  data  size.  For  small  data  sizes 
(25  000 vectors)  the SNR difference  can  be  seen to be 
quite  high  (about 1.17 dB)  which  reduces  to  a very  small 
difference  of  about 0.2 dB  when 150 000 vectors  are  used. 
The  average,  worst  case  complexity  and  average  bucket 
size  can  all  be  seen  to  register  a  gradual  increase  until  they 
saturate  showing  the  sufficiency  of 150 000 vectors  for 
BVI list  generation. 

In Fig. 11, we  show  the  histograms  of  number  of  code- 
vectors  searched  for  the BVI search  under  the  EOC,  GOC, 
MPC, and FBF optimizations  and  the  backtracking  search 
(FBF-BCK)  under  the FBF optimization.  The  histograms 
were  obtained  for K = 8 and N = 1024  with a  tree  depth 
of d = log N = I O  using 50 000 vectors  outside of  the 
design  data.  The  histogram  gives  the  probability  that  a 
given  number  of  codevectors N '  will  be  searched for a 
given test vector. In general,  this  histogram  reveals the 
characteristics  of  the  search  efficiency  in  the  following 
manner:  The  maximum of the  range  of N '  over which  the 
histogram  extends is the  worst case  complexity  and a 

EOC 

lSJ 

GOC 

FBF-BVI 

Fig. 11. Histograms of number of codevectors  searched  for ( a )  EOC, (b)  
GOC. ( c )  MPC, (d)  FBF-BVI, and ( e )  FBF-BCK  algorithms.  Dimension 
K = 8, codebook size N = 1024, tree depth d = 10. Data  used: 50 000 
vectors  outside  of  the  design  data. 

spread  of  the  histogram  over  a  large  range  of N '  indicates 
high  worst  case  complexity  behavior  of  the  search.  More 
importantly,  the  location of  high  probability  modes  in  the 
histogram  corresponds  to  the  dominant  values of N '  the 
search is likely to have.  and  mainly  determines  the  aver- 
age  complexity  behavior of the search.  Here, it can be 
seen  that  EOC has  the  narrowest  histogram  with  one  high- 
probability  mode  located at a  small N '  value.  The GOC 
has a  slightly  larger  spread  and  has  modes of lower  prob- 
ability  located at a  relatively  higher N ' .  However, it can 
be noted  that  the GOC  histogram  shows  a  significant mode 
very  close to that  of EOC attributing to its close  overall 
performance  to EOC. In comparison. MPC has  a  very 
large  spread  with  a  very  high  probability  mode  at  the  max- 
imum  (worst  case)  number  of  codevectors.  FBF-BVI  also 
has  large  spreads  but  does  not  suffer  from  any  high  prob- 
ability  mode  at  higher N '  values.  The  backtracking  search 
FBF-BCK has  a  good  average  complexity  behavior with 
high  probabilities  at  the  lower  end  of N' with the  histo- 
gram  tapering  down  uniformly to zero t i l l  its maximum 
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N ' .  However,  the  spread of the  histogram is very  high 
due to  the  high  worst  case  complexity  of  the  backtracking 
search. For FBF-BCK  here,  the  histogram  is  shown  for 
the  overall  complexity  including  the  effective  bounds- 
overlap-ball  tests  made  (which is essentially  a  distance 
computation  as  mentioned  earlier);  this  makes  the  actual 
overall  worst  case  complexity  of  the  search  significantly 
higher (807) than  that  shown  in Fig. 9 (542) for  only  the 
number  of  codevectors  examined. 

So far, we have  discussed the performance  of different 
optimization  criteria  for  the  design  of  the  K-d  tree  and 
shown  that  the EOC and  GOC  criteria  offer  an  efficient 
and  improved  complexity  reduction  for  nearest  neighbor 
search. We have not  yet  talked about  the  complexity  of 
the  optimization  procedures  for  these  criteria.  Though it 
is not a very  important  issue  as it is done only  during  the 
design  phase,  some  comments  about it  are in order  here. 
The main computational  step in  the  GOC  optimization 
procedure  at  each  node is the  determination of  the Vo- 
ronoi  intersections  within  the  region  to  be  partitioned  and 
their  revised  projection  estimates.  This  can  be  done  with 
a  small  amount of computational  cost  provided  the  nearest 
neighbors of all  the  vectors  used  in  the  optimization  pro- 
cess  are  precomputed  and  stored.  The EOC optimization 
procedure  requires,  in  addition  to  the  projection  esti- 
mates, the  conditional  histograms  from  the  training  data 
for getting  the p ( h )  values  needed to find the  minimum 
expected  search  complexity E(k )  on  each  coordinate  axis. 
Since  the  projection  estimates  and  histograms  can  be  ob- 
tained in the  same  pass  through  the  data  used  for  optimi- 
zation,  the EOC optimization  procedure is only  slightly 
more  complex  than  the  GOC  optimization  procedure.  The 
FBF  optimization  procedure is the  least  complex  as it does 
not  require  any  projection  estimates  and  probability  com- 
putations. It directly  deals with the  codevectors  and re- 
quires  only  the  computation of variance  and  median of the 
coordinates  of  codevectors  inside  the  region to be  parti- 
tioned.  However, it will  be  of  interest to find means  for 
making  the EOC and  GOC  optimization  procedures  faster 
and less  complex  while  retaining  their efficient  perfor- 
mance  under  the  bucket-Voronoi  intersection  search. 

VIII. COWLUSIONS 
In this  paper, we  have  addressed  the  issue  of  fast  near- 

est  neighbor  search is multidimensional  space  using  the 
K-d  tree  data  structure  with  particular  emphasis on the 
optimization  of  the  tree  under  a  bucket-Voronoi  intersec- 
tion framework  for  fast  vector  quantization.  We  have  pre- 
sented  two efficient  optimization  criterion  and  procedures 
for  designing  the  K-d  tree-one  for  the  case  when  the  test 
data  distribution is available,  as in  vector  quantization  ap- 
plications in the  form  of  training  data,  and  the  other  when 
the  test data  distribution is not  available  and  only  the Vo- 
ronoi  intersection  information is to  be  used.  The  proposed 
algorithm is studied  in  the  context  of  vector  quantization 
encoding  of  speech  and is empirically  observed to achieve 
constant  expected  search  complexity for 0 (log N )  tree 
depths.  The  bucket-Voronoi  intersection  search  frame- 

work  and  the  proposed  optimizations  are  shown  to be more 
efficient  than  the  backtracking search  proposed  earlier by 
Friedman et al. The  proposed  optimization  criteria  are  also 
shown  to  be  more  efficient  than  the  maximum  product  cri- 
terion (MPC) used  recently.  Under the  framework  used 
for  obtaining  the  proposed  optimization  criterion. we have 
given  a  geometric  interpretation of  the MPC with  reasons 
for its inefficiency. 
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