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Abstract. We introduce several new families of string kernels designed in par-
ticular for use with support vector machines (SVMs) for classification of protein
sequence data. These kernels – restricted gappy kernels, substitution kernels, and
wildcard kernels – are based on feature spaces indexed byk-length subsequences
from the string alphabetΣ (or the alphabet augmented by a wildcard character),
and hence they are related to the recently presented(k,m)-mismatch kernel and
string kernels used in text classification. However, for all kernels we define here,
the kernel valueK(x, y) can be computed inO(cK(|x | + |y |)) time, where the
constantcK depends on the parameters of the kernel but is independent of the size
|Σ| of the alphabet. Thus the computation of these kernels is linear in the length
of the sequences, like the mismatch kernel, but we improve upon the parameter-
dependent constantcK = km+1|Σ|m of the mismatch kernel. We compute the
kernels efficiently using a recursive function based on a trie data structure and re-
late our new kernels to the recently described transducer formalism. Finally, we
report protein classification experiments on a benchmark SCOP dataset, where we
show that our new faster kernels achieve SVM classification performance com-
parable to the mismatch kernel and the Fisher kernel derived from profile hidden
Markov models.
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1 Introduction

Recently, there has been considerable interest in the development of string kernels for
use with support vector machine classifiers and other kernel methods in applications
like text categorization, speech recognition, and protein sequence classification. Pre-
vious work includes convolution kernels defined by Haussler [5], dynamic alignment
kernels based on pair hidden Markov models by Watkins [15], and the gappyn-gram
kernel developed for text classification by Lodhiet al. [11]. A practical disadvantage of
these string kernels is their computational expense. Most of the kernels rely on dynamic
programming algorithms for which the computation of each kernel valueK(x , y) is
quadratic in the length of the input sequencesx andy , that is,O(|x ||y |) with constant
factor that depends on the parameters of the kernel. The recently presentedk-spectrum
(gap-freek-gram) kernel gave a linear time(O(k(|x | + |y |)) implementation of a ker-
nel based on a trie data structure for use in SVM protein classification. Vishwanathan
et al. [13] extended this work to compute the weighted sum ofk-spectrum kernels for
differentk by using suffix trees and suffix links, allowing elimination of the constant
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factor in the spectrum kernel for a compute time ofO(|x | + |y |). Finally, the(k,m)-
mismatch kernel [9] achieved improved performance on the protein classification task
by incorporating the biologically important notion of character mismatches. Using a
mismatch tree data structure, the complexity of the kernel calculation was shown to be
O(cK(|x | + |y |)), with cK = km+1|Σ|m for k-grams with up tom mismatches from
alphabetΣ.

In this paper, we introduce several new families of string kernels designed for use
with SVMs for classification of protein sequence data. These kernels – restricted gappy
kernels, substitution kernels, and wildcard kernels – are based on feature spaces indexed
by k-length subsequences from the string alphabetΣ (or the alphabet augmented by a
wildcard character), and hence they are closely related to the(k,m)-mismatch kernel
and string kernels used in text classification. However, for all kernels we define here, the
kernel valueK(x, y) can be computed inO(cK(|x |+ |y |)) time, where the constantcK
depends on the parameters of the kernel but is independent of the size|Σ| of the alpha-
bet. Thus the computation of these kernels is linear in the length of the sequences, like
the mismatch kernel, but we improve upon the parameter-dependent constant. There-
fore, we provide a number of different models for incorporating a notion of inexact
matching while maintaining fast computation. We describe how to compute these ker-
nels efficiently using a recursive function based on a trie data structure. We also relate
our new kernels to the recently described transducer formalism [2] and give transducers
corresponding to some of our kernels.

Finally, we report protein classification experiments on a benchmark SCOP dataset,
where we show that our new faster kernels achieve SVM classification performance
comparable to the mismatch kernel and the Fisher kernel derived from profile hidden
Markov models.

2 Definitions of Feature Maps and String Kernels

Below, we review the definition of mismatch kernels [9] and introduce three new fami-
lies: restricted gappy kernels, substitution kernels, and wildcard kernels.

In each case, the kernel is defined via an explicit feature map map from the space
of all finite sequences from an alphabetΣ to a vector space indexed by the set ofk-
length subsequences fromΣ or, in the case of wildcard kernels,Σ augmented by a
wildcard character. For protein sequences,Σ is the alphabet of|Σ| = 20 amino acids.
We refer to ak-length contiguous subsequence occurring in an input sequence as an
instancek-mer (also called ak-gram in the literature). The mismatch kernel feature
map obtains inexact matching of instancek-mers from the input sequence tok-mer
features by allowing a restricted number of mismatches; the new kernels achieve inexact
matching by allowing a restricted number of gaps, by enforcing a probabilistic threshold
on character substitutions, or by permitting a restricted number of matches to wildcard
characters.

2.1 Spectrum and Mismatch Kernels

In previous work, we defined the(k,m)-mismatch kernel via a feature mapΦMismatch
(k,m) to

the |Σ|k-dimensional vector space indexed by the set ofk-mers fromΣ. For a fixedk-
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merα = a1a2 . . . ak, with eachai a character inΣ, the(k,m)-neighborhood generated
by α is the set of allk-length sequencesβ from Σ that differ fromα by at mostm
mismatches. We denote this set byN(k,m)(α). For ak-merα, the feature map is defined
as

ΦMismatch
(k,m) (α) = (φβ(α))β∈Σk

whereφβ(α) = 1 if β belongs toN(k,m)(α), andφβ(α) = 0 otherwise. For a sequence
x of any length, we extend the map additively by summing the feature vectors for all
thek-mers inx :

ΦMismatch
(k,m) (x ) =

∑
k-mersα in x

ΦMismatch
(k,m) (α)

Each instance of ak-mer contributes to all coordinates in its mismatch neighborhood,
and theβ-coordinate ofΦMismatch

(k,m) (x ) is just a count of all instances of thek-mer β
occurring with up tom mismatches inx . The(k,m)-mismatch kernelK(k,m) is then
given by the inner product of feature vectors:

KMismatch
(k,m) (x , y) = 〈ΦMismatch

(k,m) (x ), ΦMismatch
(k,m) (y)〉.

Form = 0, we obtain thek-spectrum [8] ork-gram kernel [11].

2.2 Restricted Gappy Kernels

For the(g, k)-gappy string kernel, we use the same|Σ|k-dimensional feature space,
indexed by the set ofk-mers fromΣ, but we define our feature map based on gappy
matches ofg-mers tok-mer features. For a fixedg-merα = a1a2 . . . ag(eachai ∈ Σ),
letG(g,k)(α) be the set of all thek-length subsequences occurring inα (with up tog−k
gaps). Then we define the gappy feature map onα as

ΦGap
(g,k)(α) = (φβ(α))β∈Σk

whereφβ(α) = 1 if β belongs toG(g,k)(α), andφβ(α) = 0 otherwise. In other words,
each instanceg-mer contributes to the set ofk-mer features that occur (in at least one
way) as subsequences with up tog − k gaps in theg-mer. Now we extend the feature
map to arbitrary finite sequencesx by summing the feature vectors for all theg-mers in
x :

ΦGap
(g,k)(x) =

∑
g-mersα∈x

ΦGap
g,k (α)

The kernelKGap
(g,k)(x , y) is defined as before by taking the inner product of feature vec-

tors forx andy .
Alternatively, given an instanceg-mer, we may wish to count the number of oc-

currences of eachk-length subsequence and weight each occurrence by the number of
gaps. Following [11], we can define forg-merα andk-mer featureβ = b1b2 . . . bk the
weighting

φλβ(α) =
1
λk

∑
1≤i1<i2<...<ik≤g
aij=bj for j=1...k

λik−i1+1
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where the multiplicative factor satisfies0 < λ ≤ 1. We can then obtain a weighted
version of the gappy kernelKWeighted Gap

(g,k,λ) from the feature map:

ΦWeighted Gap
(g,k,λ) (x) =

∑
g-mersα∈x

(φλβ(α))β∈Σk

This feature map is related to the gappyk-gram kernel defined in [11] but enforces the
following restriction: here, only thosek-character subsequences that occur with at most
g − k gaps, rather than all gappy occurrences, contribute to the correspondingk-mer
feature. When restricted to input sequences of lengthg, our feature map coincides with
that of the usual gappyk-gram kernel. Note, however, that for our kernel, a gappyk-mer
instance (occurring with at mostg− k gaps) is counted in all (overlapping)g-mers that
contain it, whereas in [11], a gappyk-mer instance is only counted once. If we wish to
approximate the gappyk-gram kernel, we can define a small variation of our restricted
gappy kernel where one only counts a gappyk-mer instance if its first character occurs
in the first position of ag-mer window. That is, the modified feature map is defined on
eachg-merα by coordinate functions

φ̃λβ(α) =
1
λk

∑
1=i1<i2<...<ik≤g
aij=bj for j=1...k

λik−i1+1,

0 < λ ≤ 1, and is extended to longer sequences by adding feature vectors forg-mers.
This modified feature map now gives a “truncation” of the usual gappyk-gram kernel.

In Section 3, we show that our restricted gappy kernel hasO(c(g, k)(|x | + |y |))
computation time, where constantc(g, k) depends on size ofg andk, while the orig-
inal gappyk-gram kernel has complexityO(k(|x ||y |)). Note in particular that we do
not compute the standard gappyk-gram kernel on every pair ofg-grams fromx and
y , which would necessarily be quadratic in sequence length since there areO(|x ||y |)
such pairs. We will see that for reasonable choices ofg andk, we obtain much faster
computation time, while in experimental results reported in Section 5, we still obtain
good classification performance.

2.3 Substitution Kernels

The substitution kernel is similar to the mismatch kernel, except that we replace the
combinatorial definition of a mismatch neighborhood with a similarity neighborhood
based on a probabilistic model of character substitutions. In computational biology, it is
standard to compute pairwise alignment scores for protein sequences using a substitu-
tion matrix [6, 12, 1] that gives pairwise scoress(a, b) derived from estimated evolution-
ary substitution probabilities. In one scoring system [12], the scoress(a, b) are based on
estimates of conditional substitution probabilitiesP (a|b) = p(a, b)/q(b), wherep(a, b)
is the probability thata andb co-occur in an alignment of closely related proteins,q(a)
is the background frequency of amino acida, andP (a|b) represents the probability of
a mutation intoa during fixed evolutionary time interval given that the ancestor amino
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acid wasb. We define the mutation neighborhoodM(k,σ)(α) of ak-merα = a1a2 . . . ak
as follows:

M(k,σ)(α) = {β = b1b2 . . . bk ∈ Σk : −
k∑
i

logP (ai|bi) < σ}

Mathematically, we can defineσ = σ(N) such that maxα∈Σk |M(k,σ)(α)| < N , so
we have theoretical control over the maximum size of the mutation neighborhoods.
In practice, choosingσ to allow an appropriate amount of mutation while restricting
neighborhood size may require experimentation and cross-validation.

Now we define the substitution feature map analogously to the mismatch feature
map:

ΦSub
(k,σ)(x ) =

∑
k-mersα in x

(φβ(α))β∈Σk

whereφβ(α) = 1 if β belongs to the mutation neighborhoodM(k,σ)(α), andφβ(α) = 0
otherwise.

2.4 Wildcard Kernels

Finally, we can augment the alphabetΣ with a wildcard character denoted by∗, and we
map to a feature space indexed by the setW of k-length subsequences fromΣ ∪ {∗}
having at mostm occurrences of the character∗. The feature space has dimension∑m
i=0

(
k
i

)
|Σ|k−i.

A k-merα matches a subsequenceβ inW if all non-wildcard entries ofβ are equal
to the corresponding entries ofα (wildcards match all characters). The wildcard feature
map is given by

ΦWildcard
(k,m,λ)(x ) =

∑
k-mersα in x

(φβ(α))β∈W

whereφβ(α) = λj if α matches patternβ containingj wildcard characters,φβ(α) = 0
if α does not matchβ, and0 < λ ≤ 1.

Other variations of the wildcard idea, including specialized weightings and use of
groupings of related characters, are described in [3].

3 Efficient Computation

All the kernels we define above can be efficiently computed using a trie data structure,
similar to the mismatch tree approach previously presented [9]. We will describe the
computation of the gappy kernel in most detail, since the other kernels are easier adap-
tations of the mismatch kernel computation. For simplicity, we explain how to compute
a single kernel valueK(x , y) for a pair of input sequences; computation of the full
kernel matrix in one traversal of the data structure is a straightforward extension.
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3.1 (g, k)-Gappy Kernel Computation

For the(g, k)-gappy kernel, we represent our feature space as a rooted tree of depthk
where each internal node has|Σ| branches and each branch is labeled with a symbol
from Σ. In this depthk trie, each leaf node represents a fixedk-mer in feature space
by concatenating the branch symbols along the path from root to leaf and each internal
node represents the prefix for those for the set ofk-mer features in the subtree below it.

Using a depth-first traversal of this tree, we maintain at each node that we visit a
set of pointers to allg-mer instances in the input sequences that contain a subsequence
(with gaps) that matches the current prefix pattern; we also store, for eachg-mer in-
stance, an index pointing to the last position we have seen so far in theg-mer. At the
root, we store pointers to allg-mer instances, and for each instance, the stored index is
0, indicating that we have not yet seen any characters in theg-mer. As we pass from a
parent node to a child node along a branch labeled with symbola, we process each of
parent’s instances by scanning ahead to find the next occurrence of symbola in each
g-mer. If such a character exists, we pass theg-mer to the child node along with its up-
dated index; otherwise, we drop the instance and do not pass it to the child. Thus at each
node of depthd, we have effectively performed a greedy gapped alignment ofg-mers
from the input sequences to the currentd-length prefix, allowing insertion of up tog−k
gaps into the prefix sequence to obtain each alignment. When we encounter a node with
an empty list of pointers (no valid occurrences of the current prefix), we do not need to
search below it in the tree; in fact, unless there is a validg-mer instance from each ofx
andy , we do not have to process the subtree. When we reach a leaf node, we sum the
contributions of all instances occurring in each source sequence to obtain feature values
for x andy corresponding to the currentk-mer, and we update the kernel by adding the
product of these feature values. Since we are performing a depth-first traversal, we can
accomplish the algorithm with a recursive function and do not have to store the full trie
in memory. Figure 1 shows expansion down a path during the recursive traversal.

The computation at the leaf node depends on which version of the gappy kernel
one uses. For the unweighted feature map, we obtain the feature values ofx and y
corresponding to the currentk-mer by counting theg-mer instances at the leaf coming
from x and fromy , respectively; the product of these counts gives the contribution to the
kernel for thisk-mer feature. For theλ-weighted gappy feature map, we need a count
of all alignments of each validg-mer instance against thek-mer feature allowing up to
g−k gaps. This can be computed with a simple dynamic programming routine (similar
to the Needleman-Wunsch algorithm), where we sum over a restricted set of paths, as
shown in Figure 2. The complexity isO(k(g − k)), since we fill a restricted trellis of
(k+1)(g−k+1) squares. Note that when we align a subsequencebi1bi2 . . . bik against
a k-mera1a2 . . . ak, we only penalize interior gaps corresponding to non-consecutive
indices in1 ≤ i1 < i2 . . . < ik ≤ g. Therefore, the multiplicative gap cost is1 in the
zeroth and last rows of the trellis andλ in the other rows.

Eachg-mer instance in the input data can contribute to

(
g
k

)
= O(gg−k) k-mer fea-

tures (assuming thatg− k is smaller thank). Therefore, we visit at mostO(gg−k(|x |+
|y |) leaf nodes in the traversal. Since we iterate through at mostg positions of each
g-mer instance as we pass from root to leaf, the traversal time isO(gg−k+1(|x |+ |y |)).



7

a

b

b

a
a

a
a

a
b
a b
a

1 2 1

a
a

a
a

a
b
a b
a

2 4 3

a
a

a b

b

5

0 00
a
a

a
a

a
b
a b
a

b

b

b

b

b

b

a
b

a

b
a

b
a

b
a

a
b

a
b

a

a
b

b
5

Fig. 1. Trie traversal for gappy kernel. Expansion along a path from root to leaf during traveral
of the trie for the(5, 3)-gappy kernel, showing only the instance5-mers for a single sequence
x = abaabab. Each node stores its valid5-mer instances and the index to the last match for each
instance. Instances at the leaf node contribute to the kernel for3-mer featureabb.

The total processing time at leaf nodes isO(gg−k(|x |+ |y |)) for the unweighted gappy
kernel andO(k(g − k)gg−k(|x | + |y |)) for the weighted gappy kernel. Therefore, in
both cases, we have total complexity of the formO(c(g, k)(|x |+ |y |)), with c(g, k) =
O((g − k)gg−k+1) for the more expensive kernel.

Note that with the definition of the gappy feature maps given above, a gappyk-
character subsequence occuring withc ≤ g − k gaps is counted in each of theg −
(k+ c) + 1 g-length windows that contain it. To obtain feature maps that count a gappy
k-character subsequence only once, we can make minor variations to the algorithm by
requiring that the first character of a gappyk-mer occurs in the first position of the
g-length window in order to contribute to the correspondingk-mer feature.

3.2 (k, σ)-Substitution Kernel Computation

For the substitution kernel, computation is very similar to the mismatch kernel algo-
rithm. We use a depthk trie to represent the feature space. We store, at each depthd
node that we visit, a set of pointers to allk-mer instancesα in the input data whose
d-length prefixes have current mutation score−

∑d
i=1 logP (ai|bi) < σ of the current

prefix patternb1b2 . . . bd, and we store the current mutation score for eachk-mer in-
stance. As we pass from a parent node at depthd to a child node at depthd + 1 along
a branch labeled with symbolb, we process eachk-merα by adding− logP (ad+1|b)
to the mutation score and pass it to the child if and only if the score is still less thanσ.
As before, we update the kernel at the leaf node by computing the contribution of the
correspondingk-mer feature.
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(A) (B)

Fig. 2. Dynamic programming at the leaf node.The trellis in (A) shows the restricted paths for
aligning ag-mer against ak-mer, with insertion of up tog − k gaps in thek-mer, forg = 5 and
k = 3. The basic recursion for summing path weights isS(i, j) = m(ai, bj)S(i − 1, j − 1) +
g(i)S(i, j − 1), wherem(a, b) = 1 if a andb match,0 if they are different, and the gap penalty
g(i) = 1 for i = 0, k andg(i) = λ for other rows. Trellis (B) shows the example of aligning
ababb against3-merabb.

The number of leaf nodes visited is in the traversal isO(Nσ(|x | + |y |)), where
Nσ = maxα∈Σk |M(k,σ)|. We can chooseσ sufficiently small to get any desired bound
onNσ. Total complexity for the kernel value computation isO(kNσ(|x |+ |y |)).

3.3 (k,m)-Wildcard Kernel Computation

Computation of the wildcard kernel is again very similar to the mismatch kernel al-
gorithm. We use a depthk trie with branches labeled by characters inΣ ∪ {∗}, and
we prune (do not traverse) subtrees corresponding to prefix patterns with greater than
m wildcard characters. At each node of depthd, we maintain pointers to allk-mers
instances in the input sequences whosed-length prefixes match the currentd-length
prefix pattern (with wildcards) represented by the path down from the root.

Eachk-mer instance in the data matches at most
∑m
i=0

(
k
i

)
= O(km) k-length

patterns having up tom wildcards. Thus the number of leaf nodes visited is in the
traversal isO(km(|x |+ |y |)), and total complexity for the kernel value computation is
O(km+1(|x |+ |y |)).

3.4 Comparison with Mismatch Kernel Complexity

For the(k,m) mismatch kernel, the size of the mismatch neighborhood of an instance
k-mer isO(km|Σ|m), so total kernel value computation isO(km+1|Σ|m(|x |+|y |)). All
the other kernels presented here have running timeO(cK(|x | + |y |)), where constant
cK depends on the parameters of the kernel but not on the size of the alphabetΣ.
Therefore, we have improved constant term for larger alphabets (such as the alphabet of
20 amino acids). In Section 5, we show that these new, faster kernels have performance
comparable to the mismatch kernel in protein classification experiments.
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4 Transducer Representation

Corteset al. [2] recently showed that many known string kernels can be associated
with and constructed from weighted finite state transducers with input alphabetΣ. We
briefly outline their transducer formalism and give transducers for some of our newly
defined kernels. For simplicity, we only describe transducers over the probability semir-
ingR+ = [0,∞), with regular addition and multiplication.

Following the development in [2], a weighted finite state transducer overR+ is
defined by a finite input alphabetΣ, a finite output alphabet∆, a finite set of statesQ,
a set of input statesI ⊂ Q, a set of output statesF ⊂ Q, a finite set of transitions
E ⊂ Q× (Σ∪{ε})× (∆∪{ε})×R+×Q, an initial weight functionλ : I → R+, and
a final weight functionρ : F → R+. Here, the symbolε represents the empty string.
The transducer can be represented by a weighted directed graph with nodes indexed by
Q and each transitione ∈ E corresponding to a directed edge from its origin statep[e]
to its destination staten[e] and labeled by the input symboli[e] it accepts, the output
symbolo[e] it emits, and the weightw[e] it assigns. We write the label asi[e] : o[e]/w[e]
(abbreviated asi[e] : o[e] if the weight is1).

For a pathπ = e1e2 . . . ek of consecutive transitions (directed path in graph), the
weight for the path isw[π] = w[e1]w[e2] . . . w[ek], and we denotep[π] = p[e1] and
n[π] = n[ek]. We writeΣ∗ = ∪k≥0Σ

k for the set of all strings overΣ. For an input
string x ∈ Σ∗ and output stringz ∈ ∆∗, we denote byP (I, x , z , F ) the set of paths
from initial statesI to final statesF that accept stringx and emit stringz . A transducer
T is called regulated if for any pair of input and output strings(x , z ), the output weight
[[T ]](x , z ) thatT assigns to the pair is well-defined. The output weight is given by:

[[T ]](x , z ) =
∑

π∈P (I,x ,z ,F )

λ(p[π])w[π]ρ(n[π])

A key observation from [2] is that there is a general method for defining a string
kernel from a weighted transducerT . Let Ψ : R+ → R be a semiring morphism (for
us, it will simply be inclusion), and denote byT−1 the transducer obtained fromT
by transposing the input and output labels of each transition. Then if the composed
transducerS = T ◦ T−1 is regulated, one obtains a rational string kernel for alphabet
Σ via

K(x , y) = Ψ([[S]](x , y)) =
∑

z

Ψ([[T ]](x , z ))Ψ([[T ]](y , z ))

where the sum is over all stringsz ∈ ∆∗ (where∆ is the output alphabet forT ) or
equivalently, over all output strings that can be emitted byT . Therefore, we can think
of T as defining a feature map indexed by all possible output stringsz ∈ ∆∗ for T .

Using this construction, Corteset al. showed that thek-gram counter transducer
Tk corresponds to thek-gram ork-spectrum kernel, and the gappyk-gram counter
transducerTk,λ gives the unrestricted gappyk-gram kernel from [11]. Figure 3 shows
diagrams of the3-gram transducerT3 and gappy3-gram transducerT3,λ. Our(g, k, λ)-
gappy kernelKWeighted Gap

(g,k,λ) can be obtained from the composed transducerT = Tk,λ◦Tg
using theT ◦ T−1 construction. (In all our examples, we useλ(s) = 1 for every initial
states andρ(t) = 1 for every final statet.)
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(A) (B)

Fig. 3. Thek-gram and gappyk-gram transducers.The diagrams show the3-gram transducer
(A) and the gappy3-gram transducer (B) for a two-letter alphabet.

For the(k,m)-wildcard kernel, we set the output alphabet to be∆ = Σ ∪ {∗} and
define a transducer withm + 1 final states, as indicated in the figure. Them + 1 final
states correspond to destinations of paths that emitk-grams with0, 1, . . . ,m wildcard
characters, respectively. The(3, 1)-wildcard transducer is shown in Figure 4.

Fig. 4. The(k,m)-wildcard transducer. The diagram shows the(3, 1)-wildcard transducer for
a two-letter alphabet.

The (k, σ)-substitution kernel does not appear to fall exactly into this framework,
though if we threshold individual substitution probabilities independently rather than
threshold the product probability over all positions in thek-mer, we can define a trans-
ducer that generates a similar kernel. Starting with thek-gram transducer, we add ad-
ditional transitions (between “consecutive” states of thek-gram) of the forma : b for
those pairs of symbols with− logP (a|b) < σo. Now there will be a (unique) path in
the transducer that acceptsk-merα = a1a2 . . . ak and emitsβ = b1b2 . . . bk if and only
if every substitution satisfies− logP (ai|bi) < σo.

5 Experiments

We tested all the new string kernels with SVM classifiers on a benchmark SCOP dataset
from Jaakkolaet al. [7], which is designed for the remote protein homology detection
problem, in order to compare to results with the mismatch kernel reported in [9]. In
these experiments, remote homology is simulated by holding out all members of a tar-
get SCOP family from a given superfamily as a test set, while examples chosen from
the remaining families in the same superfamily form the positive training set. The neg-
ative test and training examples are chosen from disjoint sets of folds outside the target
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family’s fold, so that negative test and negative training sets are unrelated to each other
and to the positive examples. More details of the experimental set-up can be found in
[7].

We compare the SVM classification performance of the three new string kernels
with both the mismatch kernel and the Fisher kernel of Jaakkolaet al. [7]. In the Fisher
kernel method, the feature vectors are derived from profile HMMs trained on the pos-
itive training examples. The feature vector for sequencex is the gradient of the log
likelihood function logP (x|θ) defined by the model and evaluated at the maximum
likelihood estimate for model parameters:Φ(x ) = ∇θ logP (x |θ)|θ=θ0 . The Fisher ker-
nel was the best performing method on this dataset prior to the mismatch-SVM ap-
proach, whose performance is as good as Fisher-SVM and better than all other standard
methods tried [9].

We note that there is another successful feature representation for protein classifi-
cation, the SVM-pairwise method presented in [10]. Here one uses an empirical kernel
map based on pairwise Smith-Waterman [14] alignment scores

Φ(x ) = (d(x1, x ), . . . , d(xm, x ))

wherexi, i = 1 . . .m, are the training sequences andd(xi, x ) is the E-value for the
alignment score betweenx andxi. In the longer version of [9], we will show that the
mismatch kernel used with an SVM classifier is competitive with SVM-pairwise on
the smaller SCOP benchmark presented in [10]. For this reason, and because the SVM-
pairwise feature map is expensive to compute on the larger SCOP dataset from [7] (each
feature vector isO(|x |2m), wherem is the number of training sequences), we compare
the new kernels only to the mismatch kernel and the Fisher kernel.

All methods are evaluated using the receiver operating characteristic (ROC) score,
which is the area under the graph of the rate of true positives as a function of the rate
of false positives as the threshold for the classifier varies [4]. Perfect ranking of all
positives above all negatives gives an ROC score of1, while a random classifier has an
expected score close to0.5.

5.1 Restricted Gappy Kernels

We tested the(g, k)-gappy kernel with parameter choices(g, k) = (6, 4), (7, 4), (8, 5),
(8, 6), and(9, 6). Among them(g, k) = (6, 4) yielded the best results, though other
choices of parameters had quite similar performance (data not shown). We also tested
the alternative weighted gappy kernel, where the contribution of an instanceg-mer to
a k-mer feature is a weighted sum of all the possible matches of thek-mer to subse-
quences in theg-mer with multiplicative gap penaltyλ (0 < λ ≤ 1). We used gap
penaltyλ = 1.0 andλ = 0.5 with the (6, 4) weighted gappy kernel. We found that
λ = 0.5 weighting slightly weakened performance (results not shown). In Figure 5, we
see that unweighted and weighted (λ = 1.0) gappy kernels have comparable results to
(5, 1)-mismatch kernel and Fisher kernel.

5.2 Substitution Kernels

We tested the substitution kernels with(k, σ) = (4, 6.0). Here,σ = 6.0 was chosen
so that the members of a mutation neighborhood of a particular4-mer would typically
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Fig. 5. Comparison of of Mismatch-SVM, Fisher-SVM and Gappy-SVM.The graph plots the
total number of families for which a given method exceeds an ROC score threshold. The(6, 4)-
Gap-SVM uses the unweighted gappy string kernel, in which an instanceg-mer contributes a
value of 1 to a k-mer feature if thek-mer occurs in it as a subsequence. The(6, 4)-Weight-
Gap-SVM uses the weighted version of the gappy string kernel, which counts the total number
alignments of ak-mer against ag-mer with multiplicative gap penalty ofλ.

have only one position with a substitution, and such substitutions would have fairly
high probability. Therefore, the mutation neighborhoods were much smaller than, for
example,(4, 1)-mismatch neighborhoods. The results are shown in Figure 6. Again, the
substitution kernel has comparable performance with mismatch-SVM and Fisher-SVM,
though results are perhaps slightly weaker for more difficult test families.

5.3 Wildcard Kernels

In order to compare with the(5, 1)-mismatch kernel, we tested wildcard kernels with
parameters(k,m, λ) = (5, 1, 1.0) and (k,m, λ) = (5, 1, 0.5). Results are shown in
Figure 7. The wildcard kernel withλ = 1.0 seems to perform as well or almost as well
as the(5, 1)-mismatch kernel and Fisher kernel, while enforcing a penalty on wildcard
characters ofλ = 0.5 seems to weaken performance somewhat.

6 Discussion

We have presented a number of different kernels that capture a notion of inexact match-
ing – through use of gaps, probabilistic substitutions, and wildcards – but maintain fast
computation time. Using a recursive function based on a trie data structure, we show that
for all our new kernels, the time to compute a kernel valueK(x , y) isO(cK(|x |+ |y |)),
where the constantcK depends on the parameters of the kernel but not on the size of
the alphabetΣ. Thus we improve on the constant factor involved in the mismatch ker-
nel computation, in which|Σ| as well ask andm control the size of the mismatch
neighborhood and hence the constantcK .
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Fig. 6. Comparison of mismatch-SVM, Fisher-SVM and substitution-SVM.The graph plots
the total number of families for which a given method exceeds an ROC score threshold.
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Fig. 7. Comparison of mismatch-SVM, Fisher-SVM and wildcard-SVM.The graph plots the
total number of families for which a given method exceeds an ROC score threshold.

We also show how many of our kernels can be obtained through the recently pre-
sented transducer formalism of rationalT ◦ T−1 kernels and give the transducerT for
several examples. This connection gives an intuitive understanding of the kernel defini-
tions and could inspire new string kernels.

Finally, we present results on a benchmark SCOP dataset for the remote protein
homology detection problem and show that many of the new, faster kernels achieve
performance comparable to the mismatch kernel. Therefore, these new kernels seem
promising for applications in computational biology and other domains involving learn-
ing from sequence data.
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