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Abstract

In this paper a novel Polar Scan Matching (PSM) approach is described that

works in the laser scanner’s polar coordinate system, therefore taking advantage of

the structure of the laser measurements and eliminates the need for an expensive

search for corresponding points in other scan match approaches. PSM belongs to

the family of point to point scan matching approaches with its matching bearing

association rule. The performance of PSM is thoroughly evaluated in a simulated

experiment, in experiments using ground truth, in experiments aimed at determin-

ing the area of convergence and in a SLAM experiment. All results are compared

to results obtained using an iterated closest point (ICP) scan matching algorithm

implementation. It is found that PSM is superior to the ICP implementation in

processing speed and that PSM converges to a correct solution from a larger range

of initial positions.
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1 Introduction

Localization and map making is an important function of mobile robots. One possible

way to assist with this functionality is to use laser scan matching. A 2D laser scan is a

set of range measurements with constant angle increment taken in a horizontal plane.

In laser scan matching, the position and orientation or poseof the current scan is sought

with respect to a reference laser scan by adjusting the pose of the current scan until the

best overlap with the reference scan is achieved. In the literature there are methods for

2D and 3D scan matching. This paper restricts discussion to 2D laser scan matching.

Scan matching approaches can be local[Lu and Milios, 1997] or global[Tomono,

2004]. When performing local scan matching, two scans are matchedwhile starting

from an initial pose estimate. When performing global scan matching the current scan

is aligned with respect to a map or a database of scans withoutthe need to supply an

initial pose estimate. Scan matching approaches also can becategorized based on their

association method such as feature to feature, point to feature and point to point. In fea-

ture to feature matching approaches, features such as line segments[Gutmann, 2000],

corners or range extrema[Lingemannet al., 2004] are extracted from laser scans, and

then matched. Such approaches interpret laser scans and require the presence of chosen

features in the environment. In point to feature approaches, such as one of the earliest

by Cox[1991], the points of a scan are matched to features such as lines. The line fea-

tures can be part of a predefined map. Features can be more abstract as in[Biber and

Straßer, 2003], where features are Gaussian distributions with their meanand variance

calculated from scan points falling into cells of a grid. Point to point matching ap-

proaches such as the approach presented in this paper, do notrequire the environment

to be structured or contain predefined features.

Examples of point to point matching approaches are the following: iterative clos-

est point (ICP), iterative matching range point (IMRP) and the popular iterative dual

correspondence (IDC). Besl and Mac Kay[1992] proposed ICP, where for each point

of the current scan, the point with the smallest Euclidean distance in the reference scan

is selected. IMPR was proposed by Lu and Milios[1997], where corresponding points
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are selected by choosing a point which has the matching rangefrom the center of the

reference scan’s coordinate system. IDC, also proposed by Lu and Milios[1997] com-

bines ICP and IMRP by using the ICP to calculate translation and IMPR to calculate

rotation. The mentioned point to point methods can find the correct pose of the cur-

rent scan in one step provided the correct associations are chosen. Since the correct

associations are unknown, several iterations are performed. Matching may not always

converge to the correct pose, since they can get stuck in a local minima. Due to the

applied association rules, matching points have to be searched across 2 scans, resulting

in O(n2) complexity. If the search for corresponding points is reduced to a window

with a constant angle, the computational complexity isO(kn), wheren is the number

of scan points andk is proportional to the number of range readings per unit angle i.e.

to the angular resolution of the scan.k is introduced to differentiate between increas-

ing the number of scan points by increasing the field of view orthe angular resolution

of the laser range finder. However, it has been demonstrated[Nishino and Ikeuchi,

2002] that by using k-d trees one can expect to reduce the computational complexity of

the correspondence search toO(nlog(n)) (O(n2) in the worst case). The mentioned

approaches operate in a Cartesian coordinate frame and therefore do not take advan-

tage of the native polar coordinate system of a laser scan. However as shown later

in this paper, a scan matching algorithm working in the polarcoordinate system of a

laser scanner can eliminate the search for corresponding points thereby achievingO(n)

computational complexity for translation estimation.O(n) computational complexity

is achievable for orientation estimation if a limited orientation estimation accuracy is

acceptable.

These point to point matching algorithms apply a so called projection filter[Gut-

mann, 2000] prior to matching. The objective of this filter is to remove those points

from the reference and current scan not likely to have a corresponding point. The

computational complexity of this filter isO(n2).

In recent years there have been a number of new point to point scan matching ap-

proaches. Minguez et al.[2006] have proposed a new distance metric used for selecting

point associations and the calculation of the current scan pose. This metric promises
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to take rotation and translation better into considerationthan the Euclidean (distance

between points) distance metric of ICP. However, further work is necessary to choose

an ad-hoc parameter combining translation and orientationdifference in the proposed

metric. Jensen and Siegwart[2004] and Montesano et al.[2005b] propose utilizing in

their scan matching approaches the uncertainty in the lasermeasurements and in a prior

pose estimate, during association search and pose estimation. However, the source of

the prior pose estimate is often odometry for mobile robots.Unless the odometry pa-

rameters of a mobile robot are perfectly calibrated for all the surfaces the robot moves

on, there will always be systematic errors in the odometry pose estimate which will

bias the scan matching results. Further, if such a scan matching approach is used in

EKF SLAM, one needs to estimate the correlation between the predicted pose and the

measurement (i.e. the scan matching result) since they willnot be independent. In

other scan matching approaches the effects of odometry error are more limited since

the pose estimate from odometry is often used only for initializing the matching, or not

used at all. All of the mentioned recent approaches need to search for associations, and

they are more complex than the simple polar scan matching approach proposed in this

paper.

There are other scan matching approaches such as the method of Weiss and Put-

tkamer[1995]. Here for both reference and current scans, an angle-histogram of the

orientation of line segments connecting consecutive points is generated. The orienta-

tion of the current scan with respect to the reference scan isobtained by finding the

phase with the maximum cross correlation of the 2 angle histograms. The translation is

found similarly by calculating x and y histograms, and calculating cross correlations. In

scan matching, not all approaches use only that informationin a scan, which describes

where objects are located. Thrun et al.[2000] in their scan matching method utilize the

idea, that free space in a scan is unlikely to be occupied in future scans. Surprisingly,

Hough transform can also be used in scan matching as demonstrated in[Censiet al.,

2005; Censi, 2006].

Mapping with scan matching has been done for example by minimizing an energy

function[Lu, 1995], using a combination of maximum likelihood with posterior esti-
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mation[Thrunet al., 2000], using local registration and global correlation[Gutmann,

2000] and using FastSLAM[Hähnelet al., 2003]. A Kalman filter implementation can

be found in[Bosseet al., 2004].

Laser scan matching approaches can not only be applied to laser scans but to mea-

surements from an omnidirectional camera as well. In[Menegattiet al., 2006], images

of the floor are searched for color transitions to obtain range measurements which are

matched to a prior map using Monte Carlo localization.

In this paper the Polar Scan Matching (PSM) approach is described which works

in the laser scanner’s polar coordinate system, therefore taking advantage of the struc-

ture of the laser measurements by eliminating the search forcorresponding points. It

is assumed that in the 2D laser measurements range readings are ordered by their bear-

ings. Laser range measurements of current and reference scans are associated with

each other using the matching bearing rule, which makes translation estimation of the

PSM approachO(n) complexity unlike IDC’sO(n2) (or O(kn) if the search window

is limited to a constant angle). The orientation estimation’s computational complexity

is O(n) if limited accuracy is acceptable, otherwiseO(kn). An O(mn) complexity

scan projection algorithm working in polar coordinates is also described in this paper.

The variablem is defined as one more than the maximum number of objects occluding

each other in the current scan viewed from the reference scan’s pose. However this

projection filter is ofO(n) complexity if no occlusions occur in the scan, therefore

being more efficient than that of[Gutmann, 2000].

The rest of the paper is organized as follows; first scan preprocessing steps, fol-

lowed by the PSM algorithm is described. Details of experimental results follow that

include simulation, ground truth measurements and an implementation of SLAM. Fi-

nally conclusions and future work are presented.

The source code of PSM can be downloaded from www.irrc.monash.edu.au/adiosi.
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2 Scan Matching

The laser scan matching method described in this section aligns the current scan with

respect to the reference scan so that the sum of square range residuals is minimized.

It is assumed that an initial pose of the current scan is given, expressed in the coordi-

nate frame of the reference scan. Equations for the transformation of the current frame

expressed in the world frame into the reference frame can be found in[Diosi and Klee-

man, 2005]. The coordinate frame of a laser scan is centered at the pointof rotation of

the mirror of a laser scanner. The X axis or zero angle of the laser’s Cartesian coordi-

nate system coincides with the direction of the first reported range measurement. The

current scan is described asC = (xc, yc, θc, {rci, φci}
n
i=1), wherexc, yc, θc describe

position and orientation,{rci, φci}
n
i=1 describen range measurementsrci at bearings

φci, expressed in the current scan’s coordinate system.{rci, φci}
n
i=1 are ordered by

the bearings in ascending order as they are received from a SICK laser scanner. The

reference scan is described asR = {rri, φri}
n
i=1. If bearings where range measure-

ments are taken are unchanged in current and reference scansthenφri = φci. The scan

matching works as follows (see fig. 1): after preprocessing the scans, scan projection

followed by a translation estimation or orientation estimation are iterated. In the polar

scan matching (PSM) of this paper, one orientation step is followed by one translation

step. More details on these steps are given in the following subsections.

2.1 Scan Preprocessing

Preprocessing the current and the reference scans prior to matching helps to remove

erroneous measurements, clutter or to group measurements of the same object to in-

crease the accuracy and robustness of scan matching. In fig. 2a laser scan is depicted

in a Cartesian coordinate system. Corresponding raw range measurements are shown

in fig. 3. Laser scans can have points which are not suitable for matching. Such points

are:

• Points representing moving objects such as the legs of a person in fig. 2. Table

and chair legs are such points as well, since they are less likely to be static in the
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Figure 1: Scan matching algorithm.

Figure 2: Laser scan in a Cartesian coordinate frame. Grid is1m.
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Figure 3: Scan of fig. 2 in the laser’s polar coordinate frame.Horizontal grid size is
10◦, vertical grid size is 1m.

long term.

• Mixed pixels. At range discontinuities laser scanners often generate measure-

ments which are located in the free space between two objects[Ye and Boren-

stein, 2002].

• Measurements with maximum range. Such readings are returned, when there is

no object within the range of the scanner. Some surfaces (forexample clean clear

glass) do not illuminate well and show a laser spot, therefore they can appear as

measurements with maximum range.

In the implemented scan preprocessing first a median filter isused to replace out-

liers with suitable measurements as in[Gutmann, 2000]. With the application of a

median filter to the range readings, objects such as chair andtable legs are likely to be

removed. The window size PMMEDIAN WINDOW is chosen based on the number

of neighboring outliers one aims to replace. For example in[Gutmann, 2000], a win-

dow size of 5 for the median filter was found satisfactory since it can replace at most 2

neighborings outliers. This means, that chair or table legsare not removed by the scans

if they are represented by more than 2 points.

After the application of a median filter all points further than a threshold PMMAX RANGE

are tagged. These tagged points are used only in segmentation described next and not

in scan matching. Range measurements larger than PMMAX RANGE are not used
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Figure 4: Only a proximity threshold for object segmentation is not enough because
there can be large distances between points on walls nearly parallel with the laser
beams.

in the scan matching because the distance between such measurements is large, which

makes it hard to decide if they belong to the same object or not. Interpolating between

two neighboring points belonging to 2 different objects canbe a source of error. Artifi-

cially restricting the range of the sensor may introduce difficulties in large rooms with

a lot of open space.

The choice of PMMAX RANGE depends on the maximum range and angular

resolution of the sensor and on how scans are segmented. For example if neighboring

points are sampled at1◦ resolution and objects separated by 20cm are considered dis-

tinct, then there is no reason to use a range reading larger than 10m since the points are

separated by at least 17cm.

The tagging of long range measurements is followed by the segmentation of the

scan. Segmenting range measurements can have two advantages. The first advantage

is that interpolation between 2 separate objects can be avoided if one knows that the

objects are separate. Such interpolation is useful when onewants to know how a scan

would look from a different location (scan projection). Thesecond advantage is that if

laser scans are segmented and the segments are tracked in consecutive scans then cer-

tain types of moving objects can be identified. Tracking moving objects as performed

for example in[Montesanoet al., 2005a] can make scan matching more robust. How-

ever, motion tracking constitutes future work and is beyondthe scope of this paper.

Two criteria are used in the segmentation process. According to the first criterion, a

range reading, not differing more than PMMAX DIFF from the previous range read-

ing, belongs to the same segment. This criterion fails to correctly segment out points

which are for example on a wall oriented nearly parallel withthe laser beams falling
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Figure 5: a) projection of measured points taken at C to location R. b) points projected
to R shown in polar coordinates. Dashed lines represent bearings which the scanner
would have sampled. c) Sampled visible points shown as blackdots, sampled occluded
points shown as “x”.

on it (see fig. 4). Therefore a second criterion is also applied according to which if 3

consecutive range readings lie approximately on the same line in the laser’s polar coor-

dinate system, then they belong to the same segment. A mixed pixel can only connect

two objects if the distance between the first object and the mixed pixel and the second

object and the mixed pixel is less than PMMAX DIFF. Tagged range readings break

segments as well.

Segments are assigned unique ID numbers, except 0, which is assigned to segments

consisting of only one point. Segments assigned 0 are tagged, therefore they are not

used in the scan matching process. Most of the mixed pixels get assigned 0.

The preprocessing steps are ofO(n) complexity. The values of the introduced

constants are shown in section 3.

2.2 Scan Projection

An important step in scan matching is finding out how the current scan would look if it

were taken from the reference position. For example in fig. 5,the current scan is taken

at location C and the reference scan is taken at position R. The range and bearings of

the points from point R (see fig. 5b) are calculated:
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r
′

ci =
p

(rci cos(θc + φci) + xc)2 + (rci sin(θc + φci) + yc)2 (1)

φ
′

ci = atan2(rci sin(θc + φci) + yc, rci cos(θc + φci) + xc) (2)

whereatan2 is the four quadrant version ofarctan.

In fig. 5b the dashed vertical lines represent sampling bearings (φri) of the laser

at position R in fig. 5a. Since the association rule is to matchbearings of points, next

rangesr′′ci at the reference scan bearingsφri are calculated using interpolation. The

aim is to estimate what the laser scanner would measure from pose R. This resampling

step consists of checking(r′ci, φ
′

ci) (i.e. 1,2,..10 in fig. 5b) of each segment if there are

one or more sample bearings between 2 consecutive points (i.e. between 1 and 2 there

is one, between 6 and 7 there are 2). By linear interpolation arange value is calculated

for each sample bearing. If a range value is smaller than an already stored range value

at the same bearing, then the stored range is overwritten with the new one to handle

occlusion. As in[Lu and Milios, 1997] a new range value is tagged as invisible if the

bearings of the 2 segment points are in decreasing order. Theresult of scan projection

is shown in fig. 5c.

A pseudo code implementation of the described scan projection is shown in fig. 6.

Unlike the equations in this paper, the indexes of vector elements in fig. 6 start from 0.

The pseudo code on lines 00-07 transforms the current scan readings(φi, rci) into the

reference scan’s coordinate frame using the current frame pose(xc, yc, θc) expressed

in the reference frame. Since the projected current scan(φ′

ci, r
′

ci) is resampled next

at the sample bearingsφi of the reference scan, the data structures associated with

the resampled current scan are also initialized. Status registerstagged′′ci contain flags

describing if resampled range readingsr′′ci have been tagged or if they contain a range

reading. All flags of the status registers are cleared exceptthe flag PMEMPTY which

indicates that no range reading has been resampled into the particular position of the

range arrayr′′c . Resampled current scan range readingsr′′ci are initialized to a value

which is larger than the maximum range of the laser scanner.

11



/**************Scan Projection********************/
00 //Transform current measurements into reference frame
01 for i = 0 → numberof points-1do
02 x = rci cos(θc + φi) + xc

03 y = rci sin(θc + φi) + yc

04 r′ci =
√

x2 + y2

05 φ′

ci = atan2(y, x)
06 tagged′′ci = PM EMPTY
07 r′′ci = LARGE V ALUE
08 //Given the projected measurements (r′ci, φ

′

ci), calculate what would
09 //have been measured with the laser scanner at the reference pose.
10 for i = 1 → numberof points-1do
11 if segmentci 6= 0 & segmentci = segmentci−1

12 !taggedci & !taggedci−1 & φ′

ci > 0 & φ′

ci−1 ≥ 0 then
13 if φ′

ci > φ′

ci−1 then //Is it visible?
14 occluded = false
15 a0 = φ′

ci−1

16 a1 = φ′

ci

17 j0 = ceil(φ′

ci−1/angularresolution)
18 j1 = floor(φ′

ci/angularresolution)
19 r0 = r′ci−1

20 r1 = r′ci

21 else
22 occluded = true
23 a0 = φ′

ci

24 a1 = φ′

ci−1

25 j0 = ceil(φ′

ci/angularresolution)
26 j1 = floor(φ′

ci−1/angularresolution)
27 r0 = r′ci

28 r1 = r′ci−1

29 while j0 ≤ j1 do
30 r = r1−r0

a1−a0 (j0 angularresolution− a0) + r0

31 if j0 ≥ 0 & j0 < numberof points& r′′cj0
> r then

32 r′′cj0
= r

33 tagged′′cj0
& =∼ PM EMPTY

34 if occludedthen
35 tagged′′cj0

| = PM OCCLUDED
36 else
37 tagged′′cj0

& =∼ PM OCCLUDED
38 j0 = j0 + 1

Figure 6: Scan projection pseudo code.
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current scan

reference scan

Figure 7: Example for the worst case scenario for scan projection.

The resampling of the projected current scan readings(φ′

ci, r
′

ci) takes place on lines

10-38 in a loop which goes through neighboring pairs of(φ′

ci, r
′

ci). Pairs of measure-

ments are only resampled if they belong to the same segment (i.e. share the same ID)

and none of them are tagged (lines 11-12). Next, on lines 13-28 the measurement pair

is checked if it is viewed from behind by testing ifφ′

ci > φ′

ci−1. Then depending on

their order,φ′

ci andφ′

ci−1 are converted into indexesj0, j1 into the resampled ranges

array, so thatj0 <= j1. In the conversion the angular resolution of the laser range

finder is used. The conversion to indexes is done to simplify the following interpola-

tion step where the resampled rangesr′′c are calculated in a while loop (lines 29-38)

at indexj0 which is incremented until it reachesj1. In the while loop first ranger

corresponding toj0 is calculated using linear interpolation. Then ifj0 is within the

bounds of the arrayr′′c and if r is smaller than the value already stored atr′′cj0
then the

empty flag oftagged′′cj0
is cleared andr′′cj0

is overwritten byr. This last step filters out

those projected current scan readings which are occluded byother parts of the current

scan. Finally the occluded flag oftagged′′cj0
is cleared or set, depending on ifφ′

ci was

greater thanφ′

ci−1, andj0 is incremented.

The body of the while loop (lines 32-40) of the pseudo code is executed at most

2n times for scans with no occlusion, wheren is the number of points. However it is

easy to contrive a scenario where the inside of the while loopwould execute at most

n2 times. For example fig. 7 depicts a situation where the noise in the current scan

readings (drawn with connected circles) is large and the scan readings are aligned with
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the reference scan’s frame so that most of the reference scan’s laser beams go through

in between the points of the current scan. In a such case for each pair of current scan

points the while loop would execute almostn times resulting in a total number of

executions between2n andn2. The computational complexity of this projection filter

is O(mn) wherem is the maximum number of objects occluding each other in the

current scan viewed from the reference scan’s pose incremented by one. For example

if there is no occlusion thenm is 1. If there is at least one object which occludes

another object, while the occluded object does not occlude any other object, thenm is

2. If there are objects A, B and C where A occludes B and B occludes C thenm is 3.

The scan projection filter described in[Gutmann, 2000] is of O(n2) complexity,

because a double loop is employed to check for occlusion. That occlusion check con-

sists of checking whether any current scan point in XY coordinates is obscured by any

other pair of consecutive current or reference scan points.Since the scan projection

implementation in fig. 6 is ofO(n) complexity when there are no occlusions in the

current scan, it is reasonable to believe that under normal circumstances it is more effi-

cient than that described in[Gutmann, 2000]. Due to its efficiency the projection filter

of fig. 6 is applied in each iteration of the PSM scan matching algorithm.

The Cartesian projection filter in[Gutmann, 2000] removes all current scan points

which are further than one meter from all reference scan points and vice versa. In

PSM associated current and reference scan measurements with a residual larger than a

preset threshold are ignored in the position estimation process and not in the projection

filter. This eliminates the need for performing the computationally expensive removal

of points without correspondence in the projection filter.

2.3 Translation Estimation

After scan projection, for each bearingφri there is at most oner′′ci from the projected

current scan and a correspondingrri from the reference scan. The aim is to find(xc, yc)

which minimizes
∑

wi(rri−r′′ci)
2, wherewi is a weight used to reduce the weighting1

of bad matches. To minimize the weighted sum of square residuals linear regression

1In addition there is an implicit weighting of closer objects, since they cover a larger angle.
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was applied to the linearized (1):

∆ri ≈
∂r′′ci

∂xc

∆xc +
∂r′′ci

∂yc

∆yc = cos(φri)∆xc + sin(φri)∆yc (3)

∂r′′

ci

∂xc

= cos(φri) has been derived from (1) the following way:

∂r′′ci

∂xc

=
1

2

2(rcj cos(θc + φcj) + xc)
√

(rcj cos(θc + φcj) + xc)2 + (rcj sin(θc + φcj) + yc)2

=
(rcj cos(θc + φcj) + xc)

r′′ci

=
r′′ci cosφri

r′′ci

= cosφri (4)

Whereφcj , rcj is a virtual, unprojected reading which would correspond toan uninter-

polatedφri, r
′′

ci. The derivation of∂r′′

ci

∂yc

is analogous to the derivation of∂r′′

ci

∂xc

.

If range differences between projected current range and reference range readings

are modeled as

(r′′
c
− rr) = H







∆xc

∆yc






+ v (5)

wherev is the noise vector and

H =













∂r′′

c1

∂xc

∂r′′

c1

∂yc

∂r′′

c2

∂xc

∂r′′

c2

∂yc

... ...













, (6)

then the position correction∆xc, ∆yc of the current scan is calculated by minimizing

the sum of weighted range residuals
∑

wi(rri − r′′ci)
2 using the well known equation

for weighted least squares[Kay, 1993]:







∆xc

∆yc






= (HT

WH)−1
H

T
W(rr − r

′′

c
) (7)

wherer′′
c
, rr are vectors containingr′′ci andrri andW is a diagonal matrix of weights.

The elements ofW are calculated according to the recommendations of Dudek and
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Jenkin in[2000]:

wi = 1 −
dm

i

dm
i + cm

=
cm

dm
i + cm

=
PM C

dm
i + PM C

(8)

wheredi = r′′ci − rri is the error between projected current scan range measurements

and reference scan range measurements andc is a constant. Equation (8) describes a

sigmoid function with weight 1 atdi = 0 and a small weight for largedi. Parameter

c determines where the sigmoid changes from 1 to 0, andm determines how quickly

the sigmoid function changes from 1 to 0. In the experiments described in section 3

m = 2 was used. In[Dudek and Jenkin, 2000] (8) was used to weight the distance of

a laser scan point to a line in a point-to-feature scan matching method.

To reduce the effects of association errors in the implementation of (7), only those

visible measurements are taken into consideration which are not tagged (see section 2.1).

In addition, the errors between reference and current scan range measurements have to

be smaller than a preset threshold PMMAX ERROR to be included.

An example implementation for one step of the translation estimation can be seen in

fig. 8. In the implementation firstHT
WH andH

T
W∆r are calculated for untagged

associated reference and current scan measurements, whichare closer to each other

than a threshold. Elements h1, h2 of the Jacobian matrixH on lines 05-06 have to

be calculated only once, sinceφri depends only on the type of laser scanner. Matrix

H
T
WH is inverted on lines 13-17 followed by the calculation of pose corrections. As

one can see from fig. 8, translation estimation is ofO(n) complexity. The translation

estimation step of IDC and ICP is ofO(n2) complexity, orO(kn) if a fixed angle

search window is employed.

The equation used in other point-to-point scan matching methods which operate

in XY coordinate systems such as ICP or IDC find the correct translation and rota-

tion of the current scan in one step if the correct associations are given. The PSM

approach, due to the use of linearization, requires multiple iterations. Since the correct

associations are in general not known multiple iterations are typically necessary for the

other methods as well. The PSM approach to translation estimation is most accurate if
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/**************Polar Translation Estimation********** *******/
//Matrix multiplications for linearized least squares
00hwr1 = hwr2 = hwh11 = hwh12 = hwh21 = hwh22 = 0
01 for i = 0 → numberof points-1do
02 ∆r = rri − r′′ci

03 if !tagged′′ci & !taggedri &| ∆r| < PM MAX ERROR then
04 w = PM C

∆r2+PM C
//weight calculation

05 h1 = cosφri

06 h2 = sin φri

07 hwr1 = hwr1 + w ∗ h1∆r //calculating HT W∆r
08 hwr2 = hwr2 + w ∗ h2∆r
09 hwh11 = hwh11 + w ∗ h12 //calculating HT WH
10 hwh12 = hwh12 + w ∗ h1 ∗ h2
11 hwh21 = hwh21 + w ∗ h1 ∗ h2
12 hwh22 = hwh22 + w ∗ h22

13D = hwh11 ∗ hwh22 − hwh12 ∗ hwh21
14 inv11 = hwh22

D

15 inv12 = −hwh12
D

16 inv21 = −hwh21
D

17 inv22 = hwh11
D

18∆x = inv11 ∗ hwr1 + inv12 ∗ hwr2
19∆y = inv21 ∗ hwr1 + inv22 ∗ hwr2
20xc = xc + ∆x
21yc = yc + ∆y

Figure 8: Pseudo code for translation estimation in polar coordinates.
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Wall in reference scan

Wall in current scan

Resulting drift

Figure 9: Cause of drift in for translation estimation in corridor like environments.

the correct orientation of the current scan is known. Estimating the orientation of the

current scan is described in section 2.4.

A negative property of this translation estimation approach is apparent when match-

ing scans which were taken of long featureless corridors - the position error along the

corridor can drift. In fig. 9 the reference and current scan contain only a wall. The

associations are depicted with an arrow pointing from the current scan point to the

reference scan point. The direction of the arrows coincide with the corresponding Ja-

cobians which project into the x and y corrections. From fig. 9it can be observed, that

all the arrows have a positive x component, therefore the translation correction will

drift to the right.

There are two reasons why polar scan matching estimates translation separately

from orientation. First reason: if the partial derivatives∂r′′

ci

∂θc

= yc cosφri − xc sin φri

are appended to matrixH (6), the matrixHT
WH can become ill-conditioned and the

estimation process can diverge. The cause of ill-conditioning lies in the structure ofH:

H =













...
...

...

cosφri sin φri yc cosφri − xc sinφri

...
...

...













, (9)

where two columns contain small numbers in the range of〈−1, 1〉 and the third column

contains potentially large numbers depending on the value of xc andyc. As an example

let us assume thatxc = 100cm, yc = 100cm, φri = 0◦, 1◦, 2◦, ..., 180◦ andW is a
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diagonal matrix with 1’s on the diagonal. Then the largest eigenvalue ofHT
WH is

about2 × 106 and the smallest eigenvalue is about3 × 10−33 which means the matrix

H
T
WH is ill-conditioned and will likely cause numerical instability. On the other

hand ifxc andyc are 0, then the right column ofH will consist of 0’s andHT
WH will

have 0 determinant and will not have an inverse which is necessary for the computation

of (7). Even ifxc andyc are small, and the process converges, the convergence speedis

slow. The second reason why polar scan matching estimates translation separately from

orientation is that as shown later, it is possible to accurately estimate the orientation in

one step if the error in the current scan position is small.

If uniform weights were used, and all measurements were usedin each scan match-

ing, then matrix(HT
WH) is a constant matrix and as such it has to be calculated only

once.

It is interesting to investigate how the matching bearing association rule performs

with the pose estimation equations described in Lu and Milios [1997]. The details are

given next.

2.3.1 Pose Estimation in Cartesian Frame

Lu and Milios in [1997] minimize the sum of square distance between current and

actual scan points. To increase robustness it is recommended in [Gutmann, 2000],

that only the best 80% of matches take part in the estimation process. Here instead of

sorting the matches, each match is weighted based on its “goodness”, as in the previous

subsection. The original objective function in[Lu and Milios, 1997] expressed using

the notation used in this paper is:

E =

n
∑

i=1

(x′′

ci cos∆θc−y′′

ci sin ∆θc+∆xc−xri)
2+(x′′

ci sin ∆θc+y′′

ci cos∆θc+∆yc−yri)
2

(10)

Where(x′′

ci, y
′′

ci) correspond to the projected and interpolated current scan’s (φri, r
′′

ci)

in Cartesian coordinate frame.(xri, yri) corresponds to(φri, r
′′

ri) of the reference scan.
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The weighted version used in this paper:

E =

n
∑

i=1

wi

[

(x′′

ci cos∆θc − y′′

ci sin ∆θc + ∆xc − xri)
2 + (x′′

ci sin ∆θc + y′′

ci cos∆θc + ∆yc − yri)
2
]

(11)

Since(xci, yci) belong to the same bearing as(xri, yri), (11) is equivalent to the sum

of weighted square range residuals
∑

wi(rri − r′′ci)
2 used in the previous subsection.

A solution to (11) can be obtained by solving∂E
∂xc

= 0, ∂E
∂yc

= 0 and ∂E
∂θc

= 0:

∆θc = atan2
(

x̄r ȳ
′′

c − x̄′′

c ȳr + W (Syrx′′

c
− Sxry′′

c
),−ȳrȳ

′′

c − x̄′′

c x̄r + W (Sxrx′′

c
− Syry′′

c
)
)

(12)

∆xc =
x̄r − x̄′′

c cos∆θc + ȳ′′

c sin ∆θc

W
(13)

∆yc =
ȳr − x̄′′

c sin∆θc − ȳ′′

c cos∆θc

W
(14)

where

x̄r =
∑

wixri, ȳr =
∑

wiyri

x̄′′

c =
∑

wix
′′

ci, ȳc =
∑

wiy
′′

ci

Sxry′′

c
=

∑

wixriy
′′

ci, Sx′′

c
yr

=
∑

wix
′′

ciyri

Sxrx′′

c
=

∑

wixrix
′′

ci, Sy′′

c
yr

=
∑

wiy
′′

ciyri

W =
∑

wi

(15)

Even though the objective function here is equivalent to theobjective function in

the previous subsection, the solutions are not equivalent.In the previous subsection,

one iteration returns an approximate solution forxc, yc. Linearization was necessary

due to the square root in (1). Here on the other hand a solutionis calculated without

linearization and without the need for multiple iterations(assuming known associa-

tions), which containsθc and not justxc, yc. In experiments it was found that if only

(12)–(14) are used to estimate pose, then the convergence speed is unsatisfactory, and

the estimation process is more likely to get stuck in a local minima. Therefore just

as in the previous subsection, it is best to interleave the described way of estimating

xc, yc, θc with the orientation estimation described in the followingsubsection.

The advantage of using (12)–(14) for calculating a solutionof
∑

wi(rri − r′′ci)
2
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Figure 10: Orientation estimate improvement by interpolation.

in one step opposed to the multiple iteration needed when using (7) is not important

since the unknown associations of the reference and currentscan points anyway require

an iterative pose estimation process. From now on using (12)–(14) together with the

orientation estimation approach described next will be called PSM-C.

2.4 Orientation Estimation

Change of orientation of the current scan is represented in apolar coordinate system

by a left or right shift of the range measurements. Thereforeassuming that the cor-

rect location of the current scan is known and the reference and current scans contain

measurements of the same static objects, the correct orientation of the current scan can

be found by shifting the projected current scan(r′′ci, φri) until it covers the reference

scan. A±20◦ shift was implemented at1◦ intervals of the projected current scan, and

for each shift angle the average absolute range residual is calculated. Orientation cor-

rection is estimated by fitting a parabola to the 3 closest points to the smallest average

absolute error, and calculating the abscissa of the minimum.

The calculation of the abscissa of the minimum is performed as follows. Assume

that the 3 points of the error function are(−1, e−1), (0, e0) and(+1, e+1) (see fig. 10).

Then the abscissam of the minimumem of the parabola described ase = at2+bt+c is

sought. Given the equation of the parabola, the abscissa of the minimum can be found

at:

∂e

∂t
= 0 = 2am + b = 0 ⇒ m = −

b

2a
(16)
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To finda, b let us substitute the 3 known points into the equation of the parabola:

a − b + c = e−1 (17)

c = e0 (18)

a + b + c = e+1 (19)

By substituting (18) into (17) and (19), and adding (17) and (19), one gets:

2a + 2e0 = e−1 + e+1 ⇒ a =
e−1 + e+1 − 2e0

2
(20)

Similarly b can be calculated by subtracting (17) from (19):

2b = e+1 + e−1 ⇒ b =
e+1 − e−1

2
(21)

Then the abscissa of the minimum is:

m = −
b

2a
= −

e+1−e−1

2

2 e−1+e+1−2e0

2

=
e+1 − e−1

2(2e0 − e−1 − e+1)
(22)

Assuming the orientation correction corresponding to 0 in fig. 10 is∆θ1, the distance

between 0 and 1 in fig. 10 is∆φ, then the estimated orientation correction will be

∆θc = ∆θ1 + m∆φ (23)

A simple pseudo code implementation of the orientation estimation is shown in

fig. 11. In fig. 11 on lines 01-18 average absolute range residuals are calculated while

shifting the reference range readings left and right by∆i. The value of∆i changes

in the range of±PM SEARCH WINDOW. The value of PMSEARCH WINDOW is

chosen so, that the range of shift is around±20◦. On lines 03-08 those indexes into

the current range readings array are calculated which overlap with the shifted reference

range array. In a for loop average absolute range residuals are calculated only for un-

tagged range readings. The average range residuals for the corresponding shift values
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are then stored inerrork and inβk. Then the minimum error and the corresponding

shift value is found on lines 20-23, which is improved by fitting a parabola on lines

24-25.∆φ on line 25 is the angle corresponding to changes of∆i.

The computational complexity of this orientation estimation approach depends on

how the increments of∆i are chosen. If the reference scan is shifted by constant incre-

ments for example by1◦ then the computational complexity isO(n). The justifications

for using constant increments, opposed to the smallest possible increment which is the

angular resolution of the scan are the following:

• The orientation estimates are improved by quadratic interpolation.

• When performing scan matching in real environments the error in orientation

due to fixed∆i increments will likely to be much smaller than errors causedby

incorrect associations.

If the increments of∆i are chosen to be equal to the bearing resolution of the scans,

then assuming a constant size of search window in angles, theorientation estimation

will be of O(kn) complexity, wherek is proportional to the number of range measure-

ments per unit angle, i.e. to the angular resolution of the scan.

The last possibility discussed here in the choice of the increments of∆i is when

one starts from a coarse increment of∆i and iteratively reduce∆i together with the

size of the search window. In this case the computational complexity of O(n log n)

may be achieved.

3 Experimental Results

The results of 4 experiments are presented where the performance of PSM, PSM-C

(polar scan matching using Cartesian coordinates) and an implementation of ICP are

compared. In the first experiment simulated laser scans are matched and evaluated.

The remaining experiments use a SICK LMS 200 laser range finder at a1◦ bearing

resolution in indoor environments. In the second experiment, laser scan measurements

are matched at 10 different scenes by positioning the laser manually in known relative
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/**************Orientation estimation*************** **/
00k = 0
01 for ∆i = −PM SEARCH WINDOW → +PM SEARCH WINDOW do
02 n = 0, e = 0
03 if ∆i <= 0 then
04 min i = −∆i
05 max i = numberof points
06 else
07 min i = 0
08 max i = numberof points−∆i
09 for i = min i → max i − 1 do
10 if !tagged′′ci & !taggedri+∆i then
11 e = e + |r′′ci − rri+∆i|
12 n = n + 1
13 if n > 0 then
14 errork = e

n

15 else
16 errork = LARGE V ALUE
17 βk = ∆i
18 k = k + 1
19e min = LARGE V ALUE
20 for i = 0 → k-1 do
21 if errori < e min then
22 e min = LARGE V ALUE
23 i min = i
24m = errori min+1−errori min−1

2(2errori min−errori min−1−errori min+1)

25θc = θc + (βi min + m)∆φ

Figure 11: Pseudo code for orientation estimation in polar coordinates.
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PM MAX ERROR 100cm
PM MAX RANGE 1000cm

PM MAX ITER 30
PM MIN VALID POINTS 40

PM MAX DIFF 20cm
PM SEARCH WINDOW 20◦

PM MEDIAN WINDOW 5
PM C (70cm)2 reduced to(10cm)2 after 10 iterations

Table 1: Parameters used in scan matching during the experiment.

poses and the results are compared with the known relative poses. In the third experi-

ment, the areas of convergence for particular pairs of scansare investigated. The scan

matching algorithms are evaluated in a SLAM experiment in the fourth experiment.

The parameters used in all scan matching experiments are shown in tab. 1.

Every scan matching variant was stopped and divergence declared if the number of

matches sank below PMMIN VALID POINTS. The terminating condition for PSM

and PSM-C was that either in 4 consecutive iterations

ǫ = |∆xc[cm]| + |∆yc[cm]| + |∆θc[
◦]| (24)

was smaller than 1 or the maximum number of iterations PMMAX ITER has been

reached. The need for a hard limit on the number of iterationsis necessary, since PSM

position estimate might drift along corridors. Another reason for a hard limit is to

prevent the possibility of PSM and PSM-C entering a limit cycle. In the case of ICP,

the terminating condition had to be chosen asǫ < 0.1, because of the low convergence

speed of ICP. In the case ofǫ < 1, ICP often terminated with a too large error. Due to

the slow convergence speed, the maximum number of iterations was chosen as 60 for

ICP, which is twice as much as that for PSM.

In PSM one position estimated step was followed by one orientation estimation

step. These 2 steps are considered as 2 iterations. In PSM-C 3pose estimation steps

are followed by 1 orientation step. These 4 steps were considered as 4 iterations. This

way of counting iterations is different to[Lu and Milios, 1997] where one position esti-

mation step followed by an orientation estimation step was considered as one iteration
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for IDC.

In the following results, all the run times were measured on a900MHz Celeron

laptop.

3.1 ICP Implementation

In the ICP implementation, the same preprocessing steps areapplied to the range read-

ings of the reference and current scan as in PSM. Then in each iteration the projection

of the current scan follows similarly to[Lu and Milios, 1997]. First each current scan

point is transformed into the reference scan’s Cartesian coordinate system. Current

scan points are then checked if they are visible from the reference position by check-

ing the order of points. This is followed by checking if two neighboring (in a bearing

sense) reference or current scan points occlude the currentscan point being checked.

Occluded current scan points are then removed, if they are atleast one meter further

back than their interpolated reference counterparts. Current scan points not in the field

of view of the laser at the reference location are removed as well. None of the refer-

ence scan points are removed like in the projection filter in[Gutmann, 2000]. Refer-

ence scan points are not searched in this projection filter implementation, therefore this

implementation is faster than of[Gutmann, 2000].

After scan projection, the implementation of the closest point association rule fol-

lows. For each remaining current scan point the closest reference scan point is sought

in a±20◦ window. Then the worst 20% percent of associations are foundand excluded.

From the remaining associated point pairs pose correctionsare calculated using equa-

tions from[Lu and Milios, 1997] and the current pose is updated.

The ICP algorithm is simpler than that described in[Lu and Milios, 1997] because

the search window size is not reduced exponentially with thenumber of iterations.

However the window is not reduced in the PSM and PSM-C orientation search either,

therefore the comparison is fair. Unlike in[Lu and Milios, 1997] projection of the

current scan with occlusion testing has been implemented without expensive searches

and therefore it has been included at the beginning of each iteration. Performing an

occlusion check in each iteration opposed to once at the beginning can increase the

26



Figure 12: Current and reference scan prior to matching. Grid size in 1x1m.

a) b) c)

Figure 13: Evolution of x (circles), y (triangles) and orientation (crosses) error ex-
pressed in[cm] and[◦], respectively of PSM, PSM-C and ICP in the simulated experi-
ment. Grid size is 1ms x 10cm and 1ms x 10◦, respectively. Iterations are marked with
small vertical lines on the horizontal axis. Each 10-th iteration is marked with a longer
vertical line.

accuracy of the results in the case of large initial errors where many visible points may

be removed incorrectly or many invisible points are left in the scan incorrectly.

3.2 Simulated Room

Figure 12 shows two simulated scans of a room. The scans are identical, except the x

and y position of the current scan was altered by 100cm. Orientation was altered by

15◦. Figure 13 shows the evolution of errors of scan matching using PSM, PSM-C and

ICP. The final errors can be see in tab. 2.

From fig. 13 and tab. 2 one can observe that all tree algorithmsachieved approxi-

mately the same final pose error. PSM-C achieved slightly less accuracy than ICP and
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iterations time [ms] |∆x|[cm] |∆y|[cm] |∆θ| [◦]
PSM 17 3.1 0.4 0.005 0.16

PSM-C 26 4.43 0.61 0.2 0.2
ICP 55 23.29 0.39 0.005 0.15

Table 2: Scan matching results of the simulated room.

PSM. Table 2 indicates that the terminating conditions of all scan matching approaches

are set to achieve the same accuracy under ideal conditions such as the shown simu-

lated scan. From tab. 2 one can also see that ICP needed more than three times as many

iterations as PSM to reach the same error. The ICP took more than 7 times longer to

converge than PSM.

All three scan matching algorithms were able to approach zero pose error in the

simulated room experiment if the terminating conditionǫ in (24) was lowered accord-

ingly. Loweringǫ too much when matching real scans may unnecessarily increase the

runtime without reducing the final pose error which may be caused by wrong associa-

tions.

3.3 Ground Truth Experiment

To determine how the polar scan matching algorithm variantscope with different types

of environments, an experiment with ground truth information was conducted. On 4

corners of a 60x90cm plastic sheet, 4 Sick LMS 200 laser scanner outlines were drawn

with different orientations. This sheet was then placed into different scenes ranging

from rooms with different degrees of clutter to corridors. At each scene, laser scans

were recorded from all 4 corners of the sheet, and matched against each other with

initial positions and orientations deliberately set to 0 inthe iterative procedure. The

combinations of scans taken at corners which take part in thescan matching are shown

in tab. 3. Ground truth values have been determined by measuring the left bottom

corners of each outline with respect to an accurate grid printed on the plastic sheet.

The carefully determined ground truth values for current scan poses in reference scan

frames which also correspond to the initial errors are also displayed in tab. 3. From

tab. 3 one can see, that the initial errors were up to 80cm displacement and up to27◦
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orientation. During the experiments the environment remained static.

A matched current and reference scan from each scene is displayed in fig. 14 for

PSM, fig. 16 for PSM-C and fig. 18 for ICP. The evolution of pose error is shown in

fig. 15 for PSM, fig. 17 for PSM-C and fig. 19 for ICP. The displayed scans have all un-

dergone median filtering. Only results for match 3 for each scene are displayed because

match 3 contains a large initial error in displacement (71cm) and a large initial error

in orientation (−27◦) as can be seen from tab. 3. Absolute residual between ground

truth and match results together with number of iterations and runtime are shown in

tables 5–7. There are 6 error vectors corresponding to each match for each scene. In

tab. 5 “ERROR” denotes a situation, when scan matching stopped due to the lack of

corresponding points and divergence was declared.

Scene 0 is a room with a small degree of clutter. Current and reference scans

were quite similar, and the matching results are good. Scene1 is in a more cluttered

room where laser scans from different locations look different as one can see in fig. 14.

The reason why the current scan differs from the reference scan so much is not clear.

Perhaps the objects in the room were not uniform in the vertical direction and the laser

beam is not a small spot or the laser was slightly tilted. The results for scene 1 (see

tables 5–7, row 1) are not good for any of the 3 implementations, but they are still

usable for example in a Kalman filter with an appropriate error estimate. In scene 2

the sheet was placed in front of a door to a corridor. The results are excellent. Scene

3 is a corridor without features. While the orientation error and the error in the cross

corridor direction were quite small, the along corridor errors are large. PSM has the

largest along corridor error of all, since the solution can drift in the direction of the

corridor. With a proper error model (small orientation and cross corridor error, large

along corridor error) the results are still useful when usedwith a Kalman filter. Scenes

4, 5 and 6 are similar to 3. In scene 4 PSM diverged once. When observing the results

for 4, 5 and 6 in fig. 14, there are phantom readings appearing at the corridor ends, even

though the real corridor ends were 30 meters away. The likelyreason for the phantom

readings is a slight tilt of the laser beams causing readingsfrom the floor to be obtained.

Scene 7 is situated on the border of a room and a corridor. The results are good for all 3
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match ref. scan current scan x y θ
number recorded at corner recorded at corner [cm] [cm] [◦]

0 0 1 39.41 2.12 13
1 0 2 2.02 66.55 -14
2 0 3 38.84 66.99 12
3 1 2 -21.94 68.33 -27
4 1 3 14.04 68.33 -1
5 2 3 35.62 9.33 26

Table 3: Combinations of scans taken at different corners (numbered 0-3) of the plastic
sheet for the ground truth experiment. These combinations marked as match number 0-
5 were used for each scene. The shown poses of current scans with respect to reference
scans correspond to the initial errors in the ground truth experiment.

iterations time [ms] orientation err.[◦] displacement err. [cm]
PSM 18.57 3.35 0.86 3.8

PSM-C 15.78 2.67 0.92 3.8
ICP 42.57 19.54 3.65 10.8

Table 4: Summary of average scan matching results in the ground truth experiment.

scan matching methods. Scenes 8 and 9 were situated in a room.The results are quite

good except of two matches of ICP when ICP converged to local minima.

To compare the 3 scan matching approaches average of errors,number of iterations

and run times were calculated and shown in tab. 4. Average absolute orientation error,

iteration and run time were calculated for all scenes exceptfor the scenes 4, 5, 6 with

the large phantom objects. In the average absolute displacement error calculation, all

corridor like environments (3, 4, 5, 6) were left out, due to the large along corridor

errors.

In the ground truth experiment, the implemented PSM and PSM-C clearly outper-

formed the implemented ICP. According to tab. 4 the performance of PSM and PSM-C

are almost the same, with PSM being slightly more accurate but slower.

3.4 Convergence Map

The purpose of this experiment is to find those initial poses from which scan matching

converges to an acceptable solution. Ideally one varies theinitial position and orienta-

tion of the current scan in a systematic way and observes if the found solution is close
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Figure 14: Scan match result for each scene for match number 3in the experiment with
ground truth using PSM.
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Figure 15: Match 3 scan match error evolution for each scene in the experiment with
ground truth using PSM. Error in x (circles), y (triangles) and orientation (crosses)
are expressed in[cm] and[◦], respectively. Grid size is 1ms x 10cm and 1ms x 10◦,
respectively. Iterations are marked with small vertical lines on the horizontal axis. Each
10-th iteration is marked with a longer vertical line.
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Figure 16: Scan match result for each scene for match number 3in the experiment with
ground truth using PSM-C.
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Figure 17: Match 3 scan match error evolution for each scene in the experiment with
ground truth using PSM-C. Error in x (circles), y (triangles) and orientation (crosses)
are expressed in[cm] and[◦], respectively. Grid size is 1ms x 10cm and 1ms x 10◦,
respectively. Iterations are marked with small vertical lines on the horizontal axis. Each
10-th iteration is marked with a longer vertical line.
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Figure 18: Scan match result for each scene for match number 3in the experiment with
ground truth using ICP.
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Figure 19: Match 3 scan match error evolution for each scene in the experiment with
ground truth using ICP. Error in x (circles), y (triangles) and orientation (crosses) are
expressed in[cm] and[◦], respectively. Grid size is 1ms x 10cm and 1ms x 10◦, re-
spectively. Iterations are marked with small vertical lines on the horizontal axis. Each
10-th iteration is marked with a longer vertical line.
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0 (0.9, 1.5, 0.3) (0.7, 0.4, 1.3) (1.1, 0.2, 0.1) (1.5, 0.4, 2.4) (0.6, 7.4, 0.2) (3.6, 0.1, 1.3)
14, 2.7 16, 2.9 18, 3.3 20, 3.6 12, 2.2 12, 2.2

1 (5.1, 17.3, 5.5) (7.7, 13.1, 5.8) (0.4, 24.8, 8.3) (1.0, 1.5, 0.4) (0.3, 5.0, 0.6) (2.4, 0.5, 0.6)
20, 3.7 28, 5.1 30, 5.5 27, 4.8 24, 4.3 12, 2.3

2 (0.4, 0.3, 0.3) (0.2, 0.6, 0.1) (0.5, 1.0, 0.3) (0.2, 0.9, 0.3) (0.2, 4.8, 0.3) (1.0, 2.7, 0.3)
8, 1.5 24, 4.2 20, 3.6 20, 3.5 28, 4.9 12, 2.2

3 (9.7, 5.0, 0.2) (51.8, 25.3, 0.2) (22.1, 11.1, 0.3) (90.8, 19.4, 0.0) (24.3, 11.2, 0.1) (55.3, 46.3, 0.1)
18, 3.2 12, 2.2 20, 3.6 30, 5.2 16, 2.9 30, 5.2

4 ERROR (4.2, 47.9, 1.3) (0.9, 4.3, 0.0) (61.6, 160.3, 4.7) (73.8, 210.5, 1.5) (1.0, 6.1, 0.1)
20, 3.7 30, 5.1 30, 5.2 30, 4.9 30, 5.1

5 (0.6, 20.3, 0.4) (0.2, 24.0, 0.4) (1.3, 10.7, 0.4) (12.6, 49.3, 0.5) (3.6, 6.6, 0.9) (1.6, 4.6, 1.5)
24, 4.4 30, 5.5 30, 5.4 30, 5.4 21, 3.8 19, 3.4

6 (1.4, 30.7, 0.3) (2.0, 63.0, 0.1) (2.7, 79.1, 0.2) (23.0, 85.2, 0.4) (21.8, 86.6, 0.3) (0.8, 4.7, 0.0)
18, 3.3 16, 2.9 16, 3.0 30, 5.2 16, 3.0 9, 1.7

7 (0.2, 0.1, 0.0) (1.5, 0.2, 0.2) (0.1, 0.3, 0.1) (0.8, 2.6, 0.3) (0.9, 4.9, 0.1) (0.0, 0.6, 0.3)
26, 4.7 16, 2.9 20, 3.6 18, 3.2 16, 2.9 15, 2.7

8 (0.7, 0.0, 0.0) (1.3, 2.1, 0.1) (0.1, 0.4, 0.3) (0.6, 0.6, 1.9) (0.0, 5.6, 0.9) (0.6, 0.4, 0.1)
11, 2.0 22, 3.9 19, 3.3 22, 3.9 23, 4.0 12, 2.2

9 (3.7, 1.7, 0.8) (2.0, 0.4, 0.4) (1.4, 0.9, 0.2) (2.8, 3.0, 0.5) (1.6, 9.5, 0.7) (1.1, 1.6, 0.2)
10, 1.9 18, 3.3 18, 3.3 18, 3.3 12, 2.2 13, 2.4

Table 5: Absolute errors in x[cm], y[cm],θ[◦], number of iterations and runtime [ms]
of the PSM algorithm in the experiments with ground truth. Rows correspond to scenes
0–9, and columns correspond to matches 0–5.

0 (0.7, 1.6, 0.2) (0.8, 0.4, 1.4) (1.0, 0.1, 0.3) (1.6, 0.1, 2.4) (0.8, 6.7, 0.3) (3.4, 0.2, 1.2)
13, 2.3 20, 3.5 13, 2.3 21, 3.6 13, 2.3 12, 2.1

1 (7.7, 19.2, 5.8) (7.0, 15.7, 6.3) (0.9, 25.8, 9.0) (1.4, 0.9, 0.4) (0.5, 5.2, 0.6) (1.0, 0.0, 0.4)
10, 1.7 30, 4.9 30, 5.0 30, 4.9 25, 4.1 13, 2.1

2 (0.4, 0.2, 0.3) (0.3, 0.5, 0.3) (1.0, 0.4, 0.5) (0.2, 1.0, 0.4) (0.7, 5.1, 0.5) (1.0, 2.4, 0.3)
9, 1.6 17, 2.8 12, 2.1 17, 2.9 10, 1.6 12, 2.1

3 (14.4, 7.5, 0.3) (49.2, 23.9, 0.3) (34.0, 17.1, 0.2) (55.1, 10.7, 0.2) (24.2, 11.1, 0.0) (28.5, 24.3, 0.2)
8, 1.4 6, 1.0 6, 1.0 9, 1.5 6, 1.0 8, 1.6

4 (2.7, 46.7, 2.6) (6.1, 57.9, 1.6) (0.5, 10.7, 0.2) (51.7, 128.0, 5.3) (70.7, 117.7, 9.6) (6.2, 24.6, 0.2)
17, 2.8 18, 3.0 18, 2.9 30, 4.8 30, 4.5 16, 2.6

5 (1.2, 16.7, 0.6) (0.1, 41.0, 0.4) (1.0, 24.3, 0.3) (13.7, 54.1, 0.4) (3.2, 2.5, 1.2) (0.9, 0.2, 0.7)
17, 2.9 17, 2.9 21, 3.7 13, 2.2 24, 4.1 17, 2.9

6 (1.3, 23.2, 0.4) (1.6, 59.3, 0.3) (2.7, 73.0, 0.0) (19.0, 69.1, 0.3) (20.3, 79.8, 0.1) (1.1, 3.2, 0.3)
17, 2.9 17, 2.8 13, 2.2 16, 2.6 17, 2.9 9, 1.8

7 (1.0, 0.1, 0.2) (1.0, 0.2, 0.2) (0.6, 0.1, 0.2) (1.5, 2.5, 0.3) (1.2, 4.9, 0.1) (0.1, 1.1, 0.2)
14, 2.3 17, 2.8 13, 2.2 17, 2.8 13, 2.2 13, 2.2

8 (0.5, 0.6, 0.2) (1.1, 2.0, 0.4) (0.3, 0.4, 0.5) (0.6, 0.6, 1.9) (0.1, 5.7, 1.1) (0.2, 0.0, 0.1)
13, 2.2 21, 3.5 18, 2.9 21, 4.1 24, 4.0 14, 2.3

9 (1.5, 1.6, 0.6) (1.5, 1.2, 0.2) (1.6, 2.3, 0.0) (2.4, 2.6, 0.1) (0.1, 5.2, 0.5) (0.8, 1.3, 0.2)
13, 2.2 24, 4.1 13, 2.2 28, 4.7 20, 3.5 17, 2.9

Table 6: Absolute errors in x[cm], y[cm],θ[◦], number of iterations and runtime [ms]
of the PSM-C algorithm in the experiments with ground truth.Rows correspond to
scenes 0–9, and columns correspond to matches 0–5.
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0 (1.5, 0.7, 0.9) (0.7, 1.2, 3.8) (1.1, 0.0, 0.5) (5.1, 7.2, 11.7) (0.4, 5.0, 1.4) (1.5, 0.6, 0.7)
50, 23.8 60, 32.7 22, 11.4 53, 26.6 59, 29.8 56, 26.6

1 (7.6, 17.6, 6.1) (2.1, 0.4, 0.3) (12.5, 28.9, 9.4) (35.3, 61.9, 30.8) (2.0, 6.9, 0.3) (43.1, 68.4, 20.4)
60, 26.8 33, 13.7 16, 6.8 11, 4.3 60, 25.8 34, 11.9

2 (0.5, 0.6, 0.4) (3.7, 10.1, 4.7) (0.1, 1.2, 0.5) (3.0, 2.7, 6.1) (1.0, 7.0, 0.5) (0.7, 1.6, 2.1)
35, 17.5 32, 14.2 60, 28.7 47, 24.1 60, 27.9 60, 26.2

3 (3.6, 1.6, 0.2) (44.5, 22.0, 0.1) (51.3, 25.9, 0.6) (52.6, 9.6, 0.0) (49.4, 17.8, 0.0) (3.7, 3.6, 0.0)
8, 3.5 22, 11.5 60, 29.3 60, 26.7 60, 28.4 60, 25.4

4 (1.9, 0.4, 2.3) (6.7, 63.2, 2.0) (6.2, 58.2, 1.4) (4.5, 36.3, 1.6) (8.0, 67.8, 2.6) (5.5, 23.0, 0.0)
42, 18.0 22, 8.4 60, 22.9 55, 20.9 14, 5.5 28, 11.1

5 (0.2, 0.3, 0.2) (7.9, 84.8, 7.0) (0.3, 58.8, 0.2) (12.9, 99.1, 7.4) (14.0, 63.7, 0.1) (2.4, 9.6, 0.3)
32, 13.6 60, 24.5 24, 10.9 60, 24.4 19, 10.0 45, 18.1

6 (0.0, 6.7, 0.0) (1.6, 63.7, 0.5) (2.0, 66.2, 0.3) (16.6, 61.0, 0.5) (16.8, 68.5, 0.4) (0.4, 2.8, 0.0)
36, 17.4 31, 13.0 22, 9.6 60, 23.8 9, 4.4 26, 10.6

7 (0.1, 0.0, 0.1) (0.8, 0.8, 0.3) (0.5, 0.2, 0.1) (1.2, 2.2, 0.6) (0.4, 6.1, 1.9) (0.1, 0.3, 0.6)
15, 6.4 28, 11.9 23, 9.9 29, 11.2 24, 12.5 31, 13.0

8 (0.5, 0.2, 0.4) (0.1, 0.6, 1.2) (1.3, 0.0, 1.0) (0.7, 1.3, 0.1) (2.0, 7.6, 2.0) (0.1, 0.6, 0.1)
48, 20.4 25, 11.2 43, 19.4 45, 19.3 49, 22.9 60, 27.9

9 (0.7, 0.9, 0.5) (21.1, 52.7, 12.3) (0.5, 0.3, 0.4) (28.3, 36.2, 29.1) (1.4, 5.0, 1.0) (0.3, 0.7, 0.4)
49, 22.6 60, 29.3 29, 13.0 60, 26.5 32, 15.3 60, 24.4

Table 7: Absolute errors in x[cm], y[cm],θ[◦], number of iterations and runtime [ms]
of the ICP algorithm in the experiments with ground truth. Rows correspond to scenes
0–9, and columns correspond to matches 0–5.

Figure 20: PSM, PSM-C and ICP convergence maps.
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scene PSM [m2] PSM-C[m2] ICP [m2]
0 0.00 0.01 0.79
1 3.52 3.26 0.23
2 2.34 2.26 1.45
3 0.26 0.31 0.49
4 0.00 0.00 0.12
5 0.96 0.61 0.18
6 0.14 0.26 0.03
7 4.01 3.56 1.09
8 1.39 0.49 4.36
9 7.11 5.38 2.32

average 1.97 1.61 1.11

Table 8: Convergence areas for match 3 of all scenes for PSM, PSM-C and ICP.

enough to the true solution. Areas of convergence can be visualized by drawing the

trajectory of the current scan into an image. To make visualization simpler just like

in [Dudek and Jenkin, 2000] only the initial pose was changed.

Scan pairs from scenes 0-9, match 3 were selected for the convergence map ex-

periment. Match 3 was selected in this experiment because ofits large difference in

the point of view (71cm, 27◦) for the current and reference scan. The initial position

varied from -250cm to 250cm for x and y in 10cm increments. Theinitial orientation

error was always27◦. The reason why the position is varied instead of the orientation is

that (i) PSM can find the correct orientation quickly if the position is correct, therefore

varying the orientation is not interesting, (ii) the large but constant initial orientation

error chosen poses a challenge. The resulting convergence plots for scene 9 can be seen

in fig. 20. Dark circles represent initial positions where the scan matching algorithms

failed for the lack of associated points. Light colored circles represent final positions.

Black lines correspond to the trajectories of the scans. Gray crosses mark the correct

current scan positions.

When examining fig. 20, one has to keep in mind that in all scan matching im-

plementations, associations having a larger error than onemeter were discarded. To

get an objective value for the performance of the implementations, the total number

of matches and the number of successful matches were counted. Successful matches
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were matches with less than 10cm error in position and2◦ in orientation2. The total

number of scan matching trials was 2500 which corresponds toan area of25m2. PSM

had 711 successful matches which means that it converged to the correct solution from

around a7.1m2 area. PSM-C had 538, giving5.38m2. ICP had 232 correct ones which

corresponds to2.32m2.

A non-graphical representation of all the results can be seen in tab. 8. From this

table one can observe that PSM has the largest average area ofconvergence followed

by ICP and PSM-C. The area of convergence of PSM was in 5 cases larger than that

of ICP. The small areas of convergence from scenes 3-6 were due to the corridor like

character of the scenes, where the lack of features limit theaccuracy of scan matching

results in the along corridor direction. The 0 area of convergence in scene 0 was caused

by a minimum for orientation with2.4◦ error just at the vicinity of the correct pose.

From this experiment one can conclude, that on average the implemented PSM

converged from a larger area than ICP when using the dataset for scene 0-9, match 3.

PSM-C performed slightly worse than PSM, but better than ICP.

3.5 SLAM

A simple implementation of Kalman filter SLAM was programmedin C++ to eval-

uate the practical usability of the described scan matchingmethod. The description

in [Davison, 1998] was followed at the implementation of the Kalman filter SLAM.As

in [Bosseet al., 2004] laser scanner poses were used as landmarks. With each land-

mark the associated laser scan was also stored. Each time therobot got to a position

which was further than one meter from the closest landmark, anew landmark was cre-

ated. Each time the robot got closer than 50cm and15◦ to a landmark not updated in

the previous step, an update of the landmark was attempted. Consecutive scans were

not matched. This is because the short term odometry of our robot when traveling on

flat floors is more accurate (see section 3.6) than the implemented scan matching algo-

2In the case of unsuccessful matches, the scan matching process either converged to local minima or
diverged. In a simplified view one can imagine that the pointsof a fixed reference scan are connected to the
associated points of the current scan with rubber strings. Convergence to a local minimum occurs, when for
given associations the net force on the current scan equals zero.
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Figure 21: Maps resulting from odometry only, SLAM with PSM,PSM-C and ICP.
Grid size is 10x10m.
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rithms applied to data from the robot’s laser range finder. Because Kalman filter SLAM

requires an error estimate for the scan matching result, a simple error model was imple-

mented, where a preset covariance matrix is scaled with the square of average absolute

range residual. For non-corridor areas a diagonal preset covariance matrix was used.

For corridor like areas, a non-diagonal matrix was chosen toexpress the larger along-

corridor uncertainty. The classification of scans to corridor and non-corridor like areas

was done by using the variance of orientations of line segments obtained by connecting

neighboring points of a scan. More on our SLAM implementation can be read in[Diosi

and Kleeman, 2005].

The raw data set used in the Kalman filter SLAM is shown in fig. 21. The struc-

tures in the middle of the two rooms on the left are office cubicles. The third room is

a seminar room filled with tables and chairs. The table and chair legs appear as a ran-

domly distributed point cloud. The robot was equipped with one SICK LMS 200 and

odometry and started from the corridor intersection between the 2 rooms on the left. It

visited the left room, and after one loop, it proceeded through the corridor to the middle

room where it performed a large and a small loop and continuedto the third (seminar)

room. In the third room the robot was twice driven over a 1.5cmhigh cable protector

on the floor at 40cm/s and at 20cm/s speed. After the visit to the third room the robot

returned to its initial location from which it traveled to the far end of the corridor, went

around a loop and came back. During the traversal of the environment, no less than 10

people walked in the view of the laser scanner and some doors were opened and closed.

Considering the presence of walking people, repetitive cubicles, long corridors and 2

collisions with an obstacle on the floor, this dataset is not the most ideal for mapping.

The SLAM results are shown in fig. 21. The SLAM results are significantly better

than those from odometry only (fig. 21, top). All three scan matching approaches

performed similarly. The odometry of the robot was reasonably calibrated. This was

necessary to be able to perform loop closing in the repetitive cubicle environment of

the second room without the implementation of special loop closing algorithms.

In the C++ implementation of scan matching and SLAM, the 20 minutes worth of

data consisting of46×103 scans and12×104 odometry readings took about 2 minutes
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Figure 22: The alignment of scans using odometry (top-left), PSM (top-right), PSM-C
(bottom-left) and ICP (bottom-right). Grid size is 1x1m.

to process on a 900MHz Celeron laptop for all variants. Therewere 100 successful

(no divergence) scan matches for PSM SLAM variant with an average of 3.1ms scan

matching time. There were 100 scan matches with PSM-C, with 2.1ms average time.

ICP was successfully used 67 times with an average of 20.2ms.

3.6 Scan Matching vs Odometry

To support the statement in the previous section about the accuracy of our robot’s

odometry with respect to scan matching, a simple comparisonof odometry and the

implemented scan matching algorithms was performed.

In this experiment, data logged in the leftmost room in the SLAM experiment

(fig. 21) was used. Laser scans aligned using the pose derivedfrom odometry are
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shown in fig. 22. In the same figure the laser scans aligned withmatching consec-

utive laser scans (logged at more than 30Hz) using PSM, PSM-Cand ICP are also

shown. Unlike in previous experiments, the scan matching approaches were run for

1000 iterations, which is much longer than required for convergence, in order to show

the behavior when the number of iterations is unlimited. Figure 22 displays scans and

robot poses every 0.5 seconds.

By observing fig. 22 it is clear that the results obtained by odometry outperform

scan matching in this experiment. None of the scan matching approaches produced a

good result. One of the problems in the scan matching resultsis that the right side of

the room is misrepresented. The error was due to the robot travelling from the bottom

right corner to the top right corner through a narrow corridor between a partition and

the wall. At some places in this narrow corridor all but 8 points from 181 points

were on the side walls. These 8 points were not enough to correctly align the along

corridor position of the robot. The ICP implementation was more disadvantaged than

the other approaches because in the implementation, only the best 80% of the point

correspondences were used in the pose calculation. PSM and PSM-C suffered from

drift after the robot performed the turn at the bottom right corner. After the turn all but a

few points were on the right-side wall which contained only one corner. In this case the

1000 iterations were enough to cause a significant drift overseveral scan matches. The

drift appears as a discontinuity in the robot’s position (shown by circles) in the bottom

right corner. Better results with all three scan matching approaches were obtained when

every 10th scan was matched, because with a smaller number of scan matches less drift

accumulates. PSM and PSM-C results were better if matching was stopped when the

pose change of the current scan became small, because in thiscase the drift in the

corner did not appear at all. When PSM was run with the parameters used in the rest

of the experiment the resulting map was better than that in fig. 22. Even after extensive

trials, no set of parameters could be found that outperformed the results using robot

odometry.
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3.7 Discussion

The goal of the experiments was to give an objective evaluation of PSM, PSM-C and

ICP in a variety of real environments. To ensure objectiveness during the tests, all

parameters values of PSM and PSM-C were the same. Parametersshared between PSM

and ICP were also the same including the search window size, except the termination

condition.

One can compare scan matching algorithms in different ways:one can run them for

a given time and observe which one has the smallest pose error, or one can run them

for a given number of iterations. We have chosen a third possibility where we have

set the parameters for the terminating condition to achieveapproximately the same

accuracy in a simulated experiment. Having approximately the same accuracy enabled

us to investigate convergence time, number of iterations and the area of convergence.

Because ICP converges slower than PSM and PSM-C the terminating conditions of

ICP i.e. the threshold on pose change and the maximum number of iterations were

changed. The rest of the shared parameters had identical values. PSM had only one

parameter, PMC which ICP did not. The only parameter which ICP had and PSM did

not was the percentage of the worst point matches to be discarded.

The simulation results indicate that PSM and PSM-C can converge in much shorter

time and in much less iterations than ICP while obtaining thesame accuracy. These in-

dications were then confirmed in the experiment with ground truth in which 60 matches

were performed in different environments. PSM was on average nearly 6 times (PSM-

C more than 7 times) faster than ICP (see tab. 4). The number ofiterations for PSM

were 2.3 times (PSM-C 2.7 times) less than for ICP. This ratiowould have been even

better if one orientation and one translation step would have been counted as 1 iteration

as in IDC instead of 2. Table 4 indicates that ICP is much more inaccurate than PSM.

However a close examination of lines 0–2 and 7–9 of tab. 7, reveals that ICP converged

to incorrect solutions far from the correct ones more often than PSM. If these cases

are ignored, then the accuracy of PSM and ICP was very similarin the experiments.

Having a similar accuracy is important because our comparison is based on an equal

accuracy requirement. The large number of convergences of ICP to a far away solu-
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tion indicate that ICP has a smaller area of convergence thanPSM. The convergence

map experiment confirms this hypothesis. In the area of convergence experiments on

average PSM converged from almost double the area (PSM-C 1.45 times) than that of

ICP.

The reason why PSM needs less time for each iteration than ICPis because the

correspondences are chosen using a matching bearing criterion, thus no search for cor-

responding points is necessary for translation calculation. The orientation calculation

step which is of O(kn) complexity is inexpensive as well. However ICP needs to search

for corresponding points what has a complexity of O(kn) if the search window is lim-

ited. The search in ICP involves much more operations than that in the orientation

estimation step of PSM, therefore in our case with 181 scan points, each iteration of

PSM was much faster than that of ICP.

PSM did not only need less time for each iteration but it also needed less iterations.

The pose estimation step in PSM can estimate the position of the current scan in a

few steps if the correct orientation is known. The orientation estimation step on the

other hand can estimate the correct orientation in one step if a correct pose is given.

The orientation estimation step had one more great advantage beside its quickness. It

searched through a±20◦ interval for the most suitable orientation, which enabled it to

move the pose out of local minima. One can see the effect of theorientation search on

the PSM-C algorithm in fig. 17 where in most graphs there is large orientation reduction

in the 4-th iteration where the orientation search is first performed.

In the experiments the search window for the PSM orientationestimation was cho-

sen to be±20◦. Choosing a small window may slow down the convergence and limit

the ability to jump out from a local minimum. Choosing a largewindow may unneces-

sarily increase the processing time. Large search windows may allow convergence to

wrong solutions as well. A±90◦ search window may allow convergence to an orien-

tation off by90◦, due to the rectangular nature of rooms.

One would intuitively think, that in cases with a large initial orientation error one

would benefit from enlarging the orientation search window beyond the initial angular

error. However, this may not always be the case. Match 3 in theground truth experi-
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ments contained an initial error of27◦. Surprisingly the extension of the search window

from 20◦ to 30◦, did not result in significant reduction in the number of iterations. We

have investigated scenes 0-3. Even though, in most of the cases the orientation error

was reduced to1◦ − 2◦ in the first orientation estimation step, the position estimation

could not follow.

Interpolation in the orientation search helps to increase the orientation estimation

accuracy beyond the angular resolution of the laser range finder. Surprisingly the pres-

ence of interpolation does not make a significant differencein the performance of PSM

on the ground truth dataset when the orientation search is performed at∆i = 1◦ in-

crements. At∆i = 4◦, however without interpolation PSM’s average orientationerror

rose to1.64◦ (originally 0.84◦). The average displacement error became 4.6cm (orig-

inally 3.8cm). The use of interpolation reduced the orientation error to1.2◦ and the

displacement error to 3.9cm. This indicates, that with the use of interpolation one can

further reduce the run time of PSM without substantially decreasing the accuracy. This

can be achieved by increasing the interval in between consecutive error calculations.

Alternative ways for changing∆i have not been investigated.

As mentioned in section 2.3 the pose estimate of PSM (and therefore PSM-C) may

drift on featureless corridors. This can be seen in fig. 14 at scene 3. The drift is apparent

from the constant rate position change while having an orientation error close to 0. The

amount of drift at scene 3, match 3 was only 22cm. Drift is not only a problem for

PSM but for ICP as well as it can be seen in fig. 18, where the position drifted 25cm.

However we did not notice any drift when ICP was implemented without interpolation.

The experienced drifts were small in most cases, and we do notconsider them as an

important factor since on featureless corridors we can not determine the correct along

corridor position. In the SLAM experiment we have handled corridors by detecting

them and by modeling the scan matching error with a very largeerror in the direction

of the corridor.

Some scan matching approaches which employ different strategies for estimating

orientation and position can converge to an oscillatory state, i.e. to a limit cycle. When

the 3 implemented scan matching algorithms were run for 1000iterations, we were
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able to find examples of limit cycles for all 3 of them. However, the limit cycles were

at least an order of a magnitude smaller than the errors in theestimated poses, therefore

we did not investigate any further.

It is clear that PSM grossly outperformed the implemented ICP, but how would it

fare compared to other point to point scan matching approaches? MbICP[Minguezet

al., 2006] is a recent high performing approach. In fig. 4 of[Minguezet al., 2006],

MbICP’s runtime and number of iterations are compared with ICP’s. The figure can

be interpreted to mean that MbICP needs only 66% of ICP’s number of iterations to

converge. The runtime of MbICP appears to be 75% of ICP’s. In our ground truth

experiment, the difference between ICP and PSM was much larger (see tab. 4). PSM

needed only 44% (PSM-C 37%) of ICP’s number of iterations to converge. The differ-

ence in runtime was even more dramatic. PSM needed only 17% ofICP’s runtime, and

PSM-C needed 13%.

The performance of PSM and PSM-C were similar albeit PSM-C was faster in

the tests and PSM had a larger area of convergence. Both PSM and PSM-C use the

matching bearing association rule to select correspondingpoints. Both approaches

minimize the sum of square range residuals. The difference between PSM and PSM-C

lies in the way this minimization is performed. In PSM the position is estimated by

applying linear regression to the linearized transformation which transforms current

scan points into the reference scan’s polar coordinate frame. Orientation is sought by

shifting the current scan left and right until best match with the reference scan is found.

In PSM-C pose estimation is performed using similar equations as in ICP. Every fourth

iteration is the same orientation estimation step as in PSM.The choice between PSM

and PSM-C should depend on the requirements for the system. If one needs high speed

then one should choose PSM-C. For applications requiring larger area of convergence,

the PSM is the right choice.

The purpose of the SLAM experiment was to test PSM in an application. Even

though the detection and tracking of moving objects was not implemented, the system

tolerated moving persons during the experiment. Moving persons can have a bad effect

on the scan matching result if they are represented by many points, and if they are close
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to an another object. In this case points representing the human can be associated to

the points representing the other object. The same considerations apply to table and

chair legs which were not removed by the median filter.

In the SLAM experiment several small loops were successfully closed. Had the

loops been large, the local laser scan matching approaches would not have been able

to close the loops. However due to their high speed, PSM and PSM-C may be used to

close larger loops. Whenever the current scan can be associated to several reference

scans from the map, the current scan should be matched with all of them with the

initial poses set to 0. One should only update the state of theKalman filter when a

unique match is found. Such an approach for loop closure may work because PSM

enables hundreds of scan matches per second even on slow computers. The second

reason why this approach may work is because in most buildings it is reasonable to

expect that robots will pass approximately the same path twice when closing a loop.

This means, that there will be current scans which were takenin the proximity of some

of the reference scans stored in the map. If a reference scan was taken within the

convergence area of the current scan, then the two scans can be matched by setting

the initial poses of the current and reference scan to 0, thusignoring the robot pose

estimate which may contain a large error.

4 Conclusions and Future Work

In this paper a laser scan matching method is proposed which works with the laser

measurements in their native, polar form. The polar scan matching (PSM) approach

belongs to the class of point to point matching algorithms. PSM takes advantage of

the structure of laser scanner measurements by operating inthe laser scanner’s polar

coordinate system. The direct use of range and bearing measurements coupled with a

matching bearing association rule and a weighted range residual minimization, results

in anO(n) complexity pose estimation approach and anO(kn) complexity orientation

estimation approach. InO(kn) of the orientation estimation approach,k is proportional

to the angular resolution of the laser scans. Opposed to theO(n2) projection filter
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of [Gutmann, 2000], preprocessing of scans is done withO(n) complexity if there

are no occlusions in the current scan when viewed from the reference scan’s position.

A variant of PSM, PSM-C is also introduced where the translation estimation step of

PSM is replaced with a weighted variant of the pose estimation equations from[Lu

and Milios, 1997]. In PSM-C due to the use of the matching bearing rule, equations

from [Lu and Milios, 1997] also minimize the sum of square range residuals. For

comparison, an ICP scan matching algorithm has been implemented.

Simulation of matching scans in a room demonstrates that thecurrent scan pose

error decreases more quickly with PSM and PSM-C to a small value, than with our

ICP implementation. Scan matching experiments using real scans were performed

with a SICK LMS 200 in a variety of environments. Comparison of the results with

ground truth revealed that in the tests, the performance of PSM and PSM-C surpasses

that of our ICP implementation in speed. However when matching corridors, a position

drift in the direction of the corridor has been observed withPSM. This drift was also

observed when using PSM-C or ICP. A comparison of areas of convergence for PSM,

PSM-C and ICP were performed. It was found, that PSM converged to the correct

solution from a larger area than PSM-C and our ICP implementation.

The usability of the proposed scan matching approaches has been tested by per-

forming Kalman filter SLAM with scan matching in a static environment. The maps

created by PSM and PSM-C are ICP are similar in quality as shown in fig. 21. In

fig. 21, the quality of the maps can be judged by the straightness of the corridor and by

the presence of walls with multiple representations.

As future work, the tracking and tagging of moving objects could be considered.

The real advantage of the efficient PSM over other methods which employ search to

find corresponding points becomes more apparent when the number of points is large.

One such case is in 3D scan matching. It would be interesting to know if PSM could be

adapted to 3D. The projection filter and position estimationwould be still ofO(mn)

andO(n) complexities, respectively. Estimation of the 3 orientation angles if done

sequentially would still result inO(kn) complexity, wherek is proportional to the

number of range readings per unit angle. Even though 3D scan matching with a mod-
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ified PSM is an exciting problem, due to the lack of time we haveto consider it as

possible future work.
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