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ABSTRACT Addition is an essential operation in all cryptographic algorithms. Higher levels of security

require larger key sizes and this becomes a limiting factor in GF(p) using large integers because of the

carry propagation problem. We propose a novel and efficient attribute-based large integer representation

scheme suitable for large integers commonly used in cryptography such as the five NIST primes and the

Pierpont primes used in supersingular isogeny Diffie–Hellman (SIDH) for post-quantum cryptography.

Algorithms are proposed for this new representation to implement arithmetic operations such as two’s

complement, addition/subtraction, comparison, sign detection, and modular reduction. Algorithms are also

developed for converting binary numbers to attribute representation and vice versa. The extensive numerical

simulations were done to verify the performance of the new number representation. Results show that

addition is done faster in our proposed representation when compared with binary and residue number

system (RNS)-based additions. Attribute addition outperformed RNS addition for all values of m where

128 ≤ m ≤ 32 768 bits for all machine word sizes w where 4 ≤ w ≤ 128 bits. Attribute-based

addition outperforms Kogge–Stone binary adders for a wide range of m when w is small. For increasing

values of w, the speed advantages are evident only for large values of m. This makes the proposed number

representation suitable for implementing cryptographic applications in embedded processors for IoT and

consumer electronic devices where w is small.

INDEX TERMS Prime fields GF(p), large integer arithmetic, modular arithmetic, Kogge-Stone adder,

number representation, post-quantum cryptography, SIDH, cryptographic processor, embedded systems,

NIST primes, generalized pierpont prime, parallel algorithms.

I. INTRODUCTION

Large integers are used in several key areas such as crypto-

graphic systems, digital signal processing, and fault-tolerant

applications. Large integer representation has direct impact

on the efficiency of the calculations in hardware/software

implementations. However, operations on large integers suf-

fer from the long carry propagation delays. Residue number

system (RNS) is a commonly used representation to solve

the carry propagation problem. However, RNS has several

limitations such as conversion from/to binary representation

and difficulty in determining basic properties such as number

magnitude, sign, overflow or ability to compare two numbers.

For these reasons, most cryptographic systems adopted the

polynomial field GF(2m), instead of the integer field GF(p)

The associate editor coordinating the review of this manuscript and
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because of the absence of carry propagation. Recently these

cryptographic systems proved vulnerable to side-channel

and quantum computing attacks. To meet these challenges,

authors are exploring cryptographic protocols that use large

primes in GF(p). National institute of standards and technol-

ogy (NIST) has selected five large primes, which are gen-

eralized Mersenne numbers [1]. These primes were selected

with an eye to simplify the modular reduction operations for

machine word sizes that were either 32 or 64 bits. The authors

in [2] proposed a post-quantum cryptographic technique that

uses generalized Pierpont primes and Supersingular Isogeny

Diffie-Hellman (SIDH) key exchange protocol to provide

immunity to quantum attacks. Efficient algorithms tailored

for efficient modular arithmetic are yet to be developed, apart

from using the RNS approach.

The new number representation proposed here does not

have the disadvantages of the RNS number representation,
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aswill be discussed in detail in Sec. II. Themain contributions

of this work are:

1) Propose a new non-positional attribute-based large

integer representation.

2) Develop algorithms for converting a binary number to

attribute representation, and vice versa.

3) Develop algorithms to perform several arithmetic oper-

ations based on the new representation.

4) Perform numerical simulations to verify the advantages

of the new representation.

This paper is organized as follows. In Sec. II we provide

a review of related works dealing with arithmetic opera-

tions using large integers. In Sec. III we present the pro-

posed attribute-based large integer representation. In Sec. IV

we develop algorithms based on our new representation to

perform the basic arithmetic operations such as addition/

subtraction, two’s complement, comparison sign detection

and modular addition/subtraction. In Sec. VII we pro-

vide numerical simulations and software implementations

to verify the performance of the proposed representation.

In Sec. VIII we summarize the main conclusions of this

paper.

II. RELATED WORKS

The choice of integer representation affects the performance

of the basic arithmetic operations, especially when dealing

with large integers. The delay of arithmetic operations with

large integers is extremely long due to carry propagation.

The Residue Number System (RNS) [3], a non-positional

number representation, has been proposed to overcome the

carry delay problem. RNS allows representing large integers

as a set of smaller integers to achieve fast and parallel arith-

metic operations for addition, subtraction, and multiplication

since they are performed on shorter operands [4]–[6]. This

property has attracted the attention of many researchers to

utilize RNS in many applications in digital signal processing

systems [7], [8], error detection and correction and fault-

tolerant applications [9], embedded systems [10], and asym-

metric cryptography systems [11]–[18].

However, RNS suffers from several serious drawbacks:

1) It is difficult and/or slow to convert data between the

RNS and their binary equivalents [19]–[22].

2) The sign of the data is not easily determined [23]–[26].

3) It is not easy to compare two numbers in RNS domain

to determine equality or inequality [27]–[31].

4) It is hard to detect an overflow that might happen as a

result of an operation [32], [33].

5) It is necessary to perform the expensive conversion to

binary representation after each arithmetic operation to

be able to extract the state of the arithmetic results.

6) Division by a constant is difficult to implement with

RNS representation [34]–[37].

7) It is inefficient to perform the division operation with

RNS representation due to the combination of iterated

subtractions and comparisons operations [38]–[43].

FIGURE 1. An integer with three strings of ones. MSB: Most-significant
bit, LSB: Least-significant bit, MSA: Most-significant attribute, and LSA:
Least-significant attribute.

As will be seen in the sequel, the attribute-based large inte-

ger number representation proposed here does not suffer from

these disadvantages. This will lead to dramatic improvements

in the system performance, as will be proven in Sec. VII.

Binary addition algorithms are used in most, if not all,

low-power embedded processors as well as high-performance

servers. This is due to the simplicity of adding binary

numbers. However, the carry propagation problem plagues

binary addition and is the main factor that determines the

speed of operation of the processor ALU. The binary rip-

ple carry adder (RCA) is the simplest and slowest type of

binary adders. However, it is widely used and still serves as

the basis for comparing the performance of other addition

algorithms.

There are many types of fast binary adders that have been

proposed in the literature such as carry skip adders (CSK)

[44], [45], carry select adders (CSL) [46], [47], carry save

adders (CSA) [48], carry lookahead adders (CLA) [49], [50],

and parallel prefix adders (PPF) [51]–[56]. Many variations

and combinations on these basic binary adders have also

been proposed such as the hybrid carry lookahead/carry select

adder [57], hybrid ripple carry/hierarchical carry lookahead

type 2 adder [58] and hybrid parallel prefix/carry select and

skip adder [59].

Most of the proposed works in the area of PPF adders

focus on improving the performance of the hardware imple-

mentation in terms of delay, area, and power. Other works

reported combinations of PPF adders and basic binary

adders. A comparative analysis of PPF adders are given

in [60]–[63].

III. PROPOSED ATTRIBUTE-BASED INTEGER

REPRESENTATION

An m-bit two’s complement integer has the binary represen-

tation:

N = −am−12
m−1 +

m−2
∑

i=0

ai2
i (1)

Figure 1 shows the m-bit representation where the red box

indicates the sign bit, the blue boxes indicate the non-zero

bits, and the white boxes indicate the zero bits.

Referring to Fig. 1 and (1), we can represent N in terms of

the non-zero values of ai as:

N =

α2
∑

i=β2

2i +

α1
∑

i=β1

2i +

α0
∑

i=β0

2i (2)
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In general when we have L contiguous strings of 1’s,

the above equation becomes:

N =

αL−1
∑

i=βL−1

2i +

αL−2
∑

i=βL−2

2i + · · · +

α0
∑

i=β0

2i (3)

Our proposed integer representation is based on the above

equation. We use a short-hand notation to represent and to

store in memory the number in terms of the summation limits

indicated in (3):

N ≡ {(αL−1, βL−1), (αL−2, βL−2), . . . , (α0, β0)} (4)

We call the tuple or pair (αi, βi) the i-th attribute of the

number.

Equation (4) indicates that the number N can be repre-

sented by the set of (α,β) attributes. This list N can be stored

as an abstract data type single- or doubly-linked lists [64].

In (4), the attribute (α0, β0) is called the least-significant

attribute (LSA), as shown in Fig. 1. Similarly, the attribute

(αL−1, βL−1) is called the most-significant attribute (MSA),

as shown in Fig. 1.

Assuming our integers are represented using m-bits, each

α or β is an integer value that would require a bits where:

a =
⌈

log2 m
⌉

(5)

The following lemma proves the relationship between the

values of α and β attributes of a number.

Lemma 1: For a given number, the values of α and β must

satisfy the following inequalities

αi ≥ βi (6)
βi+1 > αi + 1, 0 ≤ i < L (7)

Proof: From (3) the least value for the upper limit of

each summation is when αi = βi. Hence we have in general

αi ≥ βi. This proves (6).

Since, there is at least one bit gap to separate any contigu-

ous string of ones, the value of βi+1 cannot equal the value

of αi. This proves (7).

The following lemma gives an upper limit to the maximum

number of attributes of an integer.

Lemma 2: The maximum number of attributes of an inte-

ger is m/2.

Proof:Assume all the attributes have the same length la:

la = α − β + 1

Assume also that the number of zeros between attributes (l0)

is equal. The number of attributes will be given by:

na =
m

la + l0

The maximum number of attributes is when la and l0 are at

their least possible values.

From Lemma 1, the least value for la = 1 and the least

value of l0 = 1. Hence maximum number of attributes is

given by:

na =
m

2

The following lemma shows how the sign of an integer

number can be inferred from its attributes representation.

Lemma 3: Given an m-bit integer with L attributes, the

sign of that integer can be inferred from the value of αL−1.

Proof: From (3), αL−1 represents the position of the

most significant 1 in the number N . When αL−1 = m− 1 we

have a negative number since the sign bit at location m − 1

is 1, according to (1). Conversely, when αL−1 < m − 1 we

have a positive number since the sign bit at location m− 1 is

zero.

The following lemma proves how to infer if a number is

even or odd based on its attributes.

Lemma 4: Given an m-bit integer with L attributes, the

number is even or odd from value of β0.

Proof: From (3), β0 represents the position of the least

significant 1 in the number N . When β0 = 0 we have an

odd number since the bit at location 0 is 1, according to (1).

Conversely, when β0 > 0 we have an even number since the

bit at location 0 is zero.

A. ATTRIBUTE REPRESENTATION OF NIST PRIMES

We illustrate in this section how the NIST primes are

expressed using the proposed attribute-based represen-

tation. NIST proposed five primes for elliptic curve

cryptography [1]:

P-192 = 2192 − 264 − 1 (8)
P-224 = 2224 − 296 + 1 (9)
P-256 = 2256 − 2224 + 2192 + 296 − 1 (10)
P-384 = 2384 − 2128 − 296 + 232 − 1 (11)
P-521 = 2521 − 1 (12)

The binary representations of these five primes are given

by:

P-192 =

191
∑

i=65

2i +

63
∑

i=0

2i (13)

P-224 =

223
∑

i=96

2i +

0
∑

i=0

2i (14)

P-256 =

255
∑

i=224

2i +

192
∑

i=192

2i +

95
∑

i=0

2i (15)

P-384 =

383
∑

i=129

2i +

127
∑

i=96

2i +

31
∑

i=0

2i (16)

P-521 =

520
∑

i=0

2i (17)

The attribute-based representations of five NIST primes are

given by:

P-192 ≡ { (191, 65), (63, 0) } (18)

P-224 ≡ { (223, 96), (0, 0) } (19)

P-256 ≡ { (255, 224), (192, 192), (95, 0) } (20)

P-384 ≡ { (383, 129), (127, 96), (31, 0) } (21)

P-521 ≡ { (520, 0) } (22)
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From the above equations, it becomes obvious that attribute-

based NIST primes representation is very concise and

requires a small number of entries compared to storing all

m bits of the prime.

B. REPRESENTATION OF THE NUMBER 0

We need to consider how to represent the integer 0 when

our number is stored as a linked list in (4). For the case of

a linked list representation, we assign the start address the

value NULL.

C. CONVERSION FROM BINARY TO ATTRIBUTE

REPRESENTATION

Unlike other number representations, converting from binary

to attribute representation is a simple process. Converting a

binary number to attribute representation requires a simple

scanning, starting from the LSB to the MSB, or vice versa,

for contiguous strings of ones. The length of each string

could vary between 1 to m. For each string the position of

the starting 1 is assigned to the β value of that string. The

end position of the last 1 is assigned to the α value of that

string.

However, the scanning process requires long time to com-

plete especially for large numbers. One option divides the

m bits into multiple zones where each zone is of length R bits.

Conversion from binary to attribute proceeds in parallel in

each zone.

The binary to attribute conversion in each zone can be

performed in a binary tree with O(log2 R) complexity.

Algorithm 1 shows the pseudo code for conversion from

an R-bit binary number to its attribute representation. The

algorithm requires k iterations where k = log2 R. In the first

iteration where k = 0 (Lines 3 – 22), each pair of binary

inputs are converted to a single attribute and the flag F will

be set to one indicating that there is an attribute generated

from the conversion. Otherwise, the value of the flag F will

be set to zero. The maximum length L is one in this level

of conversion. Next iterations where k > 0 (Lines 23 – 51),

the algorithm will iterate to combine any two attributes that

are separated with one value (α in next attribute is equal β

of first attribute + 1) and generate the required flag, set the

length, and update M for next iterations. Figure 2 shows an

example for conversion from binary to attribute representa-

tion for R-bit word size when R = 8.

D. CONVERSION FROM ATTRIBUTE REPRESENTATION

TO BINARY

Unlike other number representations, converting from

attributed representation to binary is a simple process. Con-

verting attributes of a number to its binary equivalent requires

building a m-bit string of zeros. For each (α, β) pair, a string

of ones is inserted in the binary number starting at position β

and ending at position α. This process can be done in par-

allel since there is no overlap between attributes positions.

Algorithm 2 shows the pseudo code for conversion from

attribute representation to R-bit binary number.

Algorithm 1 Pseudo Code for Conversion From an R-Bit

Binary Number to Its Attributes Representation (BI_2_ATT)

Input: N , R

Output: M , L, F

1: k ← 0 ⊲ First Level

2: { ⊲ Start of parallel code section

3: for i = 0 : 2 : R− 2 do

4: if b(i) = 1 then

5: β(k, i)← i; F(k, i)← 1; L(k, i)← 1

6: if b(i+ 1) = 1 then

7: α(k, i)← i+ 1

8: else

9: α(k, i)← i

10: end if

11: else

12: if b(i+ 1) = 1 then

13: β(k, i)← i+ 1; α(k, i)← i+ 1

14: F(k, i)← 1, L(k, i)← 1

15: else

16: β(k, i)← {}; α(k, i)← {}

17: F(k, i)← 0; L(k, i)← 0

18: end if

19: M (k, i)← {(α(k, i), β(k, i))}

20: end if

21: end for

22: } ⊲ End of parallel code section

23: for k = 1 to log2 R− 1 do ⊲ Next Levels

24: { ⊲ Start of parallel code section

25: for j = 0 : 2k+1 : R− 1 do

26: if F(k − 1, j) = 0 and F(k − 1, j+ 2) = 0 then

27: M (k + 1, j)← {}

28: F(k + 1, i)← 0; L(k + 1, i)← 0

29: else if F(k − 1, j) = 0 and F(k − 1, j + 2) = 1

then

30: M (k + 1, j)← M (k, j+ 2)

31: F(k + 1, j)← 1; L(k + 1, j)← 1

32: else if F(k − 1, j) = 1 and F(k − 1, j + 2) = 0

then

33: M (k + 1, j)← M (k, j)

34: F(k + 1, j)← 1; L(k + 1, j)← 1

35: else

36: X ← end(M (k, j)); Y ← first(M (k, j+ 2))

37: if Y .β = X .α + 1 then

38: Mtemp← {(X .β, Y .α)}

39: delete(X ,M (k, j))

40: delete(Y ,M (k, j+ 2))

41: M (k + 1, j)← M (k, j+ 2) ‖ Mtemp ‖ M (k, j)

42: F(k + 1, j)← 1

43: L(k + 1, j)← L(k, j)+ L(k, j+ 2)− 1

44: else

45: M (k + 1, j)← M (k, j+ 2) ‖ M (k, j)

46: F(k + 1, j)← 1

47: L(k + 1, j)← L(k, j)+ L(k, j+ 2)

48: end if

49: end if

50: end for } ⊲ End of parallel code section

51: end for

52: return M , L, F
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FIGURE 2. Conversion from binary to attribute representation for R-bit
word size. Case when R = 8.

Algorithm 2 Pseudo Code for Conversion From Attribute

Representation to R-Bit Binary Number (ATT_2_BI)

Input: N , L, m, R,

Output: M

1: { ⊲ Start of parallel code section

2: M (1 : m/R− 1)← 0

3: for i = 0 to R− 1 do

4: for j = 0 to L(i)− 1 do

5: M (β(j) : α(j))← 1

6: end for

7: end for

8: } ⊲ End of parallel code section

9: return M

IV. ARITHMETIC OPERATIONS USING ATTRIBUTES

Having proposed and defined the attributes for an integer,

we are able now to propose algorithms for performing finite-

field arithmetic operations using the attributes. There are

several arithmetic operations that are needed. In this paper,

we discuss the following operations:

1) Two’s complement of a number: −N

2) Number addition/subtraction: N1 ± N2

3) Number comparison: N1?N2

4) Modular addition/subtraction: N1 ± N2 mod p

5) Converting a binary number to attribute-based repre-

sentation; and vice versa

A. ATTRIBUTE TWO’S COMPLEMENT ALGORITHM

In binary representation, two’s complement is used to

accommodate negative numbers. The most-significant bit is

reserved as a sign bit. A positive number in has a zero sign bit,

whereas a negative number has a one in the sign bit. There are

two different ways to find the two’s complement of a number.

The first method first finds the one’s complement then adding

one. The second method scans for the first one from the

least-significant bit then complements all the succeeding bits.

In this paper, we will use the first method.

Algorithm 3 shows how to find one’s complement for a

number based on their attributes. The algorithm consists of

three parts. The first part (Lines 1 – 4) to find the complement

attribute before the first attribute in the numberN . The second

part (Lines 5 – 8) to find the complement for attributes in

the number N . The third part (Lines 9 – 15) to find the

complement attribute after the last attribute in the number N .

Finally, the algorithmwill return the one’s complementN ′ for

the input number N (Line 16.)

After finding the one’s complement for the number,

the next step will be adding one to the result of the first

step N ′. This step will be done by using Algorithm 4 as will

be shown in Section IV-B.

Algorithm 3 Pseudo Code to Find One’s Complement

(ONESCOMP) for a Number Based on Their Attributes

Input: N , L, m

Output: N ′

1: if βN (1) > 0 then

2: βN ′ (1)← 0

3: αN ′ (1)← βN (1)− 1

4: end if

5: for i = 2 to L − 1 do

6: βN ′ (i)← αN (i− 1)+ 1

7: αN ′ (i)← βN (i)− 1

8: end for

9: if αN (L) < m− 1 then

10: βN ′ (L)← αN (L)+ 1

11: αN ′ (L)← m− 1

12: else

13: βN ′ (L)← αN (L − 1)+ 1

14: αN ′ (L)← βN (L)− 1

15: end if

16: return N ′

B. ATTRIBUTE ADDITION/SUBTRACTION ALGORITHM

The attribute-based addition/subtraction algorithm relies on

comparing the locations of the α-β attribute pairs of both

numbers and the current input carry Cin(i). The comparison

generates two vectors, X -vector and Y -vector. X -vector for

comparing the location of current attributes and Y -vector for

comparing the location of the current attributes with the input

carryCin. The addition result will be generated based on these

two vectors. Table 1 shows the possible values for vector X

and Table 2 shows the possible values for vector Y .

The addition/subtraction algorithm proceeds by processing

the LSA of both numbers first. The operation will continue

processing the attributes until the end of the attributes in

one of the inputs. Then, one extra operation is required to

deal with the last output carry Cout(i). If the last output carry

Cout(i) = NULL, the remaining attributes in the none empty

number will be appended asMSA to the final result and hence

the final Cout will be NULL. On the other hand, if the last

output carryCout(i) 6= NULL, it will be considered as an input

carry to the next attribute. The result of this operation will be

appended along with the current Cout (if not equal NULL) as

MSAwith the remaining attributes in the none empty number.
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TABLE 1. X−Cases for addition/subtraction function.

It should be mentioned that no more operations are required

in the case of the current Cout 6= NULL since there should

be at least one bit gap between any contiguous attributes in a

number. The final Cout for the operation will be NULL.

Figure 3 shows an example for adding two numbers

N1 = 2, 066, 400 and N2 = 262, 016 by using the attribute

addition algorithm. The attributes representation for N1

and N2 are as follow

N1 ≡ {(20, 15), (10, 5)}

N2 ≡ {(17, 7)}

adding these two number requires two iterations. In the first

iteration when i = 1, the attributes n1(i) = (10, 5) and

n2(i) = (17, 7) are added. The initial input carry in this case

is Cin = NULL. As mentioned earlier, the attribute addition

starts by comparing attributes positions and generates two

vectors X -vector and Y -vector. In this iteration, since the

input carry Cin = NULL, only X -vector will be generated.

According to Table 1, the X -vector value is X = [3313]. The

addition result, using Algorithm 4, is

N ′3(1) ≡ {(10, 8), (6, 5)}

C ′out(1) ≡ {(18, 18)}

N ′3(1) is part of the final result of the addition and C
′
out(1) will

be used as input carry for the next iteration, i.e., its value will

be assigned to C ′′in(2).

In the second iteration when i = 2, there is no more

attributes in N2, so that only Y -vector will be generated.

According to Table 2, the Y -vector value is Y = [11113311].

The addition result, using Algorithm 4, is

N ′′3 (2) ≡ {(17, 15)}

C ′′out(2) ≡ {(21, 21)}

FIGURE 3. Attribute addition example.

N ′′3 (2) is part of the final result of the addition and its value

will be appended as MSA to N ′3(1). Since there are no more

attributes in both numbers, C ′′out(2) will be appended too to

the final result as MSA. The final result for the addition N3 is

as follows

N3 ≡ {(21, 21), (17, 15), (10, 8), (6, 5)}

= 2, 328, 416

The pseudo code for adding or subtracting two numbers

based on their attributes is shown in Algorithm 4. It is impor-

tant to point out here that the variables Cin and Cout are not

simple bits but represent attributes with equal values of α and

β for each of them.

Lines 2 – 8 setup the input carry Cin to the algorithm based

on the desired operation add (s = 0, Cin = NULL) or subtract

(s = 1, Cin = (0, 0)). When s = 1, the algorithm finds the

one’s complement using Algorithm 3 and replaces N2 with

the two’s complement of N2.

Lines 9 – 12 deal with the case when either of the numbers

N1 and N2 are equal to zero. The none zero number will

be assigned to N3 and the output carry Cout will be set

to NULL.

Lines 14 – 19 deal with the case when both numbers

are greater than zero. In this case, the algorithm will iterate

through attributes in both numbers, two attributes each time,
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FIGURE 4. Attribute addition and subtraction block diagram. (a) Pre-processing step to select add or add operation. (b) Block diagram for the
addition operation at iteration i .

TABLE 2. Y−Cases for addition/subtraction function.

and add them after generating X -vector and Y -vector by

using Generate_X_Cases and Generate_Y_Cases functions

respectively. The result of additionN3(i) is partial result and it

may contains more than one attribute. The attributes in N3(i)

will be appended to the final addition result. The output carry

Cout(i) will be considered as input carry for the next iteration

and its value will be assigned toCin(i+1). The algorithm will

iterate until it reaches the end of the attributes list in one of

the numbers.

If both numbers have the same number of attributes

(Lines 20 – 23), the addition operation ends upon reaching

the last attribute. If the output carry Cout(i) 6= NULL, its value

will be appended to N3 as MSA.

When the final attribute of one of the numbers is

reached (Lines 24 – 52), the last step depends on the

state of Cout(i). When Cout(i) = NULL, the remaining

attributes in one of the inputs will be appended to N3.

When Cout(i) 6= NULL, one extra addition operation is

required.

Figure 4 shows an overview of the attribute addition/

subtraction operation. Figure 4.a shows the pre-processing

step to select add or subtract operation based on the control

signal s. This figure corresponds to lines 2 – 8 in Algorithm 4.

Figure 4.b is a block diagram for the addition opera-

tion at iteration i. The addition operation is shown by

the ADD block or the ADD( ) function in Algorithm 4.

The add operation depends on the values of the X and

Y–Cases summarized in Table 1 and Table 2, respectively.

Figure 3 provided a concrete example of the operation of the

algorithm.

C. ATTRIBUTE COMPARISON ALGORITHM

In general, comparing two numbers requires determination

of their sign and magnitude. Unlike RNS, attribute-based

representation allows us to determine the sign and mag-

nitude of a number without conversion to the binary rep-

resentation. The sign of the number can be determined

according to Lemma 3. To compare the magnitudes of

the two numbers, we need to compare the MSA of both

numbers.
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Algorithm 4 Pseudo Code for Attribute Addition and

Subtraction (ADDSUB) for Signed Large Numbers Based on

Their Attributes
Input: N1, N2, L1, L2, s, m

Output: N3, L3
1: temp← 0; L3← 0; ⊲ Initialization step

2: if s = 0 then

3: Cin(0)← NULL

4: else {s = 1}

5: Cin(0)← (0, 0)

6: N ′2← ONESCOMP(N2,m);

7: N2← N ′2
8: end if

9: if L2 = 0 then

10: N3← N1; Cout← NULL; L3← L1
11: else if L1 = 0 then

12: N3← N2; Cout← NULL; L3← L2
13: else {L1 6= 0 and L2 6= 0}

14: for i = 1 to min(L1,L2) do

15: X [1 : 4]← GENERATE_X_CASES(N1(i),N2(i))

16: Y [1 : 8]←

GENERATE_Y_CASES(Cin(i− 1),N1(i),N2(i))

17: (Cout(i),N3(i), temp)←

ADD(Cin(i− 1),N1(i),N2(i),X ,Y )

18: L3← L3 + temp; Cin(i+ 1)← Cout(i)

19: end for

20: if Cout(i) 6= NULL and L1 = L2 then

21: N3← Cout(i) ‖ N3

22: L3← L3 + 1

23: end if

24: if Cout(i) 6= NULL and L1 6= L2 then

25: Cin← NULL; j← min(L1,L2)+ 1

26: if L1 > L2 then

27: X [1 : 4]←

GENERATE_X_CASES(N1(j),Cout(i))

28: Y [1 : 8]←

GENERATE_Y_CASES(Cin,N1(j),Cout(i))

29: (Cout(j),N3(j), temp)←

ADD(Cin,N1(j),Cout(i),X ,Y )

30: L3← L3 + temp;

31: if Cout(j) 6= NULL then

32: N3← N1(j+ 1 : end) ‖ Cout(j) ‖ N3

33: L3← L3 + L1 − j

34: else

35: N3← N1(j+ 1 : end) ‖ N3

36: L3← L3 + L1 − j− 1

37: end if

38: else if L1 < L2 then

39: X [1 : 4]←

GENERATE_X_CASES(N2(j),Cout(i))

40: Y [1 : 8]←

GENERATE_Y_CASES(Cin,N2(j),Cout(i))

41: (Cout(j),N3(j), temp)←

ADD(Cin,N2(j),Cout(i),X ,Y )

42: L3← L3 + temp;

Continued ◮◮◮

Algorithm 4 (Continued.) Pseudo Code for Attribute

Addition and Subtraction (ADDSUB) for Signed Large

Numbers Based on Their Attributes

43: if Cout(j) 6= NULL then

44: N3← N2(j+ 1 : end) ‖ Cout(j) ‖ N3

45: L3← L3 + L2 − j

46: else

47: N3← N2(j+ 1 : end) ‖ N3

48: L3← L3 + L2 − j− 1

49: end if

50: end if

51: end if

52: end if

53: return N3, L3

Equality E of the two numbers N1 and N2 is determined by

the equation:

E =



















1 when







L1 = L2
αN1

(i) = αN2
(i), ∀ 1 ≤ i ≤ L1

βN1
(i) = βN2

(i), ∀ 1 ≤ i ≤ L1

0 otherwise

(23)

When N1 and N2 have opposite signs we have:

N1 > N2 when αL1 < m− 1 and αL2 = m− 1 (24)

N1 < N2 when αL1 = m− 1 and αL2 < m− 1 (25)

When both N1 and N2 are positive, Algorithm 5 is used to

determine which number is greater than the other.

When both N1 and N2 are negative, Algorithm 5

can still be used to determine which number is greater

than the other provided that the L and G outputs are

exchanged.

D. ATTRIBUTE MODULAR ADDITION/SUBTRACTION

ALGORITHM

When N1 and N2 are integers in GF(p), addition and sub-

traction have to be done modulo p. Modular addition N3 =

N1 + N2 mod p and subtraction N3 = N1 − N2 mod p can

be computed as shown in Algorithm 4 with an additional step

for reduction modulo p. The pseudo code to reduce a number

modulo p shown in Algorithm 6.

Line 1 assign one to the variable s to put Algorithm 4 in

subtraction mode to subtract p when needed. Line 3 com-

pare N against p using algorithm explained in Section IV-C.

If the algorithm returns G = 1 or E = 1, reduction

modulo p is needed. The reduction will be done by using

Algorithm 4 (Line 5) and the reduced numberwill be assigned

to N ′. Otherwise, when the comparison result L = 1,

no reduction will be needed in this case and the algorithm

will assign N to N ′ (Line 7). The reduction algorithm will

iterate until the input number is reduced to a value less

than p.
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Algorithm 5 Pseudo Code for Comparing two Positive

Numbers (COMPARE) Based on Their Attributes

Input: N1, N2, L1, L2, m

Output: G,E,L

1: G← 0;E ← 0;L ← 0 ⊲ Initialization step

2: if L1 6= L2 or E = 0 then

3: i← L1; j← L2 ⊲ MSA first

4: while i > 0 and j > 0 do

5: if αN1
(i) > αN2

(j) then

6: return G← 1;E ← 0;L ← 0

7: end if

8: if αN1
(i) < αN2

(j) then

9: return G← 0;E ← 0;L ← 1

10: end if

11: if αN1
(i) = αN2

(j) then

12: if βN1
(i) > βN2

(j) then

13: return G← 0;E ← 0;L ← 1

14: end if

15: if βN1
(i) < βN2

(j) then

16: return G← 1;E ← 0;L ← 0

17: end if

18: if βN1
(i) = βN2

(j) then

19: i← i− 1, j← j− 1

20: if αN1
(i) > αN2

(j) then

21: return G← 1;E ← 0;L ← 0

22: end if

23: if αN1
(i) < αN2

(j) then

24: return G← 0;E ← 0;L ← 1

25: end if

26: if αN1
(i) = αN2

(j) then

27: if βN1
(i) > βN2

(j) then

28: return G← 0;E ← 0;L ← 1

29: end if

30: if βN1
(i) < βN2

(j) then

31: return G← 1;E ← 0;L ← 0

32: end if

33: end if

34: end if

35: end if

36: end while

37: end if

V. LARGE INTEGER ADDITION IN BINARY

REPRESENTATION

In this paper we will consider two types of binary adders,

the RCA as the baseline and one of the faster parallel prefix

adders discussed in Section V-B.

A. USING RIPPLE CARRY ADDITION TECHNIQUE

Regardless of software or hardware implementations, large

integers are stored in memory in the form of words. Addi-

tion or subtraction operations naturally operate on the words

in a sequential fashion due to the carry propagation problem.

To ensure fast operations and prevent stalls, blocks of words

must be accessed and placed in processor’s cache.

Algorithm 6 Pseudo Code to Reduce a Number Modulo p

(REDUCE): N mod p

Input: N , p, LN , Lp, m

Output: N ′

1: s← 1 ⊲ Subtraction mode

2: while N ≥ p do

3: [G,E,L] = COMPARE(N ,p,LN ,Lp,m)

4: if G = 1 or E = 1 then

5: N ′← ADDSUB(N ,p,LN ,Lp,s,m)

6: else

7: N ′← N

8: break;

9: end if

10: end while

11: return N ′

Algorithm 7 shows the pseudo code for binary addition of

m-bits large integers with machine word size is assumed to

be w.

Algorithm 7 Pseudo Code for m-Bit Binary Addition

(BIADD) for Large Integers

Input: N1, N2, w, m,

Output: N3

1: Cin← 0; Cout← 0 N3← 0 ⊲ Initialization step

2: iterations = ⌈m/w⌉

3: for i = 1 to iterations do

4: temp1← N1(1 : w)

5: temp2← N2(1 : w)

6: (Cout, temp3)← ADDWORDS(Cin, temp1, temp2)

7: N3← temp3 ‖ N3

8: Cin← Cout

9: temp1← N1(w+ 1 : end)

10: temp2← N2(w+ 1 : end)

11: end for

12: if Cout = 1 then

13: N3← Cout ‖ N3

14: end if

15: return N3

Line 2 determines the number of iterations which depends

on m and w.

Line 6 is the binary addition method or function AddWords

which takes two inputs from the input numbers N1 and N2.

Addition is done ultimately in hardware using the built-in

adder in the machine ALU.

B. USING KOGGE-STONE ADDITION TECHNIQUE

Speed of the add operation is the determining factor that

controls the speed of operation of the ALU and the pro-

cessors. The literature is full of techniques to speed up the

classic ripple carry adder. The most promising adders are

the binary prefix adders that generate the sum and carry out

bits in O(log2 m) delay. Famous among these adders are
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Sklansky adder (SA) [51], Kogge-Stone adder (KSA) [52],

Ladner-Fischer adder (LFA) [53] Brent-Kung adder (BKA)

[55], and Huan-Carlsson adder (HCA) [56].

Among those adders, Kogge-Stone adder is considered

optimal in the sense of its high speed due to its low gate fanout

and regular interconnect among the modules. The algorithm

for adding two m-bit integers using Kogge-Stone adder is

similar to Algorithm 7 except that the function AddWords in

Line 6 is now replaced with a w-bit KSA add function whose

pseudo code is shown in Algorithm 8.

KSA performs the addition operation in three stages. The

first stage is a pre-processing stage. This stage involves par-

allel computation of propagate P and generate G signals for

each pair of bits in augend N1 and addend N2 as indicated by

Lines 2 – 7 in Algorithm 8. In the second stage, also known as

prefix tree, carry propagation is computed in log2 w iteration

where w is the word size. Each iteration uses P and G from

previous iteration to compute the currents ones. The computa-

tion in each iteration is parallel and only w− k computations

are needed where 1 ≤ k ≤ 2j−1 and 2 ≤ j ≤ log2 w + 1.

In the case where P and G are not computed, the value from

the previous iteration will be passed to the current iteration.

Lines 8 – 19 in Algorithm 8 show the computation in this

stage. The last stage is post-processing stage. This stage

involves parallel computation of the sum N3 and the output

carry Cout as indicated by Lines 20 – 29 in Algorithm 8.

VI. LARGE INTEGER ADDITION IN RNS REPRESENTATION

The RNS is defined in terms of a pairwise relatively prime

moduli set B = {b1, b2, . . . , bL} where B is called base and

L is the number of elements in the base (base size). The

elements of the set are required to satisfy GCD(bi, bj) = 1

for i 6= j.

An integer X can be represented as X = {x1, x2, . . . , xL}

where

xi = X mod bi = |X |bi , 0 ≤ xi < bi (26)

Such a representation is unique for any integer X in the range

0 ≤ X < R− 1, where R is the dynamic range of the moduli

set B and is given by

R =

L
∏

i=1

bi (27)

Various moduli sets have been proposed for RNS. However,

the 3n-bits dynamic range moduli set {2n − 1, 2n, 2n + 1} is

widely used RNS moduli set because of its simple and will-

formed balanced moduli [65].

Assuming two integers X and Y in RNS representation

i.e., X = {x1, x2, . . . , xL} and Y = {y1, y2, . . . , yL}. The

operation ◦ ∈ {+,−, ∗} can be performed in parallel as

follows:

X ◦ Y = {|x1 ◦ y1|b1 , |x2 ◦ y2|b2 , . . . , |xL ◦ yL |bn} (28)

Equation (28) implies that computations in RNS are per-

formed independently without carry propagation.

Algorithm 8 Pseudo Code for w-Bit Binary Kogge-Stone

Addition (BIADDKSA) for Large Integers

Input: N1, N2, Cin, w

Output: N3, Cout

1: Cout← 0; N3← 0 ⊲ Initialization step

2: { ⊲ Start of parallel code section

3: for i = 1 to w do

4: P(1, i+ 1)← N1(i)xorN2(i)

5: G(1, i+ 1)← N1(i)andN2(i)

6: end for

7: } ⊲ End of parallel code section

8: k ← 1

9: for j = 2 to log2 w+ 1 do

10: { ⊲ Start of parallel code section

11: for i = 2+ k to w+ 1 do

12: P(j, i)← P(j− 1, i)andP(j− 1, i− k)

13: G(j, i)← P(j−1, i)andG(j−1, i−k) or G(j−1, i)

14: end for

15: } ⊲ End of parallel code section

16: k ← 2j−1

17: end for

18: Cout(1)← Cin

19: { ⊲ Start of parallel code section

20: for i = 2 to w+ 1 do

21: Cout(i)← CinandP(w+ 1, i) or G(w+ 1, i)

22: N3(i− 1)← Cout(i− 1)xorP(1, i)

23: end for

24: } ⊲ End of parallel code section

25: return N3, Cout

Performing arithmetic operations with RNS representation

requires conversion from/to binary representations. These

conversions introduce an extra overhead on the arithmetic

operations. Conversion from binary to RNS representation is

a simple process and can be efficiently realized using multi

operand modular adders [66].

On the other hand, conversion from RNS to binary rep-

resentation is a more expensive process and complex to

realize [67]. There are several methods proposed for the con-

version process from RNS to binary representation such as

the Chinese Remainder Theorem (CRT), Mixed-Radix Con-

version (MRC) [68], or new Chinese Remainder Theorem

(CRT I, CRT II, and CRT III) [69].

The binary equivalentX of a number in RSN representation

{x1, x2, . . . , xL} by using CRT method is computed by

X =

(

L
∑

i=1

xi (r
−1
i mod bi) ri

)

mod R (29)

where ri = R/bi and r
−1
i mod bi is themultiplicative inverse

of ri mod bi i.e., ri × r
−1
i = 1 mod bi [4].

Algorithm 9 shows the pseudo code for RNS addition of

m-bits large integers.

Lines 2 – 6 to convertN1 andN2 from binary representation

to their RNS equivalent also called ‘‘forward conversion.’’
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Algorithm 9 Pseudo Code for RNS Addition (RNSADD) for

Large Integers

Input: N1, N2, m, w

Output: N3

1: Cin← 0

2: B← {b1, . . . , bL} = {2
n + 1, 2n, 2n − 1}

3: n← ⌈m/L⌉ where L = size(B)

4: R←
∏L

i=1 bi
5: N ′1← {n1(1), . . . , n1(L)}

where n1(i) = N1 mod bi, 0 ≤ n1(i) < bi
6: N ′2← {n2(1), . . . , n2(L)}

where n2(i) = N2 mod bi, 0 ≤ n2(i) < bi
7: { ⊲ Start of parallel code section

8: for i = 1 to L do

9: (Cout,N
′
3)← BIADD(Cin,N

′
1,N

′
2,w, n)

where N ′3 = {n3(1), . . . , n3(L)}

10: end for

11: } ⊲ End of parallel code section

12: ri← R/bi

13: N3←
(

∑L
i=1 n3(i) (r

−1
i mod bi) ri

)

mod R

14: return N3

Lines 7 – 11 to perform the parallel addition operation by

using Algorithm 7 where L is the number of elements in the

moduli set B and w is the word size to be used in the binary

adder.

Lines 12 – 13 to convert N1 and N2 from RNS represen-

tation to their binary equivalent by using CRT method also

called ‘‘reverse conversion.’’

VII. NUMERICAL SIMULATIONS AND SOFTWARE

IMPLEMENTATIONS

A. EXPERIMENTAL SETUP

The addition algorithms discussed in Sections IV – VI

have been verified through numerical simulations and soft-

ware implementations using MATLAB version R2018b

64-bit. All simulations were conducted onMacBook Pro with

2.5 GHz Intel Core i7, 16 GBRAM, and running with macOS

version 10.14.

Randomly generated integers in the range [0, 2m−1] were

used as the inputs to the algorithms. The values of m were

chosen in the range 27 ≤ m ≤ 215 which correspond to

integers with number of bits between 128 to 32,768 bits.

For the simulations, the word size w for the addition algo-

rithms was chosen in the range 4 ≤ w ≤ 128.

B. ESTIMATING THE DELAY OF ADDITION OPERATION

The delays for the addition operation using the three number

representations were measured using the timing functions

provided in MATLAB.

Attribute-based addition was implemented using

Algorithm 4. It should be pointed out here that conversion to

and from binary format is not required to implement modular

addition/subtraction operations in this representation. This is

due to the fact that the comparison operation can be done

directly on numbers in the attribute representation according

to Algorithm 5.

Binary addition was implemented using Algorithm 7 for

RCA binary addition and Algorithm 8 for KSA binary addi-

tion. Of course no conversion is necessary here to implement

modular addition since the comparison operation is already

performed on numbers in binary format.

RNS addition was implemented using Algorithm 9.

It should be mentioned that the delay for the RNS adder

included the delays associated with the forward and the

reverse conversion operations in addition to the parallel addi-

tion time. Conversion to and from binary to RNS represen-

tations is required in RNS addition to be able to perform

the modular addition operation, which requires comparison

operation after the RNS add step.

In order to verify the simulation results we perform a

complexity analysis of the three addition algorithms to see

the effects of m and w on the adder delay.

In this work we normalize all adder delays relative to

the delay of the w-bit binary RCA adder. Based on that,

the normalized delay of the binary RCA adder is estimated

as the number of iterations needed

τ (Binary-RCA) =
⌈m

w

⌉

(30)

The complexity of the normalized binary KSA adder delay is

estimated as

τ (Binary-KSA) =
2+ log2 w

w

⌈m

w

⌉

(31)

The complexity of the normalized RNS adder delay is esti-

mated as

τ (RNS) =
⌈ m

3w

⌉

+ Tf + Tr (32)

where a three moduli set was assumed and the second term on

the RHS represents the normalized conversion delay between

RNS and binary representations. Tf is the forward RNS con-

version from binary to RNS domain. This delay is essentially

a modular reduction step. Tr is the reverse conversion from

RNS domain to the binary domain. This delay is the CRT and

can be estimated from (29).

The complexity of the normalized attribute adder delay is

estimated as

τ (Attribute) =

⌈

log2 m

w

⌉

(33)

Based on (30), we expect to see a gradual increase in the

delay of the binary RCA adder as m increases and the rate

of increase gets smaller as w increases.

Based on (31), we expect to see a gradual increase in the

delay of the binary KSA adder as m increases and the rate of

increase gets smaller as w increases.

Based on (32), we expect similar behavior as the binary

adder but the entire delay curve is shifted up by the nor-

malized conversion delays Tf and Tr . Furthermore, these

conversion delays might prove a significant factor.
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TABLE 3. Speedup of attribute addition relative to RCA binary addition.

Based on (33), we expect the adder delay to be much

smaller than the binary or RNS adders due to the logarithmic

term. This effect will becomemore pronounced for increasing

values of m.

C. SIMULATION RESULTS

Comparison between binary, attribute-based and RNS addi-

tions was based on comparing the speedup of the attribute-

based adder to the other two number formats. Speedup is

defined as

Sa−b =
τ (binary)

τ (attribute)

Sa−r =
τ (RNS)

τ (attribute)

Table 3 shows the speedup Sa−b for the different values of

m and w and the binary addition is based on RCA addition.

Attribute addition outperforms binary addition for values of

m ≥ 2, 048 bits regardless of the values of w. For m in the

range 128 ≤ m < 2, 048 bits, as m increases attribute addi-

tion outperforms binary addition for wider range of w. For

all values of m < 128, binary addition outperforms attribute

addition. Using these values ofm in security applications will

not provide adequate secure levels.

Internet of things (IoT) devices are characterized by limited

computational resources. This translates to machine word

sizes between 4 ≤ w ≤ 16 bits. Secure IoT devices require

high values of m, which demands more from an already

limited resource. Table 3 clearly shows the advantage of using

attribute-based addition since significantly higher speedup

factors translate to shorter computation delays and signifi-

cantly reduced power consumption. Both these advantages

point out the practicality of using attribute-based large integer

representations for securing IoT devices.

To meet the challenge of quantum-safe key exchange

and encryption, key sizes should exceed 521 bits and more

advanced security protocols are used such as SIDH [70].

Table 3 indicates that attribute-based arithmetic has the clear

advantage over RCA binary arithmetic. The speedup fig-

ures translate directly to reduced computation times and

energy consumption.

TABLE 4. Speedup of attribute addition relative to binary-kogge stone
addition.

Table 4 shows the speedup Sa−b relative to KSA binary

addition for different values of m and w. Attribute addition

outperforms binary KSA addition for values of m ≥ 32, 786

bits regardless of the value of w. For m in the range 2, 048 ≤

m ≤ 8, 192 bits, as m increases attribute addition outperforms

binary KSA addition for wider range of w. We should point

out that the attribute addition algorithm considered here is

a sequential algorithm that scans the list of attributes with-

out any attempt at parallelization. Further speedup could be

expected when a parallel attribute addition algorithm is devel-

oped. Higher values of m is needed to counter the threats of

quantum computing attacks. In such situations, our attribute-

based addition has the advantage even over KSA binary addi-

tion. Finally, in most IoT and personal computing devices,

the embedded processors have small value of w = 8. In these

situations, our attribute-based adders have the clear advantage

over all other types of adders.

Table 5 shows the speedup Sa−r for different values of m

and w when including the delays of converting RNS from/to

binary representation. The table clearly shows that attributed

addition outperforms RNS addition for all chosen values of

m and w. Furthermore, these advantages are retained when

meeting the challenges of post quantum computing when key

sizes increase.

For completeness, Table 6 shows the speedup Sa−r for

different values of m and w without including the delays

of converting RNS from/to binary representation. The table

clearly shows that attributed addition outperforms RNS addi-

tion for values of m ≥ 8, 192 (bits) regardless of the values

of w. When m = 2, 048 (bits), attribute addition achieved

better performance than RNS addition for values of w within

range 4 ≤ w ≤ 16. For all values of m < 2, 048 (bits)

RNS addition outperforms attribute addition. This is not a

practical advantage however, since RNS addition cannot be

used without conversion from/to binary representation for

modular addition operation.

Figure 5.a shows adder delay vs. m for the binary RCA,

binary KSA, attribute and RNS adders. RNS delay is shown
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TABLE 5. Speedup of attribute addition relative to RNS addition with
conversions delays.

TABLE 6. Speedup of attribute addition relative to RNS addition without
conversions delays.

with and without conversion to and from binary representa-

tion. The machine word size in this case was assumed to be

w = 4 bits.

The red curve with square markers represents the delay

of the binary RCA adder. As expected, the binary RCA

adder delay increases as the field size m increases due to the

increase in the number of iterations required to complete the

addition operation according to (30).

The purple curve with right-pointing triangle markers rep-

resents the delay for the binary KSA adder. As expected,

the binary KSA adder achieved better performance than the

binary RCA adder and its delay increases as the field size

m increases due to the increase in the number of iterations

required to complete the addition operation according to (31).

The green curve with triangle markers shows the delay of

the RNS adder with forward and reverse conversions opera-

tions. The RNS adder delay shows small dependence on m.

Further numerical investigations confirmed that RNS con-

version from/to binary representation dominated the actual

addition delay. It was also found out that the conversion delay

varies very little with the values of m.

The orange curve with diamond markers shows the delay

for the RNS adder without forward and reverse conversions

operations. As expected, the RNS adder delay increases

with m. This is due to the increase in the size of the moduli,

which increases the delay of addition in each modulus. How-

ever, using RNS adder without conversions operations is not

a realistic situation for modular operations and is provided

here for the sole purpose of comparison.

The blue curve with circle markers represents the delay of

the attribute adder. The delay increases for small values of

m < 512 bits, and then shows small dependence on m for

m ≥ 512 bits.

The attribute adder achieved better performance than both

binary adder and RNS adders with conversions operations

delays for all values of m. The attribute adder also achieved

better performance than RNS adder without conversions

operations for m ≥ 1, 230 bits.

Figure 5.b shows the performance for all adders with word

size w = 8 bits. The attribute adder outperform binary RCA

and RNS adder with conversions operations delays for all val-

ues of m. The attribute adder outperform RNS adder without

conversions operations delays for values of m ≥ 1, 580 bits.

Also, achieved better performance than binary KSA adder for

values of m ≥ 512 bits.

Figure 5.c shows the performance for all adders with

word size w = 16 bits. The attribute adder out-

perform binary RCA and RNS adder with conversions

operations delays for all values of m. The attribute adder

outperformRNS adder without conversions operations delays

for values of m ≥ 1, 390 bits. Also, achieved bet-

ter performance than binary KSA adder for values of

m ≥ 750 bits.

Figure 5.d shows the performance for all adders with

word size w = 32 bits. The attribute adder outperform

RNS adder with conversions operations delays for all values

of m. The attribute adder outperform RNS adder without

conversions operations delays for values of m ≥ 2, 360 bits.

Also, achieved better performance than binary RCA adder for

values of m ≥ 326 bits and better performance than binary

KSA adder for values of m ≥ 2, 048 bits.

Figure 5.e shows the performance for all adders with

word size w = 64 bits. The attribute adder outperform

RNS adder with conversions operations delays for all values

of m. The attribute adder outperform RNS adder without

conversions operations delays for values of m ≥ 3, 500 bits.

Also, achieved better performance than binary RCA adder for

values of m ≥ 500 bits and better performance than binary

KSA adder for values of m ≥ 3, 300 bits.

Figure 5.f shows the performance for all adders with word

size w = 128 bits. The attribute adder outperform RNS

adder with conversions operations delays for all values of

m. The attribute adder outperform RNS adder without con-

versions operations delays for values of m ≥ 4, 600 bits.

Also, achieved better performance than binary RCA adder for

values of m ≥ 682 bits and better performance than binary

KSA adder for values of m ≥ 8, 192 bits.
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FIGURE 5. Addition delays for m bits field size with: (a) word size w = 4 bits, (b) word size w = 8 bits, (c) word size w = 16 bits, (d) word size
w = 32 bits, (e) word size w = 64 bits, and (f) word size w = 128 bits.

VIII. CONCLUSIONS

In this paper, we proposed a new representation for large

integers based on their attributes of contiguous ones in their

binary representation. We developed algorithms to perform

several arithmetic operations based on the new representation

such as: two’s complement, addition/subtraction, compari-

son, sign detection, modular addition/subtraction and con-

version from binary to attributed-based representation and

vice versa. Extensive numerical and software simulations

were performed that proved the advantages of our proposed

representation in terms of speed over other types of adders

including RNS and parallel prefix adders.

There is room for improving our proposed attribute-based

addition algorithm in terms of parallelization and develop-

ing a hybrid integer representation to include positional and

attribute representations. A potential drawback of our pro-

posed number representation is that the attribute representa-

tion depends on the number of attributes, which varies widely
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between one and m/2. This leads to highly unpredictable

estimation of the adder delay or hardware/software imple-

mentations. On the other hand, most cryptographic applica-

tions use special primes that happen to have a very small

number of attributes between 1 to 5 only. This will produce

predictable and very fast modular arithmetic that use our

proposed attribute-based representation.
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