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Abstract

In this paper a novel Polar Scan Matching (PSM) approachssried that
works in the laser scanner’s polar coordinate system, fin@réaking advantage of
the structure of the laser measurements and eliminatesette for an expensive
search for corresponding points in other scan match appesad®SM belongs to
the family of point to point scan matching approaches wishniiatching bearing
association rule. The performance of PSM is thoroughlyuatald in a simulated
experiment, in experiments using ground truth, in expenim@imed at determin-
ing the area of convergence and in a SLAM experiment. Allltesare compared
to results obtained using an iterated closest point (ICB) seatching algorithm
implementation. It is found that PSM is superior to the ICRliementation in
processing speed and that PSM converges to a correct sofudio a larger range

of initial positions.



1 Introduction

Localization and map making is an important function of nbdbots. One possible
way to assist with this functionality is to use laser scanamiaig. A 2D laser scan is a
set of range measurements with constant angle incremeant taka horizontal plane.
In laser scan matching, the position and orientation or pb#ee current scan is sought
with respect to a reference laser scan by adjusting the gake ourrent scan until the
best overlap with the reference scan is achieved. In thaliiee there are methods for
2D and 3D scan matching. This paper restricts discussioDtager scan matching.

Scan matching approaches can be I¢taland Milios, 1997 or global[Tomono,
2004. When performing local scan matching, two scans are mataindlg starting
from an initial pose estimate. When performing global scataming the current scan
is aligned with respect to a map or a database of scans witheuteed to supply an
initial pose estimate. Scan matching approaches also ceatbgorized based on their
association method such as feature to feature, point toreeahd point to point. In fea-
ture to feature matching approaches, features such assgmentgGutmann, 2000
corners or range extrenihingemanret al., 2004 are extracted from laser scans, and
then matched. Such approaches interpret laser scans anbring presence of chosen
features in the environment. In point to feature approachesh as one of the earliest
by Cox[1991], the points of a scan are matched to features such as linedirErfea-
tures can be part of a predefined map. Features can be moracalastin/Biber and
StraRer, 200B where features are Gaussian distributions with their naeahvariance
calculated from scan points falling into cells of a grid. ®dio point matching ap-
proaches such as the approach presented in this paper, cegnoe the environment
to be structured or contain predefined features.

Examples of point to point matching approaches are theviatlg: iterative clos-
est point (ICP), iterative matching range point (IMRP) ahd popular iterative dual
correspondence (IDC). Besl and Mac Kd®94 proposed ICP, where for each point
of the current scan, the point with the smallest Euclideatadice in the reference scan

is selected. IMPR was proposed by Lu and Milia897, where corresponding points



are selected by choosing a point which has the matching rffrogethe center of the
reference scan’s coordinate system. IDC, also proposeditant Milios[1997 com-
bines ICP and IMRP by using the ICP to calculate translatimh IMPR to calculate
rotation. The mentioned point to point methods can find threeod pose of the cur-
rent scan in one step provided the correct associationsha®en. Since the correct
associations are unknown, several iterations are perfibriviatching may not always
converge to the correct pose, since they can get stuck inah hoinima. Due to the
applied association rules, matching points have to be Bedracross 2 scans, resulting
in O(n?) complexity. If the search for corresponding points is restlito a window
with a constant angle, the computational complexit@{&n), wheren is the number
of scan points and is proportional to the number of range readings per uniteang|

to the angular resolution of the scanis introduced to differentiate between increas-
ing the number of scan points by increasing the field of viewherangular resolution
of the laser range finder. However, it has been demonstfalistiino and Ikeuchi,
2004 that by using k-d trees one can expect to reduce the compudttomplexity of
the correspondence search@6nlog(n)) (O(n?) in the worst case). The mentioned
approaches operate in a Cartesian coordinate frame arefdreedo not take advan-
tage of the native polar coordinate system of a laser scarwekkr as shown later
in this paper, a scan matching algorithm working in the potasrdinate system of a
laser scanner can eliminate the search for correspondintsfibereby achievin®(n)
computational complexity for translation estimatiai(n) computational complexity
is achievable for orientation estimation if a limited otti&tion estimation accuracy is
acceptable.

These point to point matching algorithms apply a so callegegtion filter[Gut-
mann, 2000 prior to matching. The objective of this filter is to removesle points
from the reference and current scan not likely to have a spmeding point. The
computational complexity of this filter i©(n?).

In recent years there have been a number of new point to peantmatching ap-
proaches. Minguez et 42004 have proposed a new distance metric used for selecting

point associations and the calculation of the current scae.pThis metric promises



to take rotation and translation better into consideratiam the Euclidean (distance
between points) distance metric of ICP. However, furtherkwe necessary to choose
an ad-hoc parameter combining translation and orientatiiference in the proposed
metric. Jensen and Siegw#2004 and Montesano et dl20054 propose utilizing in
their scan matching approaches the uncertainty in thelasasurements and in a prior
pose estimate, during association search and pose estiméatowever, the source of
the prior pose estimate is often odometry for mobile robblisless the odometry pa-
rameters of a mobile robot are perfectly calibrated fortedl $urfaces the robot moves
on, there will always be systematic errors in the odometrsepestimate which will
bias the scan matching results. Further, if such a scan mgtelpproach is used in
EKF SLAM, one needs to estimate the correlation betweenitheéigted pose and the
measurement (i.e. the scan matching result) since theynailbe independent. In
other scan matching approaches the effects of odometry ameamore limited since
the pose estimate from odometry is often used only for iitizg the matching, or not
used at all. All of the mentioned recent approaches needtalséor associations, and
they are more complex than the simple polar scan matchingpaphp proposed in this
paper.

There are other scan matching approaches such as the méttMmiss and Put-
tkamer[1995. Here for both reference and current scans, an angle-histogf the
orientation of line segments connecting consecutive pagmgenerated. The orienta-
tion of the current scan with respect to the reference scabtained by finding the
phase with the maximum cross correlation of the 2 angle ¢iiatos. The translation is
found similarly by calculating x and y histograms, and chdting cross correlations. In
scan matching, not all approaches use only that informatiarscan, which describes
where objects are located. Thrun et{aD0d in their scan matching method utilize the
idea, that free space in a scan is unlikely to be occupiedtinduscans. Surprisingly,
Hough transform can also be used in scan matching as demamusin[Censiet al.,
2005; Censi, 2006

Mapping with scan matching has been done for example by nidimighan energy

function[Lu, 1999, using a combination of maximum likelihood with posteristie



mation[Thrunet al., 2004, using local registration and global correlatigutmann,
2004 and using FastSLANIHahnelet al., 2003. A Kalman filter implementation can
be found in[Bosseet al., 2004.

Laser scan matching approaches can not only be appliedeiodeans but to mea-
surements from an omnidirectional camera as wel[Menegattiet al., 2006, images
of the floor are searched for color transitions to obtain eamgasurements which are
matched to a prior map using Monte Carlo localization.

In this paper the Polar Scan Matching (PSM) approach is destwhich works
in the laser scanner’s polar coordinate system, theredéind advantage of the struc-
ture of the laser measurements by eliminating the searctoiwesponding points. It
is assumed that in the 2D laser measurements range readingslared by their bear-
ings. Laser range measurements of current and referenne aca associated with
each other using the matching bearing rule, which makeslation estimation of the
PSM approact®(n) complexity unlike IDC'sO(n?) (or O(kn) if the search window
is limited to a constant angle). The orientation estimasieomputational complexity
is O(n) if limited accuracy is acceptable, otherwi®ékn). An O(mn) complexity
scan projection algorithm working in polar coordinateslsoalescribed in this paper.
The variablen is defined as one more than the maximum number of objectsdinglu
each other in the current scan viewed from the referenceésspase. However this
projection filter is ofO(n) complexity if no occlusions occur in the scan, therefore
being more efficient than that diGutmann, 200D

The rest of the paper is organized as follows; first scan prgssing steps, fol-
lowed by the PSM algorithm is described. Details of expentakresults follow that
include simulation, ground truth measurements and an imghtation of SLAM. Fi-
nally conclusions and future work are presented.

The source code of PSM can be downloaded from www.irrc.nfaeds.au/adiosi.



2 Scan Matching

The laser scan matching method described in this sectignsathe current scan with
respect to the reference scan so that the sum of square resigaals is minimized.
It is assumed that an initial pose of the current scan is gigrpressed in the coordi-
nate frame of the reference scan. Equations for the tramsfiiwn of the current frame
expressed in the world frame into the reference frame caoureffin[Diosi and Klee-
man, 2005 The coordinate frame of a laser scan is centered at the giiotation of
the mirror of a laser scanner. The X axis or zero angle of theris.Cartesian coordi-
nate system coincides with the direction of the first regbréenge measurement. The
current scan is described 5= (x., yc, 0, {reis Pei}iq ), Wherez., y., . describe
position and orientatiorr.;, ¢.; } 7, describen range measurements; at bearings
¢ci, €xpressed in the current scan’s coordinate systém;., ¢.; ;7 , are ordered by
the bearings in ascending order as they are received frorCi Biser scanner. The
reference scan is described &s= {r,;, ¢,;}1—,. If bearings where range measure-
ments are taken are unchanged in current and referencetbears; = ¢.;. The scan
matching works as follows (see fig. 1): after preprocesdiegstans, scan projection
followed by a translation estimation or orientation estimaare iterated. In the polar
scan matching (PSM) of this paper, one orientation stepli®fed by one translation

step. More details on these steps are given in the followithgeactions.

2.1 Scan Preprocessing

Preprocessing the current and the reference scans prioatithing helps to remove
erroneous measurements, clutter or to group measurentethts same object to in-
crease the accuracy and robustness of scan matching. Indias2r scan is depicted
in a Cartesian coordinate system. Corresponding raw ramgsumements are shown
in fig. 3. Laser scans can have points which are not suitabla#&bching. Such points

are:

e Points representing moving objects such as the legs of apérsig. 2. Table

and chair legs are such points as well, since they are lesdg tix be static in the
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Figure 1: Scan matching algorithm.
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Figure 2: Laser scan in a Cartesian coordinate frame. Gdichis
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Figure 3: Scan of fig. 2 in the laser’s polar coordinate framderizontal grid size is
10°, vertical grid size is 1m.

long term.

e Mixed pixels. At range discontinuities laser scannersrofienerate measure-
ments which are located in the free space between two oljjéetand Boren-

stein, 2002

e Measurements with maximum range. Such readings are retuwiesn there is
no object within the range of the scanner. Some surfacesxtomple clean clear
glass) do not illuminate well and show a laser spot, theeetloey can appear as

measurements with maximum range.

In the implemented scan preprocessing first a median filtesés to replace out-
liers with suitable measurements as[utmann, 200D With the application of a
median filter to the range readings, objects such as chaitadnhellegs are likely to be
removed. The window size PMIEDIAN _WINDOW is chosen based on the number
of neighboring outliers one aims to replace. For exampl&utmann, 200 a win-
dow size of 5 for the median filter was found satisfactory sifncan replace at most 2
neighborings outliers. This means, that chair or table é&gs10t removed by the scans
if they are represented by more than 2 points.

After the application of a median filter all points furtheatha threshold PMMAX _-RANGE
are tagged. These tagged points are used only in segmerdasaribed next and not

in scan matching. Range measurements larger thatiA _RANGE are not used



Figure 4: Only a proximity threshold for object segmentati® not enough because
there can be large distances between points on walls neargllgl with the laser
beams.

in the scan matching because the distance between suchnemasis is large, which
makes it hard to decide if they belong to the same object orintgrpolating between
two neighboring points belonging to 2 different objects bara source of error. Artifi-
cially restricting the range of the sensor may introducédlifties in large rooms with
a lot of open space.

The choice of PMMAX _RANGE depends on the maximum range and angular
resolution of the sensor and on how scans are segmentedx&uopk if neighboring
points are sampled af resolution and objects separated by 20cm are considered dis
tinct, then there is no reason to use a range reading largedbm since the points are
separated by at least 17cm.

The tagging of long range measurements is followed by theneatation of the
scan. Segmenting range measurements can have two adanthgefirst advantage
is that interpolation between 2 separate objects can beleddi one knows that the
objects are separate. Such interpolation is useful whemangs to know how a scan
would look from a different location (scan projection). Tdexond advantage is that if
laser scans are segmented and the segments are trackedécutire scans then cer-
tain types of moving objects can be identified. Tracking mgwibjects as performed
for example ifMontesancet al., 20054 can make scan matching more robust. How-
ever, motion tracking constitutes future work and is beyttredscope of this paper.

Two criteria are used in the segmentation process. Accgtdithe first criterion, a
range reading, not differing more than PMIAX _DIFF from the previous range read-
ing, belongs to the same segment. This criterion fails toemtly segment out points

which are for example on a wall oriented nearly parallel with laser beams falling



Range
Range

Bearing Bearing

a) b) c)

Figure 5: a) projection of measured points taken at C to iond. b) points projected
to R shown in polar coordinates. Dashed lines represenirtgsawhich the scanner
would have sampled. c) Sampled visible points shown as llatk sampled occluded
points shown as “x”".

on it (see fig. 4). Therefore a second criterion is also agmiecording to which if 3
consecutive range readings lie approximately on the saraérlithe laser’s polar coor-
dinate system, then they belong to the same segment. A mixebgan only connect
two objects if the distance between the first object and thedpixel and the second
object and the mixed pixel is less than BWAX _DIFF. Tagged range readings break
segments as well.

Segments are assigned unique ID numbers, except 0, whiskiggad to segments
consisting of only one point. Segments assigned 0 are taglgetfore they are not
used in the scan matching process. Most of the mixed pix¢laspigned 0.

The preprocessing steps are@fn) complexity. The values of the introduced

constants are shown in section 3.

2.2 Scan Projection

An important step in scan matching is finding out how the autrsean would look if it
were taken from the reference position. For example in fith&current scan is taken
at location C and the reference scan is taken at position Brdinge and bearings of

the points from point R (see fig. 5b) are calculated:
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i = A/ (reicos(Bc + ¢ei) + )2 + (reisin(e + ¢ei) + ye)? 1)

dh; = atan2(reisin(0c + dei) + ye, Tei cos(0 + bei) + 20 @)

whereatan?2 is the four quadrant version afctan.

In fig. 5b the dashed vertical lines represent sampling bgar..;) of the laser
at position R in fig. 5a. Since the association rule is to mbatdrings of points, next
rangesr’. at the reference scan bearinfls are calculated using interpolation. The
aim is to estimate what the laser scanner would measure foze R. This resampling
step consists of checking’,,, #.;) (i.e. 1,2,..10n fig. 5b) of each segment if there are
one or more sample bearings between 2 consecutive poetd&tween 1 and 2 there
is one, between 6 and 7 there are 2). By linear interpolatiamge value is calculated
for each sample bearing. If a range value is smaller thanready stored range value
at the same bearing, then the stored range is overwrittdntiit new one to handle
occlusion. As inLu and Milios, 1997 a new range value is tagged as invisible if the
bearings of the 2 segment points are in decreasing ordeneBuét of scan projection
is shown in fig. 5c.

A pseudo code implementation of the described scan projetdishown in fig. 6.
Unlike the equations in this paper, the indexes of vectanelds in fig. 6 start from 0.
The pseudo code on lines 00-07 transforms the current sedimgs(¢;, ;) into the
reference scan’s coordinate frame using the current framse (@, y., 6.) expressed
in the reference frame. Since the projected current $o4nr.,) is resampled next
at the sample bearings of the reference scan, the data structures associated with
the resampled current scan are also initialized. Statusteegtagged!; contain flags
describing if resampled range readingshave been tagged or if they contain a range
reading. All flags of the status registers are cleared exbegftag PMEMPTY which
indicates that no range reading has been resampled intatkieytar position of the
range array’. Resampled current scan range readirjfsare initialized to a value

which is larger than the maximum range of the laser scanner.
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[rrxfrxriiirrkSoan Projectionrrskktikiktkikik |

00 /MMransform current measurementsinto reference frame

01for i = 0 — numberof_points-1do

02 z=rycos(:+ &) + e

03 y=resin(0.+ ¢;) + ye

04 7l =22+ 2

05 !, = atan2(y, x)

06 tagged!l, = PM_EMPTY

07 ¢!, =LARGEVALUE

08 /[Given the projected measurements (r”,;, ¢.,), calculate what would
09 /have been measured with the laser scanner at the reference pose.
10for i = 1 — numberof_points-1do

11  if segment.; # 0 & segment; = segment; 1

12 ltagged.; & ltagged.i—1 & ¢., > 0& ¢L,_, > 0then
13 if ¢/, > ¢.,_, then//Isit visible?

14 occluded = false

15 a0 = @iy

16 ap = Ici

17 Jo = ceil(¢L,_, /angularresolution

18 J1 = floor(¢.;/angularresolutior)

19 R T

20 rL=rl,

21 else

22 occluded = true

23 apg = ::Z-

24 a1 = Py

25 Jo = ceil(¢., /angularresolution

26 j1 = floor(¢.;_,/angularresolution

27 ro =T,

28 =7

29 Wh||ejo <5 do

30 r = 4=r%(jo angularresolution — ag) + 7o
31 if jo > 0 & jo < numberof_points& ;> r then
32 o=

33 tagged;; & =~ PM_EMPTY

34 if occludedthen

35 taggedy; | = PM_OCCLUDED
36 else

37 tagged,; & =~ PM_OCCLUDED
38 Jo=Jo+1

Figure 6: Scan projection pseudo code.
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reference scan

L

current scan

Figure 7: Example for the worst case scenario for scan piiojec

The resampling of the projected current scan readiafisr.,;) takes place on lines
10-38 in a loop which goes through neighboring pairgdif, r.,). Pairs of measure-
ments are only resampled if they belong to the same segmensfiare the same ID)
and none of them are tagged (lines 11-12). Next, on lines8L8«2 measurement pair
is checked if it is viewed from behind by testingdf, > ¢.,_,. Then depending on
their order,¢’, and¢,; , are converted into indexes, j; into the resampled ranges
array, so tha, <= j;. In the conversion the angular resolution of the laser range
finder is used. The conversion to indexes is done to simgliéyftllowing interpola-
tion step where the resampled rangésare calculated in a while loop (lines 29-38)
at indexjo, which is incremented until it reachgs. In the while loop first range
corresponding tgy is calculated using linear interpolation. Thenjifis within the
bounds of the array,’ and if is smaller than the value already stored/gt then the
empty flag oftagged,;, is cleared andy; is overwritten byr. This last step filters out

those projected current scan readings which are occludethey parts of the current

scan. Finally the occluded flag efgged”

cjo

is cleared or set, depending oryif;, was
greater thaw/,_,, andj is incremented.

The body of the while loop (lines 32-40) of the pseudo codexescated at most
2n times for scans with no occlusion, wherds the number of points. However it is
easy to contrive a scenario where the inside of the while lwopld execute at most

n? times. For example fig. 7 depicts a situation where the naoighé current scan

readings (drawn with connected circles) is large and the szadings are aligned with
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the reference scan’s frame so that most of the referencésdaaar beams go through

in between the points of the current scan. In a such case ¢brper of current scan
points the while loop would execute almasttimes resulting in a total number of
executions betwee2n, andn?. The computational complexity of this projection filter
is O(mn) wherem is the maximum number of objects occluding each other in the
current scan viewed from the reference scan’s pose incrietidry one. For example

if there is no occlusion them is 1. If there is at least one object which occludes
another object, while the occluded object does not occlugether object, them is

2. If there are objects A, B and C where A occludes B and B oed@thenn is 3.

The scan projection filter described [@utmann, 200Dis of O(n?) complexity,
because a double loop is employed to check for occlusiont ddwusion check con-
sists of checking whether any current scan pointin XY camatés is obscured by any
other pair of consecutive current or reference scan poiisce the scan projection
implementation in fig. 6 is 0©(n) complexity when there are no occlusions in the
current scan, it is reasonable to believe that under noriralrastances it is more effi-
cient than that described [Gutmann, 200D Due to its efficiency the projection filter
of fig. 6 is applied in each iteration of the PSM scan matchiggrithm.

The Cartesian projection filter iGutmann, 200Ppremoves all current scan points
which are further than one meter from all reference scantpand vice versa. In
PSM associated current and reference scan measuremdntsnegidual larger than a
preset threshold are ignored in the position estimationgs® and not in the projection
filter. This eliminates the need for performing the compotatlly expensive removal

of points without correspondence in the projection filter.

2.3 Trandation Estimation

After scan projection, for each bearigg; there is at most one’; from the projected
current scan and a correspondingfrom the reference scan. The aim is to find, y..)
which minimizesy_ w; (1, — /)%, wherew; is a weight used to reduce the weighting

ct

of bad matches. To minimize the weighted sum of square radinear regression

1in addition there is an implicit weighting of closer objecice they cover a larger angle.
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was applied to the linearized (1):

1 1
Ar; ~ g;c: Az, + (z);‘z Aye = cos(dr; ) Az + sin(dr;) Ay, 3)

%TT{T‘ = cos(¢,;) has been derived from (1) the following way:

oy 1 2(rej cos(0e + dej) + Tc)
9z, 2\/(rej cos(Bc + dej) + )% + (rej sin(be + dej) + ye)?
re; €0S(0c + dei) + X . coS Py
= ( J ( . J) ) _ 7 = COS Ppi (4)

ct ct

Whereg,;, r; is a virtual, unprojected reading which would corresponadrtaninter-
polatede,.;, r/;. The derivation o%{?‘ is analogous to the derivation %fz—
If range differences between projected current range diedergce range readings

are modeled as

(r/ —r,)=H Ae +v (5)
Aye

wherev is the noise vector and

" "
or.y or.y

Oz Oye
_ Brgz Brgz
H R el (6)

then the position correctioAz., Ay, of the current scan is calculated by minimizing
the sum of weighted range residuddw; (r,.; — r7,)? using the well known equation

for weighted least squargkkay, 1993:

Ate | _ HTWH) 'HTW (r, — /) @)

c

Ay,

wherer/, r, are vectors containing; andr,; andW is a diagonal matrix of weights.

The elements oW are calculated according to the recommendations of Duddk an
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Jenkin in[200Q:

o ™  PMC
dm +cm  d"+cm d+ PM_C

(8)

whered; = r”, — r,; is the error between projected current scan range measoteme
and reference scan range measurements:ad constant. Equation (8) describes a
sigmoid function with weight 1 a#; = 0 and a small weight for large;. Parameter

¢ determines where the sigmoid changes from 1 to 0,rardktermines how quickly
the sigmoid function changes from 1 to 0. In the experimeptcdbed in section 3
m = 2 was used. IhDudek and Jenkin, 200@8) was used to weight the distance of
a laser scan point to a line in a point-to-feature scan magcimethod.

To reduce the effects of association errors in the impleati&mt of (7), only those
visible measurements are taken into consideration whizhairtagged (see section 2.1).
In addition, the errors between reference and current stagermeasurements have to
be smaller than a preset threshold RMX _ERROR to be included.

An example implementation for one step of the translatidimedion can be seenin
fig. 8. In the implementation firdiTWH andHT W Ar are calculated for untagged
associated reference and current scan measurements, avbidioser to each other
than a threshold. Elements hl, h2 of the Jacobian m&drion lines 05-06 have to
be calculated only once, singg; depends only on the type of laser scanner. Matrix
HTWH is inverted on lines 13-17 followed by the calculation of @asrrections. As
one can see from fig. 8, translation estimation i$£)Xf.) complexity. The translation
estimation step of IDC and ICP is @¥(n?) complexity, orO(kn) if a fixed angle
search window is employed.

The equation used in other point-to-point scan matchinghoug which operate
in XY coordinate systems such as ICP or IDC find the correctstegion and rota-
tion of the current scan in one step if the correct associatere given. The PSM
approach, due to the use of linearization, requires maltiprations. Since the correct
associations are in general not known multiple iterationgypically necessary for the

other methods as well. The PSM approach to translation agtmis most accurate if
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[FrivexexakrxPolar Translation Estimation*** e ek |
//Matrix multiplicationsfor linearized least squares

00 hwrl = hwr2 = hwhll = hwhl2 = hwh21 = hwh22 =0
01for i = 0 — numberof_points-1do

02 Ar=r,;—1"

ci

03  if ltagged!; & ltagged,; &| Ar| < PM_MAX_ERROR then

04 w = s //weight calculation

05 hl = cos ¢

06 h2 = sin ¢

07 hwrl = hwrl 4+ w * h1Ar /lcalculating HT W Ar
08 hwr2 = hwr2 + w x h2Ar

09 hwh1l = hwhll + w * h12 //calculating HTW H
10 hwhl12 = hwhl2 + w * hl % h2

11 hwh21 = hwh21 + w * hl * h2

12 hwh22 = hwh22 + w * h2>

13D = hwhll * hwh22 — hwhl2 * hwh21
14invll = hwh22

15invl12 = _%
16inv2l = _%

17inv22 = hubll

18 Ax = invll x hwrl + invl2 x hwr2
19 Ay = inv2l x hwrl + inv22 x hwr2
20z, = z.+ Az

2lyc =y + Ay

Figure 8: Pseudo code for translation estimation in polardinates.
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Resulting drift
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m Wall in reference sc
Wall in current scar

R

Figure 9: Cause of drift in for translation estimation inaor like environments.

the correct orientation of the current scan is known. Ediimgahe orientation of the
current scan is described in section 2.4.

A negative property of this translation estimation apphda@pparent when match-
ing scans which were taken of long featureless corridors pthsition error along the
corridor can drift. In fig. 9 the reference and current scantaio only a wall. The
associations are depicted with an arrow pointing from theerit scan point to the
reference scan point. The direction of the arrows coinciile the corresponding Ja-
cobians which project into the x and y corrections. From fig.c&n be observed, that
all the arrows have a positive x component, therefore thestaéion correction will
drift to the right.

There are two reasons why polar scan matching estimatesiatiam separately
from orientation. First reason: if the partial derivati\f)gé% = Y COS Ppj — X SIN Py
are appended to matrH (6), the matrixHH"WH can become ill-conditioned and the

estimation process can diverge. The cause of ill-conditphies in the structure dfl:

H= | cos¢pi sindy; yecosdp — zesingy | s 9

where two columns contain small numbers in the range-df 1) and the third column
contains potentially large numbers depending on the vdlug andy.. As an example

let us assume that, = 100cm, y. = 100cm, ¢; = 0°,1°,2° ...,180° andW is a
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diagonal matrix with 1's on the diagonal. Then the largegesvalue o HTWH is
about2 x 10% and the smallest eigenvalue is ab8ut 10~33 which means the matrix
HTWH is ill-conditioned and will likely cause numerical instlity. On the other
hand ifz. andy. are 0, then the right column &I will consist of 0’s andd™ WH will

have 0 determinant and will not have an inverse which is reezgdor the computation

of (7). Evenifz. andy. are small, and the process converges, the convergenceispeed
slow. The second reason why polar scan matching estimatesidtion separately from
orientation is that as shown later, it is possible to acelyatstimate the orientation in
one step if the error in the current scan position is small.

If uniform weights were used, and all measurements wereinsgath scan match-
ing, then matrix HTWH) is a constant matrix and as such it has to be calculated only
once.

It is interesting to investigate how the matching bearirgpagtion rule performs
with the pose estimation equations described in Lu and KIil®97. The details are

given next.

2.3.1 PoseEstimation in Cartesian Frame

Lu and Milios in[1997 minimize the sum of square distance between current and
actual scan points. To increase robustness it is recomrdendé&utmann, 2000

that only the best 80% of matches take part in the estimatioogss. Here instead of
sorting the matches, each match is weighted based on itslfggs”, as in the previous
subsection. The original objective function[inu and Milios, 1997 expressed using

the notation used in this paper is:

n

E = Z(:zc'c’Z cos AB.—y! sin AO+Ax,—x,) 2+ (2 sin A +y!’: cos AO+Aye—yri)?
=1
(10)
Where(z,,y.) correspond to the projected and interpolated current s¢apy;, ;)

in Cartesian coordinate framér,.;, y,;) corresponds t@p,;, r,) of the reference scan.
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The weighted version used in this paper:

E= 2": w; [(2l; cos Afe — yl); sin A0, + Aze — ) + (2 sin A, + y; cos Abe + Aye — yri)?]
= (11)

Since(z.;, y.;) belong to the same bearing @s.;, y,;), (11) is equivalent to the sum

of weighted square range residudlsw; (r; — r”;)? used in the previous subsection.

A solution to (11) can be obtained by solvigg- = 0, §& = 0 and &2 = 0:

Ab. = atan2 (2,5 — Z0Gr + W (Sy,or — Su,y)s —Urfe — T @y + W(Sz,ar — Sy, 402)
N T, — T cos Af. + g sin Af,. (13)
Uy — T si AZV— y” cos A
Ayc _ Yr ZCC Sin V{; yc c (14)
where
Tp = ) Wiy, Ur = D Wilri
Ty =Y wird;, Yo =2 wiye;
Sy = D WiTriluss  Sary, = ) Wille;Yri (15)
St = D WikriZly,  Syry, = D Wil Yri
W=> w;

Even though the objective function here is equivalent toabjective function in
the previous subsection, the solutions are not equivalanthe previous subsection,
one iteration returns an approximate solution#gry.. Linearization was necessary
due to the square root in (1). Here on the other hand a soligioalculated without
linearization and without the need for multiple iteratiq@ssuming known associa-
tions), which containg. and not justz., y.. In experiments it was found that if only
(12)—(14) are used to estimate pose, then the convergeeed spunsatisfactory, and
the estimation process is more likely to get stuck in a localimma. Therefore just
as in the previous subsection, it is best to interleave tiserd®ed way of estimating
Z¢, Ye, 0. With the orientation estimation described in the followsgsection.

The advantage of using (12)—(14) for calculating a solugén w; (r,; — r.)?

ci
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Figure 10: Orientation estimate improvement by interpotat

in one step opposed to the multiple iteration needed whergy3i) is not important
since the unknown associations of the reference and ciatantpoints anyway require
an iterative pose estimation process. From now on using-(12) together with the

orientation estimation approach described next will béeedadPSM-C.

2.4 Orientation Estimation

Change of orientation of the current scan is representedpimla coordinate system
by a left or right shift of the range measurements. Therefssiming that the cor-
rect location of the current scan is known and the referendecarrent scans contain
measurements of the same static objects, the correctatiimbdbf the current scan can
be found by shifting the projected current sdafi, ¢,;) until it covers the reference
scan. A+20° shift was implemented at° intervals of the projected current scan, and
for each shift angle the average absolute range residualdslated. Orientation cor-
rection is estimated by fitting a parabola to the 3 closesitpdo the smallest average
absolute error, and calculating the abscissa of the minimum

The calculation of the abscissa of the minimum is perfornetblows. Assume
that the 3 points of the error function arel,e_1), (0,e9) and(+1,e1) (see fig. 10).
Then the abscissa of the minimurmne,,, of the parabola described as= at>+bt+cis
sought. Given the equation of the parabola, the abscis$eahinimum can be found

at:

Oe b
5—0—2am+b—0:>m——% (16)
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To find a, b let us substitute the 3 known points into the equation of #ralpola:

a—b+c = e_; a7
cC = € (18)
a+b+c = ey (29)

By substituting (18) into (17) and (19), and adding (17) at@)(one gets:

e_1+er1 —2e

2a+2e)=€_1+ey1 =>a= 5 (20)
Similarly b can be calculated by subtracting (17) from (19):
2b:e+1+e,1:>b:¥ (21)
Then the abscissa of the minimum is:
m = —% = _2eﬁ260 = 2(2€§tlei1€:1 ) (22)

2

Assuming the orientation correction corresponding to 0OgnID isA#,, the distance

between 0 and 1 in fig. 10 i&¢, then the estimated orientation correction will be

A, = Aby + mA (23)

A simple pseudo code implementation of the orientatiomeaion is shown in
fig. 11. In fig. 11 on lines 01-18 average absolute range ralsdue calculated while
shifting the reference range readings left and rightiy The value ofAi changes
in the range oft PM_SEARCHWINDOW. The value of PMSEARCHWINDOW is
chosen so, that the range of shift is arour2D°. On lines 03-08 those indexes into
the current range readings array are calculated whichagvevith the shifted reference
range array. In a for loop average absolute range residtmlsatculated only for un-

tagged range readings. The average range residuals fooittespgonding shift values
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are then stored iarror; and inS;. Then the minimum error and the corresponding
shift value is found on lines 20-23, which is improved by flitfia parabola on lines
24-25.A¢ on line 25 is the angle corresponding to changedof

The computational complexity of this orientation estirmatapproach depends on
how the increments ol are chosen. If the reference scan is shifted by constarg-incr
ments for example by° then the computational complexity@n). The justifications
for using constant increments, opposed to the smallestipedscrement which is the

angular resolution of the scan are the following:
e The orientation estimates are improved by quadratic iolatjpn.

e When performing scan matching in real environments therénmr@rientation
due to fixedA: increments will likely to be much smaller than errors causgd

incorrect associations.

If the increments ofA: are chosen to be equal to the bearing resolution of the scans,
then assuming a constant size of search window in anglesyrifetation estimation
will be of O(kn) complexity, wheré: is proportional to the number of range measure-
ments per unit angle, i.e. to the angular resolution of tlaasc

The last possibility discussed here in the choice of theeiments ofA: is when
one starts from a coarse increment/®f and iteratively reducé\i together with the
size of the search window. In this case the computationalpbexity of O(nlogn)

may be achieved.

3 Experimental Results

The results of 4 experiments are presented where the pefamenof PSM, PSM-C
(polar scan matching using Cartesian coordinates) and pleinentation of ICP are
compared. In the first experiment simulated laser scans atehed and evaluated.
The remaining experiments use a SICK LMS 200 laser rangerfiada1° bearing
resolution in indoor environments. In the second experiyiaser scan measurements

are matched at 10 different scenes by positioning the laseually in known relative
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/**************Orientation estimation*************** **/

00k =0

Olfor Ai=—-PM_SEARCH WINDOW — +PM_SEARCH_WINDOW do
02 n=0,e=0

03 if Ai <=0then

04 min_ = —/N\i

05 max_i = numberof_points

06 ese

07 min_i =0

08 max_i = numberof_points—Ai
09 fori=mini— mazx.i—1do

10 if ltagged); & tagged,i+a; then
11 e=e+ |rl —rritail

12 n=n-+1

13  ifn > 0then

14 errory = %

15 dse

16 errory, = LARGE_.VALUE
17 G = Ai

18 k=k+1

19e_min = LARGE_VALUFE
20for i=0 — k-1do
21 iferror; < e_minthen

22 emin = LARGE VALUE

23 iomin =1

24m — ETTOT}_min4+1—E€TTOT{_min—1
2(2er7‘07‘73_mm—errom_mm,l—errom_mm+1)

25 90 = 90 + (ﬁi_min + m)A(b

Figure 11: Pseudo code for orientation estimation in padardinates.
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PM_MAX _ERROR 100cm
PM_MAX _RANGE 1000cm
PM_MAX_ITER 30
PM_MIN _VALID _POINTS 40
PM_MAX _DIFF 20cm
PM_SEARCHWINDOW 200
PM_MEDIAN _WINDOW 5
PM.C (70cm)? reduced tq10cm)? after 10 iterations

Table 1: Parameters used in scan matching during the exgetim

poses and the results are compared with the known relatsespan the third experi-
ment, the areas of convergence for particular pairs of seegvestigated. The scan
matching algorithms are evaluated in a SLAM experiment i fthurth experiment.
The parameters used in all scan matching experiments anenshdab. 1.

Every scan matching variant was stopped and divergencareéeldf the number of
matches sank below PMIIN VALID _POINTS. The terminating condition for PSM

and PSM-C was that either in 4 consecutive iterations

€ = [Azc[em]| + [Aycem]| + |A0["]] (24)

was smaller than 1 or the maximum number of iterations KX _ITER has been
reached. The need for a hard limit on the number of iterati®ngcessary, since PSM
position estimate might drift along corridors. Anothergea for a hard limit is to
prevent the possibility of PSM and PSM-C entering a limitleydn the case of ICP,
the terminating condition had to be choser as 0.1, because of the low convergence
speed of ICP. In the case ok 1, ICP often terminated with a too large error. Due to
the slow convergence speed, the maximum number of itesti@s chosen as 60 for
ICP, which is twice as much as that for PSM.

In PSM one position estimated step was followed by one aatent estimation
step. These 2 steps are considered as 2 iterations. In PSieSe3estimation steps
are followed by 1 orientation step. These 4 steps were cergicas 4 iterations. This
way of counting iterations is different fbu and Milios, 1997 where one position esti-

mation step followed by an orientation estimation step vaassiered as one iteration
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for IDC.
In the following results, all the run times were measured ®&0@MHz Celeron

laptop.

3.1 ICP Implementation

In the ICP implementation, the same preprocessing stef@patied to the range read-
ings of the reference and current scan as in PSM. Then in &eretiion the projection
of the current scan follows similarly fd.u and Milios, 1997. First each current scan
point is transformed into the reference scan’s Cartesiamdioate system. Current
scan points are then checked if they are visible from theeefee position by check-
ing the order of points. This is followed by checking if twoigigboring (in a bearing
sense) reference or current scan points occlude the cigtantpoint being checked.
Occluded current scan points are then removed, if they demasat one meter further
back than their interpolated reference counterparts.gtigtan points not in the field
of view of the laser at the reference location are removedels Wone of the refer-
ence scan points are removed like in the projection filtdGatmann, 200D Refer-
ence scan points are not searched in this projection filtelementation, therefore this
implementation is faster than g&utmann, 200D

After scan projection, the implementation of the closeshpassociation rule fol-
lows. For each remaining current scan point the closesteeée scan point is sought
in a+20° window. Then the worst 20% percent of associations are famddexcluded.
From the remaining associated point pairs pose correctimnsalculated using equa-
tions from[Lu and Milios, 1997 and the current pose is updated.

The ICP algorithm is simpler than that describedlin and Milios, 1997 because
the search window size is not reduced exponentially withrtheber of iterations.
However the window is not reduced in the PSM and PSM-C orfemtaearch either,
therefore the comparison is fair. Unlike jhu and Milios, 1997 projection of the
current scan with occlusion testing has been implementttbwi expensive searches
and therefore it has been included at the beginning of eacation. Performing an

occlusion check in each iteration opposed to once at thenbemj can increase the
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Figure 13: Evolution of x (circles), y (triangles) and orfetion (crosses) error ex-
pressed iflcm] and[°], respectively of PSM, PSM-C and ICP in the simulated experi-
ment. Grid size is 1ms x 10cm and 1ms ¥ 1fespectively. Iterations are marked with
small vertical lines on the horizontal axis. Each 10-thtiem is marked with a longer
vertical line.

accuracy of the results in the case of large initial errorenghmany visible points may

be removed incorrectly or many invisible points are lefttie scan incorrectly.

3.2 Simulated Room

Figure 12 shows two simulated scans of a room. The scanseméddl, except the x
and y position of the current scan was altered by 100cm. @iiem was altered by
15°. Figure 13 shows the evolution of errors of scan matchingguBiSM, PSM-C and
ICP. The final errors can be see in tab. 2.

From fig. 13 and tab. 2 one can observe that all tree algoridwhigved approxi-

mately the same final pose error. PSM-C achieved slightl/desuracy than ICP and

27



iterations| time [ms] | |Ax|[cm] | |Ay|[cm] | |A8] [°]
PSM 17 3.1 0.4 0.005 0.16
PSM-C 26 4.43 0.61 0.2 0.2
ICP 55 23.29 0.39 0.005 0.15

Table 2: Scan matching results of the simulated room.

PSM. Table 2 indicates that the terminating conditions kd@n matching approaches
are set to achieve the same accuracy under ideal conditimhsas the shown simu-
lated scan. From tab. 2 one can also see that ICP needed rantththe times as many
iterations as PSM to reach the same error. The ICP took mare#himes longer to
converge than PSM.

All three scan matching algorithms were able to approach pese error in the
simulated room experiment if the terminating condition (24) was lowered accord-
ingly. Loweringe too much when matching real scans may unnecessarily irecteas
runtime without reducing the final pose error which may besedly wrong associa-

tions.

3.3 Ground Truth Experiment

To determine how the polar scan matching algorithm varieope with different types
of environments, an experiment with ground truth inforrmativas conducted. On 4
corners of a 60x90cm plastic sheet, 4 Sick LMS 200 laser sranutlines were drawn
with different orientations. This sheet was then placed mifferent scenes ranging
from rooms with different degrees of clutter to corridorst each scene, laser scans
were recorded from all 4 corners of the sheet, and matcheidsigeach other with
initial positions and orientations deliberately set to Ghe iterative procedure. The
combinations of scans taken at corners which take part indhe matching are shown
in tab. 3. Ground truth values have been determined by miagstire left bottom
corners of each outline with respect to an accurate gridquion the plastic sheet.
The carefully determined ground truth values for curreansggoses in reference scan
frames which also correspond to the initial errors are alsplayed in tab. 3. From

tab. 3 one can see, that the initial errors were up to 80cniatisment and up t®7°
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orientation. During the experiments the environment re@aistatic.

A matched current and reference scan from each scene isglshin fig. 14 for
PSM, fig. 16 for PSM-C and fig. 18 for ICP. The evolution of pos®eis shown in
fig. 15 for PSM, fig. 17 for PSM-C and fig. 19 for ICP. The displdgeans have all un-
dergone median filtering. Only results for match 3 for ea@meare displayed because
match 3 contains a large initial error in displacement (7jland a large initial error
in orientation (-27°) as can be seen from tab. 3. Absolute residual between ground
truth and match results together with number of iteratiomd mntime are shown in
tables 5-7. There are 6 error vectors corresponding to eatthrfor each scene. In
tab. 5 “ERROR” denotes a situation, when scan matching swpipe to the lack of
corresponding points and divergence was declared.

Scene 0 is a room with a small degree of clutter. Current afeferce scans
were quite similar, and the matching results are good. Stdgseén a more cluttered
room where laser scans from different locations look déferas one can see in fig. 14.
The reason why the current scan differs from the referenme so much is not clear.
Perhaps the objects in the room were not uniform in the \adrdiicection and the laser
beam is not a small spot or the laser was slightly tilted. Tésiits for scene 1 (see
tables 5-7, row 1) are not good for any of the 3 implementatidut they are still
usable for example in a Kalman filter with an appropriate reestimate. In scene 2
the sheet was placed in front of a door to a corridor. The tesuk excellent. Scene
3 is a corridor without features. While the orientation erad the error in the cross
corridor direction were quite small, the along corridorogsrare large. PSM has the
largest along corridor error of all, since the solution caift ¢h the direction of the
corridor. With a proper error model (small orientation amdss corridor error, large
along corridor error) the results are still useful when usét a Kalman filter. Scenes
4,5 and 6 are similar to 3. In scene 4 PSM diverged once. Whsereing the results
for 4,5 and 6 in fig. 14, there are phantom readings appeatthg &orridor ends, even
though the real corridor ends were 30 meters away. The lilegglgon for the phantom
readings is a slight tilt of the laser beams causing readiogsthe floor to be obtained.

Scene 7 is situated on the border of a room and a corridor. &hats are good for all 3
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match ref. scan current scan X y 0
number| recorded at cornef recorded at corner [cm] | [cm] | [°]
0 0 1 39.41| 212 | 13
2.02 | 66.55| -14
38.84 | 66.99| 12
-21.94| 68.33| -27
14.04 | 68.33| -1
35.62| 9.33 | 26

gl B WN| -
N| R OO
W WINWN

Table 3: Combinations of scans taken at different cornemngrered 0-3) of the plastic
sheet for the ground truth experiment. These combinatiarked as match number 0-
5 were used for each scene. The shown poses of current stangsyect to reference
scans correspond to the initial errors in the ground trufieearent.

iterations| time [ms] | orientation err[°] | displacement err. [cm
PSM 18.57 3.35 0.86 3.8
PSM-C| 15.78 2.67 0.92 3.8
ICP 42.57 19.54 3.65 10.8

Table 4: Summary of average scan matching results in thengrvuth experiment.

scan matching methods. Scenes 8 and 9 were situated in a Td@mesults are quite
good except of two matches of ICP when ICP converged to logaihma.

To compare the 3 scan matching approaches average of emarber of iterations
and run times were calculated and shown in tab. 4. Averagdwgtlesorientation error,
iteration and run time were calculated for all scenes extphe scenes 4, 5, 6 with
the large phantom objects. In the average absolute dispkmeerror calculation, all
corridor like environments (3, 4, 5, 6) were left out, due lte targe along corridor
errors.

In the ground truth experiment, the implemented PSM and RSdlearly outper-
formed the implemented ICP. According to tab. 4 the perforoeaof PSM and PSM-C

are almost the same, with PSM being slightly more accuratslbwer.

3.4 Convergence Map

The purpose of this experiment is to find those initial posesifwhich scan matching
converges to an acceptable solution. Ideally one variemiti@ position and orienta-

tion of the current scan in a systematic way and observes ifathind solution is close
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Figure 14: Scan match result for each scene for match nunmihbeh8 experiment with
ground truth using PSM.
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Figure 18: Scan match result for each scene for match nunmiheh8 experiment with
ground truth using ICP.
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Figure 19: Match 3 scan match error evolution for each scetlea experiment with
ground truth using ICP. Error in x (circles), y (trianglesidaorientation (crosses) are
expressed iflemm] and[°], respectively. Grid size is 1ms x 10cm and 1ms X, I@-
spectively. Iterations are marked with small vertical $ir the horizontal axis. Each
10-th iteration is marked with a longer vertical line.
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0] (09,15 03)| (07,04, 1.3) | (1.1,02, 0.0 (15,04, 2.4) 06,74, 0.2) (36,01, 1.3)
14, 2.7 16, 2.9 18,3.3 20,36 12,2.2 12,22
1| (.1,17.3, 55) (7.7,13.1, 58) | (0.4,24.8, 83)| (10,15, 0.4 03,50, 0.6) (24,05, 0.6)
20,37 28,5.1 30,55 27,48 24,43 12,23
2 | (04,03, 03)| (0206, 01) | (05 1.0, 0.3) 02,09, 0.3) 02,48, 0.3) (1.0,2.7, 0.3)
8,15 24,42 20,36 20,35 28,4.9 12,22
3| 0.7,50, 02) | (518,253, 0.2)| (22.1,11.1, 0.3)] (90.8,19.4, 0.0) | (24.3,11.2, 0.1) | (55.3,46.3, 0.1)
18,3.2 12,2.2 20,36 30,5.2 16, 2.9 30, 5.2
7 ERROR (42,479, 1.3) | (09,43, 0.0) | (61.6,160.3, 4.7)| (73.8, 2105, 1.5)] (1.0,6.1, 0.1)
20,3.7 30,5.1 30,5.2 30,4.9 30, 5.1
5 | (06,203, 0.4)| (0.2,24.0, 0.4) | (1.3,10.7, 0.4) | (126,493, 05)| (3.6,6.6, 0.9) (1.6,4.6, 1.5)
24,4.4 30,55 30, 5.4 30, 5.4 21,38 19, 3.4
6 | (1.4,30.7, 0.3)] (2.0,63.0, 0.0) | (2.7,79.01, 02) | (23.0,85.2, 0.4) | (218,866, 0.3)| (0.8,4.7, 0.0)
18,3.3 16, 2.9 16, 3.0 30,5.2 16, 3.0 9,17
7| 0201, 00)| (1502 02) | (0.1,03, 0.0 (0.8,2.6, 0.3) 0.9,4.9, 0.0) (0.0,0.6, 0.3)
26, 4.7 16, 2.9 20,3.6 18,3.2 16, 2.9 15, 2.7
8§ | (0.7,00, 0.0) | (13,21, 01) | (0.1,04, 0.3) 06,06, 1.9) (0.0,5.6, 0.9) (06,04, 0.0)
11, 2.0 22,3.9 19,3.3 22,3.9 23,4.0 12,22
9| (3.7,1.7,08) | (20,04, 04) | (1.4 009, 0.2) (2.8,3.0, 0.5) 16,95, 0.7) @T.1,1.6, 0.2)
10, 1.9 18,3.3 18,3.3 18,3.3 12,2.2 13,2.4

Table 5: Absolute errors in x[cm], y[cm§]°], number of iterations and runtime [ms]
of the PSM algorithm in the experiments with ground truthwReorrespond to scenes
0-9, and columns correspond to matches 0-5.

0] (0.7,1.6, 02)| (08,04, 1.4) | (1.0,0.1, 0.3) 16,01, 2.4) (0.8,6.7, 0.3) (34,02 1.2)
13,2.3 20,35 13,2.3 21,36 13,2.3 12,21

1| (7.7,19.2, 58)| (7.0,15.7, 6.3) | (0.9,25.8, 9.0) | (14,09, 0.4) (05,5.2, 0.6) (1.0,0.0, 0.9)
10, 1.7 30, 4.9 30,5.0 30, 4.9 25,41 13,2.1

2 | (04,02 03)| (03,05 03) | (10,04, 05) 0.2, 1.0, 0.9) (0.7,5.1, 0.5) (1.0,2.4, 0.3)
9,16 17,2.8 12,2.1 17,2.9 10, 1.6 12,21

3 | (144,75, 03)| (49.2,23.9, 0.3)| (34.0,17.1, 0.2)] (55.1,10.7, 0.2) | (24.2,11.1, 0.0) | (28.5, 24.3, 0.2)
8,14 6,1.0 6,1.0 9,15 6,1.0 8,1.6

7| (2.7,46.7, 26)| (6.1,57.9, 1.6) | (05, 10.7, 0.2) | (51.7, 128.0, 5.3)| (70.7,117.7, 9.6)| (6.2, 24.6, 0.2)
17,2.8 18, 3.0 18, 2.9 30,4.8 30,45 16, 2.6

5 | (1.2,16.7, 0.6)] (0.1,41.0, 0.4) | (10,243, 03)| (13.7,541, 04)| (3.2,2.5, 1.2) 09,02, 0.7)
17,2.9 17,2.9 21,37 13,2.2 24,41 17,2.9

6 | (13,232, 0.4)| (1.6,59.3, 0.3) | (2.7,73.0, 0.0) | (19.0,69.1, 0.3) | (20.3,79.8, 0.1)| (1.1, 3.2 0.3)
17,2.9 17,2.8 13,2.2 16, 2.6 17,2.9 9,1.8

7 | (10,01, 02) | (1.0,0.2, 02) | (06,01, 0.2) (15,25, 0.3) 12,49, 0.0) 0.1,1.1, 0.2)
14,2.3 17,2.8 13,2.2 17,2.8 13,2.2 13,2.2

8 | (05,06, 02)| (L1,20, 04) | (03 04, 05) (06,06, 1.9) 01,57, 1.0) 02,00, 0.0)
13,2.2 21,35 18, 2.9 21,41 24,40 14,23

9 | (1516, 06)| (1512 02) | (16 23, 0.0) (24,26, 0.0) (01,52, 05) 08,1.3, 0.2)
13,2.2 24,41 13,2.2 28,47 20,35 17,2.9

Table 6: Absolute errors in x[cm], y[cm§]°], number of iterations and runtime [ms]
of the PSM-C algorithm in the experiments with ground truRows correspond to
scenes 0-9, and columns correspond to matches 0-5.
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(15,07, 0.9)
50, 23.8

07,12, 3.9)
60, 32.7

(11,00, 05)
22,11.4

(61,72 11.7)
53, 26.6

(04,50, 1.9)
59, 29.8

5,06, 0.7)
56, 26.6

(76,176, 6.0)
60, 26.8

(21,04, 0.3)
33,13.7

(125,289, 9.4)
16, 6.8

(35.3,61.9, 30.9)
11,4.3

20,69, 0.3)
60, 25.8

(431,684, 20.4)
34,119

05,06, 0.4)
35,17.5

37,101, 47)
32,14.2

(01,12, 05)
60, 28.7

30,27, 6.1)
47,241

(10,70, 05)
60, 27.9

07,16, 2.0)
60, 26.2

(36,16, 0.2
8,3.5

(@45,22.0, 0.0)
22,115

(51.3,25.9, 0.6)
60, 29.3

(52.6,9.6, 0.0)
60, 26.7

@9.4,17.8, 0.0)
60, 28.4

(3.7.3.6, 0.0)
60, 25.4

(1.9,04, 2.9)
42,18.0

(6.7,63.2, 2.0)
22,84

(62,582, 1.0)
60, 22.9

(45,363, 1.6)
55, 20.9

(8.0,67.8, 2.6)
14,55

(5.5, 23.0, 0.0)
28,11.1

02,03, 0.2)
32,13.6

(7.9, 84.8, 7.0)
60, 24.5

(03,588, 0.2)
24,10.9

({129,991, 7.9
60, 24.4

({14.0,63.7, 0.0)
19,10.0

(2.4,96, 0.9)
45,18.1

00,6.7, 0.0)
36,17.4

(1.6,63.7, 05)
31,13.0

(2.0,66.2, 0.9)
22,9.6

(16.6,61.0, 0.5)
60, 23.8

(16.8, 68,5, 0.9)
9,4.4

(0.4, 2.8, 0.0)
26, 10.6

01,00, 0.0)
15,6.4

(08,08, 0.3)
28,11.9

05,02, 0.0
23,9.9

@.2,2.2, 06)
29,11.2

04,61, 1.9)
24,125

(0.1,0.3, 0.6)
31, 13.0

05,02, 0.9)
48, 20.4

01,06, 1.2)
25,11.2

1.3,00, 1.0)
43,19.4

07,13, 00
45, 19.3

(20,76, 2.0)
49,22.9

0.1,06, 0.0)
60, 27.9

07,09, 05)
49,226

(211,52.7, 123)
60,29.3

(05,03, 0.4)
29,13.0

(28.3,36.2, 29.0)
60, 26.5

(14,50, 1.0)
32,15.3

(03,0.7, 0.4)
60, 24.4

Table 7: Absolute errors in x[cm], y[cmd[°], number of iterations and runtime [ms]
of the ICP algorithm in the experiments with ground truthwRaorrespond to scenes
0-9, and columns correspond to matches 0-5.
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Figure 20: PSM, PSM-C and ICP convergence maps.
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scene | PSM[m?] | PSM-C[m?] | ICP [m?]
0 0.00 0.01 0.79
1 3.52 3.26 0.23
2 2.34 2.26 1.45
3 0.26 0.31 0.49
4 0.00 0.00 0.12
5 0.96 0.61 0.18
6 0.14 0.26 0.03
7 4.01 3.56 1.09
8 1.39 0.49 4.36
9 7.11 5.38 2.32

average 197 1.61 1.11

Table 8: Convergence areas for match 3 of all scenes for PSM;€ and ICP.

enough to the true solution. Areas of convergence can balizsa by drawing the
trajectory of the current scan into an image. To make vigattin simpler just like
in [Dudek and Jenkin, 200@nly the initial pose was changed.

Scan pairs from scenes 0-9, match 3 were selected for theergamce map ex-
periment. Match 3 was selected in this experiment becaugts targe difference in
the point of view {1cm, 27°) for the current and reference scan. The initial position
varied from -250cm to 250cm for x and y in 10cm increments. ififit@l orientation
error was alway87°. The reason why the position is varied instead of the ortentés
that (i) PSM can find the correct orientation quickly if thespimn is correct, therefore
varying the orientation is not interesting, (ii) the largg lbonstant initial orientation
error chosen poses a challenge. The resulting convergéaisdgr scene 9 can be seen
in fig. 20. Dark circles represent initial positions where #tan matching algorithms
failed for the lack of associated points. Light colored leiscrepresent final positions.
Black lines correspond to the trajectories of the scansy Grasses mark the correct
current scan positions.

When examining fig. 20, one has to keep in mind that in all scaiching im-
plementations, associations having a larger error thamueter were discarded. To
get an objective value for the performance of the implentémnta, the total number

of matches and the number of successful matches were coudtedessful matches
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were matches with less than 10cm error in position 2heh orientatio. The total
number of scan matching trials was 2500 which corresponds trea oR5m?2. PSM
had 711 successful matches which means that it convergbd tmtrect solution from
around &.1m? area. PSM-C had 538, givirig38m?. ICP had 232 correct ones which
corresponds ta@.32m?.

A non-graphical representation of all the results can be ge¢ab. 8. From this
table one can observe that PSM has the largest average areaveirgence followed
by ICP and PSM-C. The area of convergence of PSM was in 5 casgey than that
of ICP. The small areas of convergence from scenes 3-6 weréodine corridor like
character of the scenes, where the lack of features limidearacy of scan matching
results in the along corridor direction. The 0 area of cogeace in scene 0 was caused
by a minimum for orientation witl2.4° error just at the vicinity of the correct pose.

From this experiment one can conclude, that on average theeimented PSM
converged from a larger area than ICP when using the datarseténe 0-9, match 3.

PSM-C performed slightly worse than PSM, but better than ICP

35 SLAM

A simple implementation of Kalman filter SLAM was programmiadC++ to eval-

uate the practical usability of the described scan matchiathod. The description

in [Davison, 199Bwas followed at the implementation of the Kalman filter SLAMs

in [Bosseet al., 2004 laser scanner poses were used as landmarks. With each land-
mark the associated laser scan was also stored. Each timehibiegot to a position
which was further than one meter from the closest landmanmkyalandmark was cre-
ated. Each time the robot got closer than 50cm Hifdto a landmark not updated in

the previous step, an update of the landmark was attemptedseCutive scans were

not matched. This is because the short term odometry of duat nwhen traveling on

flat floors is more accurate (see section 3.6) than the impieadescan matching algo-

2|n the case of unsuccessful matches, the scan matchingsgredtter converged to local minima or
diverged. In a simplified view one can imagine that the paifita fixed reference scan are connected to the
associated points of the current scan with rubber stringsv€rgence to a local minimum occurs, when for
given associations the net force on the current scan eqewas z
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Figure 21: Maps resulting from odometry only, SLAM with PSRISM-C and ICP.
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rithms applied to data from the robot’s laser range findecaBse Kalman filter SLAM
requires an error estimate for the scan matching resultpplsierror model was imple-
mented, where a preset covariance matrix is scaled withoilngrs of average absolute
range residual. For non-corridor areas a diagonal pres@riemce matrix was used.
For corridor like areas, a non-diagonal matrix was chosesxpvess the larger along-
corridor uncertainty. The classification of scans to canrighd non-corridor like areas
was done by using the variance of orientations of line segsradstained by connecting
neighboring points of a scan. More on our SLAM implementatian be read ifDiosi
and Kleeman, 2045

The raw data set used in the Kalman filter SLAM is shown in fig. Zhe struc-
tures in the middle of the two rooms on the left are office clgsicThe third room is
a seminar room filled with tables and chairs. The table and &gs appear as a ran-
domly distributed point cloud. The robot was equipped witle SICK LMS 200 and
odometry and started from the corridor intersection betwibe 2 rooms on the left. It
visited the left room, and after one loop, it proceeded thiothe corridor to the middle
room where it performed a large and a small loop and contitudéte third (seminar)
room. In the third room the robot was twice driven over a 1.56gh cable protector
on the floor at 40cm/s and at 20cm/s speed. After the visitedtird room the robot
returned to its initial location from which it traveled tcetfiar end of the corridor, went
around a loop and came back. During the traversal of the@mwient, no less than 10
people walked in the view of the laser scanner and some dasepened and closed.
Considering the presence of walking people, repetitivaaes, long corridors and 2
collisions with an obstacle on the floor, this dataset is hethost ideal for mapping.

The SLAM results are shown in fig. 21. The SLAM results are ificgmtly better
than those from odometry only (fig. 21, top). All three scantahamg approaches
performed similarly. The odometry of the robot was reastynaalibrated. This was
necessary to be able to perform loop closing in the repettibicle environment of
the second room without the implementation of special Ildoping algorithms.

In the C++ implementation of scan matching and SLAM, the 20utés worth of

data consisting of6 x 10® scans and2 x 10* odometry readings took about 2 minutes
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Figure 22: The alignment of scans using odometry (top;IEBf§M (top-right), PSM-C
(bottom-left) and ICP (bottom-right). Grid size is 1x1m.

to process on a 900MHz Celeron laptop for all variants. Thezee 100 successful
(no divergence) scan matches for PSM SLAM variant with anaye of 3.1ms scan
matching time. There were 100 scan matches with PSM-C, witin& average time.

ICP was successfully used 67 times with an average of 20.2ms.

3.6 Scan Matching vs Odometry

To support the statement in the previous section about theracy of our robot’s
odometry with respect to scan matching, a simple compai$adometry and the
implemented scan matching algorithms was performed.

In this experiment, data logged in the leftmost room in theABLexperiment

(fig. 21) was used. Laser scans aligned using the pose ddrimedodometry are
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shown in fig. 22. In the same figure the laser scans aligned wittthing consec-

utive laser scans (logged at more than 30Hz) using PSM, PSMeCICP are also

shown. Unlike in previous experiments, the scan matchimgagrhes were run for

1000 iterations, which is much longer than required for @gence, in order to show
the behavior when the number of iterations is unlimited uFég22 displays scans and
robot poses every 0.5 seconds.

By observing fig. 22 it is clear that the results obtained bgrodtry outperform
scan matching in this experiment. None of the scan matctppgoaches produced a
good result. One of the problems in the scan matching reisulgt the right side of
the room is misrepresented. The error was due to the rohatlirey from the bottom
right corner to the top right corner through a narrow corridetween a partition and
the wall. At some places in this narrow corridor all but 8 gsifrom 181 points
were on the side walls. These 8 points were not enough toathyrraign the along
corridor position of the robot. The ICP implementation wagrendisadvantaged than
the other approaches because in the implementation, oalpekt 80% of the point
correspondences were used in the pose calculation. PSM SiMd@®suffered from
drift after the robot performed the turn at the bottom rigirner. After the turn all but a
few points were on the right-side wall which contained omg @orner. In this case the
1000 iterations were enough to cause a significant drift seeeral scan matches. The
drift appears as a discontinuity in the robot’s positiorofgh by circles) in the bottom
right corner. Better results with all three scan matchingrapches were obtained when
every 18" scan was matched, because with a smaller number of scanesd¢sis drift
accumulates. PSM and PSM-C results were better if matchagstopped when the
pose change of the current scan became small, because icatidsthe drift in the
corner did not appear at all. When PSM was run with the parmmeised in the rest
of the experiment the resulting map was better than that i igEven after extensive
trials, no set of parameters could be found that outperfdrthe results using robot

odometry.
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3.7 Discussion

The goal of the experiments was to give an objective evalnaif PSM, PSM-C and
ICP in a variety of real environments. To ensure objectigsrsuring the tests, all
parameters values of PSM and PSM-C were the same. Parasteiezd between PSM
and ICP were also the same including the search window sizepéthe termination
condition.

One can compare scan matching algorithms in different warys:can run them for
a given time and observe which one has the smallest pose errone can run them
for a given number of iterations. We have chosen a third pdggiwhere we have
set the parameters for the terminating condition to achéproximately the same
accuracy in a simulated experiment. Having approximatedyseme accuracy enabled
us to investigate convergence time, number of iteratioisthe area of convergence.
Because ICP converges slower than PSM and PSM-C the teingrainditions of
ICP i.e. the threshold on pose change and the maximum nunfilierations were
changed. The rest of the shared parameters had identices/aPSM had only one
parameter, PMC which ICP did not. The only parameter which ICP had and PSM di
not was the percentage of the worst point matches to be disdar

The simulation results indicate that PSM and PSM-C can ageve much shorter
time and in much less iterations than ICP while obtainingsémme accuracy. These in-
dications were then confirmed in the experiment with grouatthtin which 60 matches
were performed in different environments. PSM was on averagrly 6 times (PSM-
C more than 7 times) faster than ICP (see tab. 4). The numhtarafions for PSM
were 2.3 times (PSM-C 2.7 times) less than for ICP. This natiald have been even
better if one orientation and one translation step woulatlen counted as 1 iteration
as in IDC instead of 2. Table 4 indicates that ICP is much muaegurate than PSM.
However a close examination of lines 0—2 and 7-9 of tab. &alswthat ICP converged
to incorrect solutions far from the correct ones more ofteantPSM. If these cases
are ignored, then the accuracy of PSM and ICP was very siinildre experiments.
Having a similar accuracy is important because our compaiiis based on an equal

accuracy requirement. The large number of convergenceShtao a far away solu-
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tion indicate that ICP has a smaller area of convergenceRi&ivi. The convergence
map experiment confirms this hypothesis. In the area of agevee experiments on
average PSM converged from almost double the area (PSM&Xiinés) than that of

ICP.

The reason why PSM needs less time for each iteration tharid®Bcause the
correspondences are chosen using a matching bearingasrjtdtus no search for cor-
responding points is necessary for translation calculatiche orientation calculation
step which is of O(kn) complexity is inexpensive as well. Hoer ICP needs to search
for corresponding points what has a complexity of O(kn) & search window is lim-
ited. The search in ICP involves much more operations thaniththe orientation
estimation step of PSM, therefore in our case with 181 scam$aeach iteration of
PSM was much faster than that of ICP.

PSM did not only need less time for each iteration but it alseded less iterations.
The pose estimation step in PSM can estimate the positioheottirrent scan in a
few steps if the correct orientation is known. The orietatestimation step on the
other hand can estimate the correct orientation in one §@®garrect pose is given.
The orientation estimation step had one more great advamiegjde its quickness. It
searched through£20° interval for the most suitable orientation, which enabtgd i
move the pose out of local minima. One can see the effect afribatation search on
the PSM-C algorithmin fig. 17 where in most graphs there gdarientation reduction
in the 4-th iteration where the orientation search is firstqrened.

In the experiments the search window for the PSM orientatiiimation was cho-
sen to bet20°. Choosing a small window may slow down the convergence amid li
the ability to jump out from a local minimum. Choosing a lavgeadow may unneces-
sarily increase the processing time. Large search windosysatiow convergence to
wrong solutions as well. A-90° search window may allow convergence to an orien-
tation off by90°, due to the rectangular nature of rooms.

One would intuitively think, that in cases with a large ialtorientation error one
would benefit from enlarging the orientation search windewdnd the initial angular

error. However, this may not always be the case. Match 3 imgtband truth experi-
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ments contained an initial error ®7°. Surprisingly the extension of the search window
from 20° to 30°, did not result in significant reduction in the number ofatitons. We
have investigated scenes 0-3. Even though, in most of tresdhe orientation error
was reduced t@° — 2° in the first orientation estimation step, the position eation
could not follow.

Interpolation in the orientation search helps to increhsedrientation estimation
accuracy beyond the angular resolution of the laser randeffisurprisingly the pres-
ence of interpolation does not make a significant differént¢lee performance of PSM
on the ground truth dataset when the orientation searchrisrpged atAi = 1° in-
crements. AtA; = 4°, however without interpolation PSM’s average orientagoror
rose to1.64° (originally 0.84°). The average displacement error became 4.6¢cm (orig-
inally 3.8cm). The use of interpolation reduced the origataerror to1.2° and the
displacement error to 3.9cm. This indicates, that with tbe of interpolation one can
further reduce the run time of PSM without substantiallyrdasing the accuracy. This
can be achieved by increasing the interval in between caotigsecerror calculations.
Alternative ways for changing: have not been investigated.

As mentioned in section 2.3 the pose estimate of PSM (anédftverPSM-C) may
drift on featureless corridors. This can be seenin fig. 14exis 3. The driftis apparent
from the constant rate position change while having an tatem error close to 0. The
amount of drift at scene 3, match 3 was only 22cm. Drift is ndyy@ problem for
PSM but for ICP as well as it can be seen in fig. 18, where theipogrifted 25cm.
However we did not notice any drift when ICP was implementétout interpolation.
The experienced drifts were small in most cases, and we doamstider them as an
important factor since on featureless corridors we can at#rchine the correct along
corridor position. In the SLAM experiment we have handledidors by detecting
them and by modeling the scan matching error with a very largar in the direction
of the corridor.

Some scan matching approaches which employ differenegiest for estimating
orientation and position can converge to an oscillatoriesia. to a limit cycle. When

the 3 implemented scan matching algorithms were run for i@ations, we were
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able to find examples of limit cycles for all 3 of them. Howeube limit cycles were
at least an order of a magnitude smaller than the errors iedtimated poses, therefore
we did not investigate any further.

It is clear that PSM grossly outperformed the implementeld lilit how would it
fare compared to other point to point scan matching appesMblICAMinguezet
al., 2004 is a recent high performing approach. In fig. 4[dinguezet al., 2004,
MbICP’s runtime and number of iterations are compared witR’s. The figure can
be interpreted to mean that MbICP needs only 66% of ICP’s musrobiterations to
converge. The runtime of MbICP appears to be 75% of ICP’s. ungvound truth
experiment, the difference between ICP and PSM was muchrigsge tab. 4). PSM
needed only 44% (PSM-C 37%) of ICP’s number of iterationstoverge. The differ-
ence in runtime was even more dramatic. PSM needed only 17&#d runtime, and
PSM-C needed 13%.

The performance of PSM and PSM-C were similar albeit PSM-G faater in
the tests and PSM had a larger area of convergence. Both PEN3IM-C use the
matching bearing association rule to select corresponpaigts. Both approaches
minimize the sum of square range residuals. The differeatgden PSM and PSM-C
lies in the way this minimization is performed. In PSM the ifioa is estimated by
applying linear regression to the linearized transfororatvhich transforms current
scan points into the reference scan’s polar coordinatedradrientation is sought by
shifting the current scan left and right until best matchwtiite reference scan is found.
In PSM-C pose estimation is performed using similar equatas in ICP. Every fourth
iteration is the same orientation estimation step as in PBM.choice between PSM
and PSM-C should depend on the requirements for the systeme heeds high speed
then one should choose PSM-C. For applications requiringtarea of convergence,
the PSM is the right choice.

The purpose of the SLAM experiment was to test PSM in an agtdin. Even
though the detection and tracking of moving objects wasmptémented, the system
tolerated moving persons during the experiment. Moving@es can have a bad effect

on the scan matching result if they are represented by manyspand if they are close
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to an another object. In this case points representing theahwcan be associated to
the points representing the other object. The same comsides apply to table and
chair legs which were not removed by the median filter.

In the SLAM experiment several small loops were successfilised. Had the
loops been large, the local laser scan matching approaahgsl wot have been able
to close the loops. However due to their high speed, PSM aiwi®$ay be used to
close larger loops. Whenever the current scan can be asbtiaseveral reference
scans from the map, the current scan should be matched witi tiem with the
initial poses set to 0. One should only update the state oKdiman filter when a
unigue match is found. Such an approach for loop closure nmay vecause PSM
enables hundreds of scan matches per second even on slowtessapThe second
reason why this approach may work is because in most bugdinig reasonable to
expect that robots will pass approximately the same patbetwinen closing a loop.
This means, that there will be current scans which were tak#re proximity of some
of the reference scans stored in the map. If a reference saartaken within the
convergence area of the current scan, then the two scansecaratched by setting
the initial poses of the current and reference scan to 0, iinaring the robot pose

estimate which may contain a large error.

4 Conclusions and Future Work

In this paper a laser scan matching method is proposed whickswvith the laser
measurements in their native, polar form. The polar scarchireg (PSM) approach
belongs to the class of point to point matching algorithmSMRakes advantage of
the structure of laser scanner measurements by operatihg ilaser scanner’s polar
coordinate system. The direct use of range and bearing mezasuts coupled with a
matching bearing association rule and a weighted rangguasininimization, results
in anO(n) complexity pose estimation approach and’¥ikn) complexity orientation
estimation approach. i@(kn) of the orientation estimation approagtis proportional

to the angular resolution of the laser scans. Opposed t®thé) projection filter
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of [Gutmann, 200D preprocessing of scans is done wiftin) complexity if there
are no occlusions in the current scan when viewed from thereate scan’s position.

A variant of PSM, PSM-C is also introduced where the trafmta¢stimation step of
PSM is replaced with a weighted variant of the pose estimagiguations froniLu

and Milios, 1997. In PSM-C due to the use of the matching bearing rule, equstio
from [Lu and Milios, 1997 also minimize the sum of square range residuals. For
comparison, an ICP scan matching algorithm has been impite

Simulation of matching scans in a room demonstrates thatuhent scan pose
error decreases more quickly with PSM and PSM-C to a smalieyahan with our
ICP implementation. Scan matching experiments using reshs were performed
with a SICK LMS 200 in a variety of environments. Comparisdnihe results with
ground truth revealed that in the tests, the performanc&M Bnd PSM-C surpasses
that of our ICP implementation in speed. However when matghorridors, a position
drift in the direction of the corridor has been observed A®M. This drift was also
observed when using PSM-C or ICP. A comparison of areas ofexgence for PSM,
PSM-C and ICP were performed. It was found, that PSM conwektgehe correct
solution from a larger area than PSM-C and our ICP implentiamta

The usability of the proposed scan matching approachesdes tested by per-
forming Kalman filter SLAM with scan matching in a static emnment. The maps
created by PSM and PSM-C are ICP are similar in quality as shiavfig. 21. In
fig. 21, the quality of the maps can be judged by the straigistoéthe corridor and by
the presence of walls with multiple representations.

As future work, the tracking and tagging of moving objectsiiddoe considered.
The real advantage of the efficient PSM over other methodshwéiinploy search to
find corresponding points becomes more apparent when thberushpoints is large.
One such case is in 3D scan matching. It would be interestikgaw if PSM could be
adapted to 3D. The projection filter and position estimatiauld be still of O(mn)
and O(n) complexities, respectively. Estimation of the 3 oriematangles if done
sequentially would still result iO(kn) complexity, wherek is proportional to the

number of range readings per unit angle. Even though 3D sedching with a mod-
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ified PSM is an exciting problem, due to the lack of time we hveonsider it as

possible future work.
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