
Fast Kernels for String and Tree Matching

S. V. N. Vishwanathan

Dept. of Compo Sci. & Automation
Indian Institute of Science
Bangalore, 560012, India

vishy@csa . iisc . ernet . in

Alexander J. Smola

Machine Learning Group, RSISE
Australian National University
Canberra, ACT 0200, Australia
Alex . Smola@anu . edu . au

Abstract

In this paper we present a new algorithm suitable for matching discrete
objects such as strings and trees in linear time, thus obviating dynarrtic
programming with quadratic time complexity. Furthermore, prediction
cost in many cases can be reduced to linear cost in the length of the se
quence to be classified, regardless of the number of support vectors. This
improvement on the currently available algorithms makes string kernels
a viable alternative for the practitioner.

1 Introduction

Many problems in machine learning require the classifier to work with a set of discrete ex
amples. Common examples include biological sequence analysis where data is represented
as strings [4] and Natural Language Processing (NLP) where the data is in the form a parse
tree [3]. In order to apply kernel methods one defines a measure of similarity between
discrete structures via a feature map ¢ : X ----+ Jek.
Here X is the set of discrete structures (eg. the set of all parse trees of a language) and JeK
is a Hilbert space. Furthermore, dot products then lead to kernels

k(x, x') = (¢(x), ¢(X')) (1)

where x, x ' E X. The success of a kernel method employing k depends both on the faithful
representation of discrete data and an efficient means of computing k.
This paper presents a means of computing kernels on strings [15, 7, 12] and trees [3] in
linear time in the size of the arguments, regardless of the weighting that is associated with
any of the terms, plus linear time complexity for prediction, regardless of the number of
support vectors. This is a significant improvement, since the so-far fastest methods [8, 3]
rely on dynarrtic programming which incurs a quadratic cost in the length of the argument.
Note that the method we present here is far more general than strings and trees, and it can
be applied to finite state machines, formal languages, automata, etc. to define new kernels
[14]. However for the scope of the current paper we Iirrtit ourselves to a fast means of
computing extensions of the kernels of [15, 3, 12].
In a nutshell our idea works as follows: assume we have a kernel k(x, x')
I: iE I ¢i (x)¢i (x') , where the index set I may be large, yet the number of nonzero en

tries is small in comparison to III- Then an efficient way of computing k is to sort the set
of nonzero entries ¢(x) and ¢(X') beforehand and count only matching non-zeros. This
is similar to the dot-product of sparse vectors in numerical mathematics. As long as the
sorting is done in an intelligent manner, the cost of computing k is linear in the sum of
non-zeros entries combined. In order to use this idea for matching strings (which have a

quadratically increasing number of substrings) and trees (which can be transformed into
strings) efficient sorting is realized by the compression of the set of all substrings into a
suffix tree. Moreover, dictionary keeping allows us to use arbitrary weightings for each of
the substrings and still compute the kernels in linear time.

2 String Kernels

We begin by introducing some notation. Let A be a finite set which we call the alphabet.
The elements of A are characters. Let $ be a sentinel character such that $ tf. A. Any
x E A k for k = 0, 1, 2 ... is called a string. The empty string is denoted by E and A *
represents the set of all non empty strings defined over the alphabet A.
In the following we will use s , t , u , v, w, x, y, z E A * to denote strings and a, b, c E A to
denote characters. Ixl denotes the length of x , uv E A * the concatenation of two strings
u , v and au the concatenation of a character and a string. We use xli : j] with 1 ::; i ::; j ::;

Ix l to denote the substring of x between locations i and j (both inclusive). If x = uvw for
some (possibly empty) u, v , w, then u is called a prefix of x while v is called a substring
(also denoted by v [;;; x) and w is called a suffix of x . Finally, numy(x) denotes the number
of occurrences of yin x . The type of kernels we will be studying are defined by

k(x, X'): = L w s6s,s' = L nums(x) nums(x ') ws. (2)

s EA "

That is, we count the number of occurrences of every string s in both x and x ' and weight
it by w s , where the latter may be a weight chosen a priori or after seeing data, e.g., for
inverse document frequency counting [11]. This includes a large number of special cases:

• Setting W s = 0 for all lsi > 1 yields the bag-of-characters kernel, counting simply
single characters.

• The bag-of-words kernel is generated by requiring s to be bounded by whitespace.
• Setting Ws = 0 for all lsi> n yields limited range correlations of length n.
• The k-spectrum kernel takes into account substrings of length k [J 2] . It is achieved

by setting W s = 0 for all lsi i- k.
• TFIDF weights are achieved by first creating a (compressed) list of all s including

frequencies of occurrence, and subsequently rescaling W s accordingly.

All these kernels can be computed efficiently via the construction of suffix-trees, as we will
see in the following sections. However, before we do so, let us turn to trees. The latter are
important for two reasons: first since the suffix tree representation of a string will be used to
compute kernels efficiently, and secondly, since we may wish to compute kernels on trees,
which will be carried out by reducing trees to strings and then applying a string-kernel.

3 Tree Kernels

A tree is defined as a connected directed graph with no cycles. A node with no children
is referred to as a leaf A subtree rooted at node n is denoted as Tn and t F T is used to
indicate that t is a subtree of T. If a set of nodes in the tree along with the corresponding
edges forms a tree then we define it to be a subset tree. If every node n of the tree contains
a label, denoted by label(n), then the tree is called an labeled tree. If only the leaf nodes
contain labels then the tree is called an leaf-labeled tree. Kernels on trees can be defined
by defining kernels on matching subset trees as proposed by [3] or (more restrictively) by
defining kernels on matching subtrees. In the latter case we have

k(T, T') = L Wt6t ,t' . (3)

t FT ,t' FT'

Ordering Trees An ordered tree is one in which the child nodes of every node are ordered
as per the ordering defined on the node labels. Unless there is a specific inherent order on
the trees we are given (which is, e.g., the case for parse-trees), the representation of trees is

not unique. For instance, the following two unlabeled trees are equivalent and can obtained
from each other by reordering the nodes.

~ c!0 To order trees we assume that a lexicographic or
der is associated with the labels if they exist. Fur
thermore, we assume that the additional symbols
'[', '1' satisfy ' [' < '1', and that '1', '[' < label(n) for
all labels. We will use these symbols to define

Figure 1: Two equivalent trees tags for each node as follows:

• For an unlabeled leaf n define tag(n) := [l.
• For a labeled leaf n define tag(n) : = [label(n) 1 .
• For an unlabeled node n with children nl, ... , nc sort the tags of the children in

lexicographical order such that tag(n i) ::=; tag(nj) if i < j and define

tag(n) = [tag(nl)tag(n2) ... tag(nc)l .

• For a labeled node perform the same operations as above and set

tag(n) = [label(n)tag(nl)tag(n2) ... tag(nc) l .

For instance, the root nodes of both trees depicted above would be encoded as [[] [[] [lll. We
now prove that the tag of the root node, indeed, is a unique identifier and that it can be
constructed in log linear time.

Theorem 1 Denote by T a binary tree with I nodes and let A be the maximum length of a
label. Then the following properties hold for the tag of the root node:

1. tag (root) can be computed in (A + 2)(llog21) time and linear storage in I.
2. Substrings S oftag(root) starting with '[' and ending with a balanced '] ' corre

spond to subtrees T' ofT where s is the tag on T'.
3. Arbitrary substrings s oftag(root) correspond to subset trees T' ofT.
4. tag (root) is invariant under permutations of the leaves and allows the reconstruc-

tion of an unique element of the equivalence class (under permutation).

Proof We prove claim 1 by induction. The tag of a leaf can be constructed in constant time
by storing [,], and a pointer to the label of the leaf (if it exists), that is in 3 operations. Next
assume that we are at node n, with children nl, n2. Let Tn contain In nodes and Tn, and
Tn2 contain h, 12 nodes respectively. By our induction assumption we can construct the tag
for nl and n2 in (A + 2)(h log2 h) and (A + 2)(12 log2 12) time respectively. Comparing
the tags of nl and n2 costs at most (A + 2) min(h, l2) operations and the tag itself can
be constructed in constant time and linear space by manipulating pointers. Without loss of
generality we assume that h ::=; 12 • Thus, the time required to construct tag(n) (normalized
by A + 2) is

II (log2 11 + 1) + 1210g2 (1 2) = h log2 (2h) + l210g2 (12) ::=; In log2 (In). (4)

One way of visualizing our ordering is by imagining that we perform a DFS (depth first
search) on the tree T and emit a '[' followed by the label on the node, when we visit a node
for the first time and a '1' when we leave a node for the last time. It is clear that a balanced
substring s of tag (root) is emitted only when the corresponding DFS on T' is completed.
This proves claim 2.
We can emit a substring of tag(root) only if we can perform a DFS on the corresponding
set of nodes. This implies that these nodes constitute a tree and hence by definition are
subset trees of T. This proves claim 3.
Since leaf nodes do not have children their tag is clearly invariant under permutation. For an
internal node we perform lexicographic sorting on the tags of its children. This removes any
dependence on permutations. This proves the invariance of tag(root) under permutations
of the leaves. Concerning the reconstruction, we proceed as follows: each tag of a subtree
starts with ' [' and ends in a balanced '] ', hence we can strip the first [] pair from the tag,

take whatever is left outside brackets as the label of the root node, and repeat the procedure
with the balanced [... J entries for the children of the root node. This will construct a tree
with the same tag as tag(root), thus proving claim 4. •

An extension to trees with d nodes is straightforward (the cost increases to d log2 d of the
original cost), yet the proof, in particular (4) becomes more technical without providing
additional insight, hence we omit this generalization for brevity.

Corollary 2 Kernels on trees T , T' can be computed via string kernels, if we use
tag(T) , tag(T') as strings. Ifwe require that only balanced [. .. J substrings have nonzero
weight W s then we obtain the subtree matching kernel defined in (3).

This reduces the problem of tree kernels to string kernels and all we need to show in the fol
lowing is how the latter can be computed efficiently. For this purpose we need to introduce
suffix trees.

4 Suffix Trees and Matching Statistics

Definition The suffix tree is a compacted trie that stores all suffixes of a given text string.
We denote the suffix tree of the string x by S (x) . Moreover, let nodes(S(x)) be the set of
all nodes of S (x) and let root (S (x)) be the root of S (x). For a node w, father (w) denotes
its parent, T(w) denotes the subtree tree rooted at the node, Ivs(w) denotes the number of
leaves in the subtree and path(w) := w is the path from the root to the node. That is, we
use the path w from root to node as the label of the node w.

abc$

ab
We denote by words(S(x)) the set of all
strings w such that wu E nodes(S(x)) for
some (possibly empty) string u, which means
that words(S(x)) is the set of all possible
substrings of x. For every t E words(S(x))
we define ceil (t) as the node w such that

Figure 2: Suffix Tree of ababc w = tu and u is the shortest (possibly empty)

substring such that w E nodes(S(x)). Similarly, for every t E words(S(x)) we define
floor(t) as the node w such that t = wu and u is the shortest (possibly empty) substring
such that w E nodes(S(x)). Given a string t and a suffix tree S(x), we can decide if

t E words(S(x)) in O(lt l) time by just walking down the corresponding edges of S(x).
If the sentinel character $ is added to the string x then it can be shown that for any t E

words(S(x)), lvs(ceil(t)) gives us the number of occurrence of t in x [5]. The idea works
as follows: all suffixes of x starting with t have to pass through ceil(t), hence we simply
have to count the occurrences of the sentinel character, which can be found only in the
leaves. Note that a simple depth first search (OFS) of S(x) will enable us to calculate
Ivs(w) for each node in S(x) in O(lxl) time and space.
Let aw be a node in S(x), and v be the longest suffix of w such that v E nodes(S(x)).
An unlabeled edge aw ---+ v is called a suffix link in S (x). A suffix link of the form
aw ---+ W is called atomic. It can be shown that all the suffix links in a suffix tree are atomic
[5, Proposition 2.9]. We add suffix links to S(x), to allow us to perform efficient string
matching: suppose we found that aw is a substring of x by parsing the suffix tree S (x).
It is clear that w is also a substring of x. If we want to locate the node corresponding to
w, it would be wasteful to parse the tree again. Suffix links can help us locate this node in
constant time. The suffix tree building algorithms make use of this property of suffix links
to perform the construction in linear time. The suffix tree construction algorithm of [13]

constructs the suffix tree and all such suffix links in linear time.

Matching Statistics Given strings x, y with Ix l = nand Iy l = m, the matching statistics
of x with respect to y are defined by v, C E p,[n, where Vi is the length of the longest
substring of y matching a prefix of xli : n], Vi := i + v i - 1, Ci is a pointerto ceil(x[i : Vi])

and Ci is a pointer to floor(x [i : Vi]) in S(y). For an example see the table below.

String a b b a For a given y one can construct v, C correspond-
2 1 2 1 ing to x in linear time. The key observation is that

ab b babeS ab VH I ::::: Vi - 1, since if xli : Vi] is a substring of
y then definitely xli + 1 : Vi] is also a substring of

Table 1: Matching statistic of abba with
respect to S (a babc). y. Besides this, the matching substring in y that we

find, must have xli + 1 : Vi] as a prefix. The Match
ing Statistics algorithm [2] exploits this observation and uses it to cleverly walk down the
suffix links of S(y) in order to compute the matching statistics in O(lxl) time.
More specifically, the algorithm works by maintaining a pointer Pi = floor(x [i : Vi]). It

then finds P H I = floor(x[i + 1 : Vi]) by first walking down the suffix link of Pi and then
walking down the edges corresponding to the remaining portion of xli + 1 : Vi] until it
reaches floor(x[i + 1 : Vi]) . Now VH I can be found easily by walking from P H I along the
edges of S(y) that match the string x li + l : n], until we can go no further. The value of
VI is found by simply walking down S(y) to find the longest prefix of x which matches a
substring of y.

Matching substrings Using V and C we can read off the number of matching substrings
in x and y. The useful observation here is that the only substrings which occur in both x
and y are those which are prefixes of x li : Vi] . The number of occurrences of a substring in
y can be found by lvs(ceil(w)) (see Section 4). The two lemmas below formalize this.

Lemma 3 w is a substring of x iff there is an i such that w is a prefix of x li : n]. The

numbe r of occurrences of w in x can be calculated by finding all such i.

Lemma 4 The set of matching substrings of x and y is the set of all prefixes of xli : Vi] .

Proof Let w be a substring of both x and y. By above lemma there is an i such that w
is a prefix of xli : n]. Since Vi is the length of the maximal prefix of xli : n] which is a
substring in y, it follows that Vi ::::: Iw l. Hence w must be a prefix of x li : Vi] . •

5 Weights and Kernels

From the previous sections we know how to determine the set of all longest prefixes x li : Vi]
of x li : n] in y in linear time. The following theorem uses this information to compute
kernels efficiently.

Theorem 5 Let x and y be strings and c and V be the matching statistics of x with respect

to y. Assume that

W(y , t) = L Wus - W u where u = floor(t) and t = uv. (5)

sE prefix(v)

can be computed in constant time for any t. Then k(x, y) can be computed in O(l x l + Iy l)
time as Ixl Ixl

k(x, y) = L val(x[i : Vi]) = L val(ci) + lvs(ceil(x[i : Vi])) W(y , xli : Vi]) (6)
i = 1 i = 1

where val (t) := lYse ceil (t)) . W (y , t) + val(floor(t)) and val (root) := O.

Proof We first show that (6) can indeed be computed in linear time. We know that for S(y)
the number of leaves can be computed in linear time and likewise c, v. By assumption on
W(y, t) and by exploiting the recursive nature of valet) we can compute W(y, nodes(i))
for all the nodes of S(y) by a simple top down procedure in O(ly l) time.
Also, due to recursion, the second equality of (6) holds and we may compute each term in
constant time by a simple lookup for val(ci) and computation of W(y , xli : Vi]) ' Since we
have Ixl terms, the whole procedure takes O(lxl) time, which proves the O(lxl + Iyl) time
complexity.
Now we prove that (6) really computes the kernel. We know from Lemma 4 that the sum
in (2) can be decomposed into the sum over matches between y and each of the prefixes

of xli : Vi] (this takes care of all the substrings in x matching with y). This reduces the
problem to showing that each term in the sum of (6) corresponds to the contribution of all
prefixes of x li : vJ
Assume we descend down the path xli : Vi] in S(y) (e.g., for the string bab with respect
to the tree of Figure 2 this would correspond to (root, b, bab», then each of the prefixes t
along the path (e.g., (' , , b, ba, bab) for the example tree) occurs exactly as many times
as Ivs(ceil(t)) does. In particular, prefixes ending on the same edge occur the same number
of times. This allows us to bracket the sums efficiently, and W(y , x) simply is the sum
along an edge, starting from the ceiling of x to x . Unwrapping val(x) shows that this is
simply the sum over the occurrences on the path of x, which proves our claim. •

So far, our claim hinges on the fact that W(y, t) can be computed in constant time, which
is far from obvious at first glance. We now show that this is a reasonable assumption in all
practical cases.

Length Dependent Weights If the weights Ws depend only on ls i we have Ws = wisi.

Define Wj := Li=l Wj and compute its values beforehand up to W J where J ~ Ix l for all
x. Then it follows that It I

W(y , t) = L Wj - WI floor (tl l = Wlt l - WI floor(t l l (7)

j=1 ceil (tl l

which can be computed in constant time. Examples of such weighting schemes are the
kernels suggested by [15], where Wi = A - i , [7] where Wi = 1, and [10], where Wi = Olio

Generic Weights In case of generic weights, we have several options: recall that one
often will want to compute m 2 kernels k(x , x'), given m strings x E X. Hence we could
build the suffix trees for Xi beforehand and annotate each of the nodes and characters on
the edges explicitly (at super-linear cost per string), which means that later, for the dot
products, we will only need to perform table lookup of W(x , x' (i : Vi)).

However, there is an even more efficient mechanism, which can even deal with dynamic
weights, depending on the relative frequency of occurrence of the substrings in all x . We
can build a suffix tree I; of all strings in X. Again, this can be done in time linear in the
total length of all the strings (simply consider the concatenation of all strings) . It can be
shown that for all x and all i , xli : Vi] will be a node in this tree. Leaves-counting allows
to compute these dynanUc weights efficiently, since I; contains all the substrings.
For W(x,x'(i : Vi)) we make ilie simplifying assumption that Ws = ¢ (Isl) . ¢(freq(s)),
that is, Ws depends on length and frequency only. Now note that all the strings ending on
the same edge in I; will have the same weights assigned to them. Hence, can rewrite (5) as

It I

W(y , t) = L W s - L W s = ¢ (freq(t)) L ¢ (i) (8)

s Eprefix(tl s Eprefix(floor(tl l i= 1 floor(t l l+l

where u = floor(t), t = uv and s E prefix(v). By precomputing L i ¢ (i) we can evaluate
(8) in constant time.
The benefit of (8) is twofold: we can compute the weights of all the nodes of I; in time
linear in the total length of strings in X . Secondly, for arbitrary x we can compute W(y , t)
in constant time, thus allowing us to compute k(Xi' x') in O(l xi l + Ix' l) time.

Linear Time Prediction Let Xs = {Xl, X2 , . . . , x m} be the set of support vectors.
Recall that, for prediction in a Support Vector Machine we need to compute f(x) =
L : I Ctik(Xi, x), which implies that we need to combine the contribution due to matching
substrings from each one of the Support Vectors. We first construct S (Xs) in linear time by
using the [1] algorithm. In S(X8) , we associate weight Cti with each leaf associated with
the support vector Xi . For a node V E nodes(S(X8)) we modify the definition of Ivs(v)
as the sum of weights associated with the subtree rooted at node v. A straightforward ap
plication of the matching statistics algorithm of [2] shows that we can find the matching

statistics of x with respect to all strings in Xs in O(lxl) time. Now Theorem 5, can be
applied unchanged to compute f (x). A detailed account and proof can be found in [14].
In summary, we can classify texts in linear time regardless of the size of the training set.
This makes SVM for large-scale text categorization practically feasible. Similar modifica
tions can also be applied for training SMO like algorithms on strings.

6 Experimental Results

For a proof of concept we tested our approach on a remote homology detection problem 1

[9] using Stafford Noble's SVM package2 as the training algorithm. A length weighted

kernel was used and we assigned weights W s = Aisl for all substring matches of length
greater than 3 regardless of triplet boundaries. To evaluate performance we computed the
ROC50 scores.3

-~-
-"1
•
e.\a..

lsIrbda .. O.7ti _
Spectrum !(.ernel _-

"._--...... _ ... _---"',---.. _---

°o~--~~----~----~----~---- ~

Figure 3: Total number of families for which an
SVM classifier exceeds a ROC50 score threshold.

Being a proof of concept, we did not try to
tune the soft margin SVM parameters (the
main point of the paper being the introduc
tion of a novel means of evaluating string
kernels efficiently rather than applications
- a separate paper focusing on applications
is in preparation).
Table 3 contains the ROC50 scores for the
spectrum kernel with k = 3 [12] and our
string kernel with A = 0.75. We tested
with A E {0.25, 0.5, 0.75, O.g} and re
port the best results here. As can be seen
our kernel outperforms the spectrum ker
nel on nearly every every family in the
dataset.

It should be noted that this is the first method to allow users to specify weights rather arbi
trarily for all possible lenghts of matching sequences and still be able to compute kernels at
O(lxl + Ix' l) time, plus, to predict on new sequences at O(lxl) time, once the set of support
vectors is established.4

7 Conclusion

We have shown that string kernels need not come at a super-linear cost in SVMs and that
prediction can be carried out at cost linear only in the length of the argument, thus providing
optimal run-time behaviour. Furthermore the same algorithm can be applied to trees.
The methodology pointed out in our paper has several immediate extensions: for instance,
we may consider coarsening levels for trees by removing some of the leaves. For not
too-unbalanced trees (we assume that the tree shrinks at least by a constant factor at each
coarsening) computation of the kernel over all coarsening levels can then be carried out at
cost still linear in the overall size of the tree. The idea of coarsening can be extended to
approximate string matching. If we remove characters, this amounts to the use of wildcards.
Likewise, we can consider the strings generated by finite state machines and thereby com
pare the finite state machines themselves. This leads to kernels on automata and other
dynamical systems. More details and extensions can be found in [14].

IDetails and data available at www.cse.ucsc.edu/research/compbio/discriminative.

2 Available at www.cs.columbia.edu/compbio/svm.

3The ROC50 score [6, 12] is the area under the receiver operating characteristic curve (the plot of
true positives as a function of false positives) up to the first 50 false positives. A score of I indicates
perfect separation of positives from negatives, whereas a score of 0 indicates that none of the top 50
sequences selected by the algorithm were positives .

4[12] obtain an O(klxl) algorithm in the (somewhat more restrictive) case ofws = 6k(lsl) .

Acknowledgments We would like to thank Patrick Haffner, Daniela Pucci de Farias, and
Bob Williamson for comments and suggestions. This research was supported by a grant of
the Australian Research Council. SVNV thanks Trivium India Software and Netscaler Inc.
for their support.

References

[1] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. Dynamic dictionary match
ing. Journal of Computer and System Science, 49(2):208-222, October 1994.

[2] w. I. Chang and E. L. Lawler. Sublinear approximate sting matching and biological
applications. Algorithmica, 12(4/5):327-344, 1994.

[3] M. Collins and N. Duffy. Convolution kernels for natural language. In T. G. Diet
terich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Pro
cessing Systems 14, Cambridge, MA, 2001. MIT Press.

[4] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press, 1998.

[5] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A unifying
view of linear-time suffix tree construction. Algorithmica, 19(3):331-353, 1997.

[6] M. Gribskov and N. L. Robinson. Use of receiver operating characteristic (ROC)
analysis to evaluate sequence matching. Computers and Chemistry, 20(1):25-33,
1996.

[7] D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC
CRL-99-1O, Computer Science Department, UC Santa Cruz, 1999.

[8] R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT Press, 2002.

[9] T. S. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detect

ing remote protein homologies. Journal of Computational Biology, 7:95-114, 2000.

[10] T. Joachims. Making large-scale SVM learning practical. In B. SchOlkopf, C. J. C.

Burges, and A. J. Smola, editors, Advances in Kernel Methods-Support Vector
Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.

[11] E. Leopold and J. Kindermann. Text categorization with support vector machines:
How to represent text in input space? Machine Learning, 46(3):423-444, March
2002.

[12] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM

protein classification. In Proceedings of the Pacific Symposium on Biocomputing,
pages 564-575, 2002.

[13] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.

[14] S. V. N. Vishwanathan. Kernel Methods: Fast Algorithms and Real Life Applications.
PhD thesis, Indian Institute of Science, Bangalore, India, November 2002.

[15] C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Scholkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39-50,
Cambridge, MA, 2000. MIT Press.

