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Abstract

Human-chosen text passwords, today’s dominant form of

authentication, are vulnerable to guessing attacks. Un-

fortunately, existing approaches for evaluating password

strength by modeling adversarial password guessing are

either inaccurate or orders of magnitude too large and

too slow for real-time, client-side password checking.

We propose using artificial neural networks to model

text passwords’ resistance to guessing attacks and ex-

plore how different architectures and training methods

impact neural networks’ guessing effectiveness. We

show that neural networks can often guess passwords

more effectively than state-of-the-art approaches, such

as probabilistic context-free grammars and Markov mod-

els. We also show that our neural networks can be highly

compressed—to as little as hundreds of kilobytes—

without substantially worsening guessing effectiveness.

Building on these results, we implement in JavaScript

the first principled client-side model of password guess-

ing, which analyzes a password’s resistance to a guessing

attack of arbitrary duration with sub-second latency. To-

gether, our contributions enable more accurate and prac-

tical password checking than was previously possible.

1 Introduction

Text passwords are currently the most common form of

authentication, and they promise to continue to be so

for the foreseeable future [53]. Unfortunately, users of-

ten choose predictable passwords, enabling password-

guessing attacks. In response, proactive password check-

ing is used to evaluate password strength [19].

A common way to evaluate the strength of a pass-

word is by running or simulating password-guessing

techniques [35,59,92]. A suite of well-configured guess-

ing techniques, encompassing both probabilistic ap-

proaches [37,65,93] and off-the-shelf password-recovery

tools [74, 83], can accurately model the vulnerability of

passwords to guessing by expert attackers [89]. Unfortu-

nately, these techniques are often very computationally

intensive, requiring hundreds of megabytes to gigabytes

of disk space, and taking days to execute. Therefore, they

are typically unsuitable for real-time evaluation of pass-

word strength, and sometimes for any practically useful

evaluation of password strength.

With the goal of gauging the strength of human-chosen

text passwords both more accurately and more prac-

tically, we propose using artificial neural networks to

guess passwords. Artificial neural networks (hereafter

referred to as “neural networks”) are a machine-learning

technique designed to approximate highly dimensional

functions. They have been shown to be very effective at

generating novel sequences [49,84], suggesting a natural

fit for generating password guesses.

In this paper, we first comprehensively test the impact

of varying the neural network model size, model archi-

tecture, training data, and training technique on the net-

work’s ability to guess different types of passwords. We

compare our implementation of neural networks to state-

of-the-art password-guessing models, including widely

studied Markov models [65] and probabilistic context-

free grammars [59, 93], as well as software tools using

mangled dictionary entries [74, 83]. In our tests, we

evaluate the performance of probabilistic models to large

numbers of guesses using recently proposed Monte Carlo

methods [34]. We find that neural networks guess pass-

words more successfully than other password-guessing

methods in general, especially so beyond 1010 guesses

and on non-traditional password policies. These cases

are interesting because password-guessing attacks often

proceed far beyond 1010 guesses [44,46] and because ex-

isting password-guessing attacks underperform on new,

non-traditional password policies [79, 80].

Although more effective password guessing using

neural networks is an important contribution on its own,

we also show that the neural networks we use can be

highly compressed with minimal loss of guessing ef-
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fectiveness. Our approach is thus far more suitable

than existing password-guessing methods for client-side

password checking. Most existing client-side password

checkers are inaccurate [33] because they rely on simple,

easily compressible heuristics, such as counting the num-

ber of characters or character classes in a password. In

contrast, we show that a highly compressed neural net-

work more accurately measures password strength than

existing client-side checkers. We can compress such a

neural network into hundreds of kilobytes, which is small

enough to be included in an app for mobile devices, bun-

dled with encryption software, or used in a web page

password meter.

To demonstrate the practical suitability of neural net-

works for client-side password checking, we implement

and benchmark a neural-network password checker in

JavaScript. This implementation, which we have re-

leased as open-source software,1 is immediately suitable

for use in mobile apps, browser extensions, and web page

password meters. Our implementation gives real-time

feedback on password strength in fractions of a second,

and it more accurately measures resistance to guessing

than existing client-side methods.

In summary, this paper makes three main contribu-

tions that together substantially increase our ability to

detect and help eliminate weak passwords. First, we pro-

pose neural networks as a model for guessing human-

chosen passwords and comprehensively evaluate how

varying their training, parameters, and compression im-

pacts guessing effectiveness. In many circumstances,

neural networks guess more accurately than state-of-art

techniques. Second, leveraging neural networks, we cre-

ate a password-guessing model sufficiently compressible

and efficient for client-side proactive password checking.

Third, we build and benchmark a JavaScript implementa-

tion of such a checker. In common web browsers running

on commodity hardware, this implementation models an

arbitrarily high number of adversarial guesses with sub-

second latency, while requiring only hundreds of kilo-

bytes of data to be transferred to a client. Together, our

contributions enable more accurate proactive password

checking, in a far broader range of common scenarios,

than was previously possible.

2 Background and Related Work

To highlight when password strength matters, we first

summarize password-guessing attacks. We then discuss

metrics and models for evaluating password strength,

as well as lightweight methods for estimating password

strength during password creation. Finally, we summa-

rize prior work on generating text using neural networks.

1https://github.com/cupslab/neural_network_cracking

2.1 Password-Guessing Attacks

The extent to which passwords are vulnerable to guess-

ing attacks is highly situational. For phishing attacks,

keyloggers, or shoulder surfing, password strength does

not matter. Some systems implement rate-limiting poli-

cies, locking an online account or a device after a small

number of incorrect attempts. In these cases, passwords

other than perhaps the million most predictable are un-

likely to be guessed [39].

Guessing attacks are a threat, however, in three other

scenarios. First, if rate limiting is not properly im-

plemented, as is believed to have been the case in the

2014 theft of celebrities’ personal photos from Apple’s

iCloud [50], large-scale guessing becomes possible. Sec-

ond, if a database of hashed passwords is stolen, which

sadly occurs frequently [20, 23, 27, 45, 46, 67, 73, 75, 87],

an offline attack is possible. An attacker chooses likely

candidate passwords, hashes them, and searches the

database for a matching hash. When a match is found,

attackers can rely on the high likelihood of password

reuse across accounts and try the same credentials on

other systems [32]. Attacks leveraging password reuse

have real-world consequences, including the recent com-

promise of Mozilla’s Bugzilla database due to an admin-

istrator reusing a password [76] and the compromise of

20 million accounts on Taobao, a Chinese online shop-

ping website similar to eBay, due to password reuse [36].

Third, common scenarios in which cryptographic key

material is derived from, or protected by, a password

are vulnerable to large-scale guessing in the same way

as hashed password databases for online accounts. For

instance, for password managers that sync across de-

vices [52] or privacy-preserving cloud backup tools (e.g.,

SpiderOak [82]), the security of files stored in the cloud

depends directly on password strength. Furthermore,

cryptographic keys used for asymmetric secure messag-

ing (e.g., GPG private keys), disk-encryption tools (e.g.,

TrueCrypt), and Windows Domain Kerberos Tickets [31]

are protected by human-generated passwords. If the file

containing this key material is compromised, the strength

of the password is critical for security. The importance

of this final scenario is likely to grow with the adoption

of password managers and encryption tools.

2.2 Measuring Password Strength

Models of password strength often take one of two con-

ceptual forms. The first relies on purely statistical meth-

ods, such as Shannon entropy or other advanced sta-

tistical approaches [21, 22]. However, because of the

unrealistically large sample sizes required, we consider

these types of model out of scope. The second concep-

tual approach is to simulate adversarial password guess-
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ing [34, 65, 89]. Our application of neural networks fol-

lows this method. Below, we describe the password-

guessing approaches that have been widely studied in

academia and used in adversarial password cracking, all

of which we compare to neural networks in our analyses.

Academic studies of password guessing have focused on

probabilistic methods that take as input large password

sets, then output guesses in descending probability or-

der. Password cracking tools rely on efficient heuristics

to model common password characteristics.

Probabilistic Context-Free Grammars One proba-

bilistic method uses probabilistic context-free grammars

(PCFGs) [93]. The intuition behind PCFGs is that pass-

words are built with template structures (e.g., 6 letters

followed by 2 digits) and terminals that fit into those

structures. A password’s probability is the probability

of its structure multiplied by those of its terminals.

Researchers have found that using separate training

sources for structures and terminals improves guess-

ing [59]. It is also beneficial to assign probabilities

to unseen terminals by smoothing, as well as to aug-

ment guesses generated by the grammar with passwords

taken verbatim from the training data without abstracting

them into the grammar [60]. Furthermore, using natural-

language dictionaries to instantiate terminals improves

guessing, particularly for long passwords [91].

Markov Models Using Markov models to guess pass-

words, first proposed in 2005 [70], has recently been

studied more comprehensively [37, 65]. Conceptually,

Markov models predict the probability of the next char-

acter in a password based on the previous characters, or

context characters. Using more context characters can

allow for better guesses, yet risks overfitting. Smooth-

ing and backoff methods compensate for overfitting.

Researchers have found that a 6-gram Markov model

with additive smoothing is often optimal for modeling

English-language passwords [65]. We use that configu-

ration in our analyses.

Mangled Wordlist Methods In adversarial password

cracking, software tools are commonly used to generate

password guesses [44]. The most popular tools transform

a wordlist (passwords and dictionary entries) using man-

gling rules, or transformations intended to model com-

mon behaviors in how humans craft passwords. For ex-

ample, a mangling rule may append a digit and change

each ‘a’ to ‘@’. Two popular tools of this type are Hash-

cat [83] and John the Ripper (JtR, [74]). While these ap-

proaches are not directly based on statistical modeling,

they produce fairly accurate guesses [89] quickly, which

has led to their wide use [44].

2.3 Proactive Password Checking

Although the previously discussed password-guessing

models can accurately model human-created pass-

words [89], they take hours or days and megabytes

or gigabytes of disk space, making them too resource-

intensive to provide real-time feedback to users. Current

real-time password checkers can be categorized based

on whether they run entirely client-side. Checkers with

a server-side component can be more accurate because

they can leverage large amounts of data. For instance, re-

searchers have proposed using server-side Markov mod-

els to gauge password strength [26]. Others have studied

using training data from leaked passwords and natural-

language corpora to show users predictions about what

they will type next [61].

Unfortunately, a server-side component introduces

substantial disadvantages for security. In some cases,

sending a password to a server for password checking

destroys all security guarantees. For instance, passwords

that protect an encrypted volume (e.g., TrueCrypt) or

cryptographic keys (e.g., GPG), as well as the master

password for a password manager, should never leave

the user’s device, even for proactive password checking.

As a result, accurate password checking is often miss-

ing from these security-critical applications. In cases

when a password is eventually sent to the server (e.g.,

for an online account), a real-time, server-side compo-

nent both adds latency and opens password meters to

powerful side-channel attacks based on keyboard timing,

message size, and caching [81].

Prior client-side password checkers, such as those run-

ning entirely in a web browser, rely on heuristics that can

be easily encoded. Many common meters rate passwords

based on their length or inclusion of different character

classes [33,88]. Unfortunately, in comprehensive tests of

both client- and server-side password meters, all but one

meter was highly inaccurate [33]. Only zxcvbn [94,95],

which uses dozens of more advanced heuristics, gave

reasonably accurate strength estimations. Such meters,

however, do not directly model adversarial guessing be-

cause of the inability to succinctly encode models and

calculate real-time results. In contrast, our approach

models adversarial guessing entirely on the client side.

2.4 Neural Networks

Neural networks, which we use to model passwords, are

a machine-learning technique for approximating highly

dimensional functions. Designed to model human neu-

rons, they are particularly adept at fuzzy classification

problems and generating novel sequences. Our method

of generating candidate password guesses draws heav-

ily on previous work that generated the probability of
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the next element in a string based on the preceding el-

ements [49, 84]. For example, in generating the string

password, a neural network might be given passwor and

output that d has a high probability of occurring next.

Although password creation and text generation are

conceptually similar, little research has attempted to use

insights from text generation to model passwords. A

decade ago, neural networks were proposed as a method

for classifying passwords into two very broad categories

(weak or strong) [30], but that work did not seek to

model the order in which passwords would be guessed

or other aspects of a guessing attack. To our knowledge,

the only proposal to use neural networks in a password-

guessing attack was a recent blog post [71]. In sharp

contrast to our extensive testing of different parameters

to make neural networks effective in practice, that work

made few refinements to the application of neural net-

works, leading the author to doubt that the approach has

“any practical relevance.” Additionally, that work sought

only to model a few likely password guesses, as opposed

to our use of Monte Carlo methods to simulate an arbi-

trary number of guesses.

Conceptually, neural networks have advantages over

other methods. In contrast to PCFGs and Markov mod-

els, the sequences generated by neural networks can be

inexact, novel sequences [49], which led to our intu-

ition that neural networks might be appropriate for pass-

word guessing. Prior approaches to probabilistic pass-

word guessing (e.g., Markov models [26]) were suffi-

ciently memory-intensive to be impractical on only the

client-side. However, neural networks can model natu-

ral language in far less space than Markov models [68].

Neural networks have also been shown to transfer knowl-

edge about one task to related tasks [97]. This is cru-

cial for targeting novel password-composition policies,

for which training data is sparse at best.

3 System Design

We experimented with a broad range of options in a large

design space and eventually arrived at a system design

that 1) leverages neural networks for password guessing,

and 2) provides a client-side guess estimation method.

3.1 Measuring Password Strength

Similarly to Markov models, neural networks in our sys-

tem are trained to generate the next character of a pass-

word given the preceding characters of a password. Fig-

ure 1 illustrates our construction. Like in Markov mod-

els [34, 65], we rely on a special password-ending sym-

bol to model the probability of ending a password af-

ter a sequence of characters. For example, to calculate

the probability of the entire password ‘bad’, we would

Input

a: .001
b: .001
c: .20
d: .80
END: 0

a: 0, b: 0
c: 0, d: 0
END: 0

a: 0, b: 0
c: 0, d: 0
END: 0

a: 0, b: 1
c: 0, d: 0
END: 0

context: ba

a: 1, b: 0
c: 0, d: 0
END: 0

Neural 
Network

Context 
characters

A: 0.0001
a: 0.0009
B: 0.0001
b: 0.0009
C: 0.02
c: 0.18
D: 0.08
d: 0.72
END: 0

Uppercase 
modeling

Output

Post- 
processing

Figure 1: An example of using a neural network to predict

the next character of a password fragment. The network is

being used to predict a ‘d’ given the context ‘ba’. This network

uses four characters of context. The probabilities of each next

character are the output of the network. Post processing on the

network can infer probabilities of uppercase characters.

start with an empty password, and query the network

for the probability of seeing a ‘b’, then seeing an ‘a’ af-

ter ‘b’, and then of seeing a ‘d’ after ‘ba’, then of see-

ing a complete password after ‘bad’. To generate pass-

words from a neural network model, we enumerate all

possible passwords whose probability is above a given

threshold using a modified beam-search [64], a hybrid

of depth-first and breadth-first search. If necessary, we

can suppress the generation of non-desirable passwords

(e.g., those against the target password policy) by filter-

ing those passwords. Then, we sort passwords by their

probability. We use beam-search because breadth-first’s

memory requirements do not scale, and because it al-

lows us to take better advantage of GPU parallel pro-

cessing power than depth-first search. Fundamentally,

this method of guess enumeration is similar to that used

in Markov models, and it could benefit from the same op-

timizations, such as approximate sorting [37]. A major

advantage over Markov models is that the neural network

model can be efficiently implemented on the GPU.

Calculating Guess Numbers In evaluating password

strength by modeling a guessing attack, we calculate a

password’s guess number, or how many guesses it would

take an attacker to arrive at that password if guessing

passwords in descending order of likelihood. The tradi-

tional method of calculating guess numbers by enumera-

tion is computationally intensive. For example, enumer-

ating more than 1010 passwords would take roughly 16

days in our unoptimized implementation on an NVidia

GeForce GTX 980 Ti. However, in addition to guess

number enumeration, we can also estimate guess num-

bers accurately and efficiently using Monte Carlo simu-

lations, as proposed by Dell’Amico and Filippone [34].

3.2 Our Approach

There are many design decisions necessary to train neu-

ral networks. The design space forces us to decide on
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the modeling alphabet, context size, type of neural net-

work architecture, training data, and training methodol-

ogy. We experiment along these dimensions.

Model Architectures In this work, we use recurrent

neural networks because they have been shown to be use-

ful for generating text in the context of character-level

natural language [49, 84]. Recurrent neural networks are

a specific type of neural network where connections in

the network can process elements in sequences and use

an internal memory to remember information about pre-

vious elements in the sequence. We experiment with two

different recurrent architectures in Section 5.1.

Alphabet Size We focus on character-level models,

rather than more common word-level models, because

there is no established dictionary of words for pass-

word generation. We also complement our analysis with

exploratory experiments using syllable-level models in

Section 5.1. We decided to explore hybrid models based

on prior work in machine learning [68]. In the hybrid

construction, in addition to characters, the neural net-

work is allowed to model sub-word units, such as sylla-

bles or tokens. We chose to model 2,000 different tokens

based on prior work [68] and represent those tokens the

same way we would characters. A more thorough study

of tokenized models would explore both more and fewer

tokens. Using tokenized structures, the model can then

output the probability of the next character being an ‘a’

or the token ‘pass’. We generated the list of tokens by to-

kenizing words in our training set along character-class

boundaries and selecting the 2,000 most frequent ones.

Like prior work [26], we observed empirically that

modeling all characters unnecessarily burdens the model

and that some characters, like uppercase letters and rare

symbols, are better modeled outside of the neural net-

work. We can still create passwords with these charac-

ters by interpreting the model’s output as templates. For

example, when the neural network predicts an ‘A’ char-

acter, we post-process the prediction to predict both ‘a’

and ‘A’ by allocating their respective probabilities based

on the number of occurrences of ‘a’ and ’A’ in the train-

ing data—as shown in Figure 1. The intuition here is that

we can reduce the amount of resources consumed by the

neural network when alternate heuristic approaches can

efficiently model certain phenomena (e.g., shifts between

lowercase and uppercase letters).

Password Context Predictions rely on the context

characters. For example, in Figure 1, the context char-

acters are ‘ba’ and the target prediction is ‘d’. Increasing

the number of context characters increases the training

time, while decreasing the number of context characters

could potentially decrease guessing success.

We experimented with using all previous characters in

the password as context and with only using the previous

ten characters. We found in preliminary tests that using

ten characters was as successful at guessing and trained

up to an order of magnitude faster, and thus settled on

this choice. When there are fewer than ten context char-

acters, we pad the input with zeros. In comparison, best-

performing Markov models typically use five characters

of context [34, 65]. While Markov models can overfit if

given too much context, neural networks typically overfit

when there are too many parameters.

Providing context characters in reverse order—e.g.,

predicting ‘d’ from ‘rowssap’ instead of ‘passwor’—has

been shown to sometimes improve performance [48]. We

empirically evaluate this technique in Section 5.1.

Model Size We must also decide how many parameters

to include in models. To gauge the effect of changing the

model size on guessing success, we test a large neural

network with 15,700,675 parameters and a smaller net-

work with 682,851 parameters. The larger size was cho-

sen to limit the amount of time and GPU memory used

by the model, which required one and a half weeks to

fully train on our larger training set. The smaller size was

chosen for use in our browser implementation because it

could realistically be sent over the Internet; compressed,

this network is a few hundred kilobytes. We evaluate the

two sizes of models with a variety of password policies,

since each policy may respond differently to size con-

straints, and describe the results in Section 5.1.

Transference Learning We experimented with a spe-

cialized method of training neural networks that takes ad-

vantage of transference learning, in which different parts

of a neural network learn to recognize different phenom-

ena during training [97]. One of the key problems with

targeting non-traditional password policies is that there

is little training data. For example, in our larger training

set, there are 105 million passwords, but only 2.6 mil-

lion satisfy a password policy that requires a minimum

of 16 characters. The sparsity of training samples lim-

its guessing approaches’ effectiveness against such non-

traditional policies. However, if trained on all passwords,

the learned model is non-optimal because it generates

passwords that are not accurate for our target policy even

if one ignores passwords that do not satisfy the policy.

Transference learning lets us train a model on all pass-

words, yet tailor its guessing to only longer passwords.

When using transference learning, the model is first

trained on all passwords in the training set. Then, the

lower layers of the model are frozen. Finally, the model

is retrained only on passwords in the training set that fit
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the policy. The intuition is that the lower layers in the

model learn low-level features about the data (e.g., that

‘a’ is a vowel), and the higher layers learn higher-level

features about the data (e.g., that vowels often follow

consonants). Similarly, the lower layers in the model

may develop the ability to count the number of char-

acters in a password, while the higher level layers may

recognize that passwords are typically eight characters

long. By fine-tuning the higher-level parameters, we can

leverage what the model learned about all passwords and

retarget it to a policy for which training data is sparse.

Training Data We experimented with different sets of

training data; we describe experiments with two sets of

passwords in Sections 4.1 and 5.2, and also with includ-

ing natural language in training data in Section 5.1. For

machine-learning algorithms in general, more training

data is better, but only if the training data is a close match

for the passwords we test on.

3.3 Client-Side Models

Deploying client-side (e.g., browser-based) password-

strength-measuring tools presents severe challenges. To

minimize the latency experienced by users, these tools

should execute quickly and transfer as little data as pos-

sible over the network. Advanced guessing tools (e.g.,

PCFG, Markov models, and tools like JtR and Hash-

cat) run on massively parallel servers and require on

the order of hundreds of megabytes or gigabytes of disk

space. Typically, these models also take hours or days

to return results of strength-metric tests, even with re-

cent advances in efficient calculation [34], which is un-

suitable for real-time feedback. In contrast, by com-

bining a number of optimizations with the use of neu-

ral networks, we can build accurate password-strength-

measuring tools that are sufficiently fast for real-time

feedback and small enough to be included in a web page.

3.3.1 Optimizing for Model Size

To deploy our prototype implementation in a browser, we

developed methods for succinctly encoding it. We lever-

aged techniques from graphics for encoding 3D models

for browser-based games and visualizations [29]. Our

encoding pipeline contains four different steps: weight

quantization, fixed-point encoding, ZigZag encoding,

and lossless compression. Our overall strategy is to send

fewer bits and leverage existing lossless compression

methods that are natively supported by browser imple-

mentations, such as gzip compression [41]. We describe

the effect that each step in the pipeline has on compres-

sion in Section 5.3. We also describe encoding a short

wordlist of passwords in Bloom filters.

Weight Quantization First, we quantized the weights

of the neural network to represent them with fewer digits.

Rather than sending all digits of the 32-bit floating-point

numbers that describe weights, we only send the most

significant digits. Weight quantization is routinely used

for decreasing model size, but can increase error [68].

We show the effect of quantization on error rates in Sec-

tion 5.3. We experimentally find that quantizing weights

up to three decimal digits leads to minimal error.

Fixed-point Encoding Second, instead of representing

weights using floating-point encoding, we used fixed-

point encoding. Due to the weight-quantization step,

many of the weight values are quantized to the same

values. Fixed-point encoding allows us to more suc-

cinctly describe the quantized values using unsigned in-

tegers rather than floating point numbers on the wire: one

could internally represent a quantized weight between

−5.0 and 5.0 with a minimum precision of 0.005, as be-

tween −1000 and 1000 with a precision of 1. Avoiding

the floating-point value would save four bytes. While

lossless compression like gzip partially reduces the need

for fixed-point encoding, we found that such scaling still

provides an improvement in practice.

ZigZag Encoding Third, negative values are generally

more expensive to send on the wire. To avoid sending

negative values, we use ZigZag encoding [8]. In ZigZag

encoding, signed values are encoded by using the last bit

as the sign bit. So, the value of 0 is encoded as 0, but

the value of -1 is encoded as 1, 1 is encoded as 2, -2 is

encoded as 3, and so on.

Lossless Compression We use regular gzip or

deflate encoding as the final stage of the compression

pipeline. Both gzip and deflate produce similar re-

sults in terms of model size and both are widely sup-

ported natively by browsers and servers. We did not con-

sider other compression tools, like LZMA, because their

native support by browsers is not as widespread, even

though they typically result in slightly smaller models.

Bloom Filter Word List To increase the success

of client-side guessing, we also store a word list

of frequently guessed passwords. As in previous

work [89], we found that for some types of password-

cracking methods, prepending training passwords im-

proves guessing effectiveness. We stored the first two

million most frequently occurring passwords in our train-

ing set in a series of compressed Bloom filters [69].

Because Bloom filters cannot map passwords to the

number of guesses required to crack, and only compute
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existence in a set, we use multiple Bloom filters in dif-

ferent groups: in one Bloom filter, we include passwords

that require fewer than 10 guesses; in another, all pass-

words that require fewer than 100 guesses; and so on.

On the client, a password is looked up in each filter and

assigned a guess number corresponding to the filter with

the smallest set of passwords. This allows us to roughly

approximate the guess number of a password without in-

creasing the error bounds of the Bloom filter. To dras-

tically decrease the number of bits required to encode

these Bloom filters, we only send passwords that meet

the requirements of the policy and would have neural-

network-computed guess numbers more than three or-

ders of magnitude different from their actual guess num-

bers. We limited this word list to be about 150KB after

compression in order to limit the size of our total model.

We found that significantly more space would be needed

to substantially improve guessing success.

3.3.2 Optimizing for Latency

We rely on precomputation and caching to make our pro-

totype sufficiently fast for real-time feedback. Our target

latency is near 100 ms because that is the threshold below

which updates appear instantaneous [72].

Precomputation We precompute guess numbers in-

stead of calculating guess numbers on demand because

all methods of computing guess numbers on demand

are too slow to give real-time feedback. For example,

even with recent advances in calculation efficiency [34],

our fastest executing model, the Markov model, requires

over an hour to estimate guess numbers of our test set

passwords, with other methods taking days. Precomputa-

tion decreases the latency of converting a password prob-

ability to a guess number: it becomes a quick lookup in

a table on the client.

The drawback of this type of precomputation is that

guess numbers become inexact due to the quantization

of the probability-to-guess-number mapping. We exper-

imentally measure (see Section 5.3) the accuracy of our

estimates, finding the effect on accuracy to be low. For

the purpose of password-strength estimation, we believe

the drawback to be negligible, in part because results are

typically presented to users in more heavily quantized

form. For instance, users may be told their password is

“weak” or “strong.” In addition, the inaccuracies intro-

duced by precomputation can be tuned to result in safe

errors, in that any individual password’s guess number

may be an underestimate, but not an overestimate.

Caching Intermediate Results We also cache results

from intermediate computations. Calculating the proba-

bility of a 10-character password requires 11 full compu-

tations of the neural network, one for each character and

one for the end symbol. By caching probabilities of each

substring, we significantly speed up the common case in

which a candidate password changes by having a charac-

ter added to or deleted from its end. We experimentally

show the benefits of caching in Section 5.3.

Multiple Threads On the client side, we run the neural

network computation in a separate thread from the user

interface for better responsiveness of the user interface.

3.4 Implementation

We build our server-side implementation on the Keras li-

brary [28] and the client-side implementation on the neo-

cortex browser implementation [5] of neural networks.

We use the Theano back-end library for Keras, which

trains neural networks faster by using a GPU rather than

a CPU [17,18]. Our implementation trains networks and

guesses passwords in the Python programming language.

Guess number calculation in the browser is performed in

JavaScript. Our models typically used three long short-

term memory (LSTM) recurrent layers and two densely

connected layers for a total of five layers. On the client

side, we use the WebWorker browser API to run neural

network computations in their own thread [10].

For some applications, such as in a password meter, it

is desirable to conservatively estimate password strength.

Although we also want to minimize errors overall, on the

client we prefer to underestimate a password’s resistance

to guessing, rather than overestimate it. To get a stricter

underestimate of guess numbers on our client-side im-

plementation, we compute the guess number without re-

spect to capitalization. We find in practice that our model

is able to calculate a stricter underestimate this way,

without overestimating many passwords’ strength. We

don’t do this for the server-side models because those

models are used to generate candidate password guesses,

rather than estimating a guess number. After computing

guess numbers, we apply to them a constant scaling fac-

tor, which acts as a security parameter, to make the model

more conservative at the cost of making more errors. We

discuss this tradeoff more in Section 5.3.

4 Testing Methodology

To evaluate our implementation of neural networks, we

compare it to multiple other password cracking meth-

ods, including PCFGs, Markov models, JtR, and Hash-

cat. Our primary metric for guessing accuracy is the

guessability of our test set of human-created passwords.

The guessability of an individual password is measured

by how many guesses a guesser would take to crack a
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password. We experiment with two sets of training data

and with five sets of test data. For each set of test data,

we compute the percentage of passwords that would be

cracked after a particular number of guesses. More accu-

rate guessing methods correctly guess a higher percent-

age of passwords in our test set.

For probabilistic methods—PCFG, Markov models,

and neural networks—we use recent work to effi-

ciently compute guess numbers using Monte Carlo meth-

ods [34]. For Monte Carlo simulations, we generate and

compute probabilities for at least one million random

passwords to provide accurate estimates. While the exact

error of this technique depends heavily on each method,

guess number, and individual password, typically we ob-

served 95% confidence intervals of less than 10% of the

value of the guess-number estimate; passwords for which

the error exceeded 10% tended to be guessed only after

more than 1018 guesses. For all Monte Carlo simulations,

we model up to 1025 guesses for completeness. This is

likely an overestimate of the number of guesses that even

a well-resourced attacker could be able to or would be in-

centivized to make against one password.

To calculate guessability of passwords using

mangling-rule-based methods—JtR and Hashcat—

we enumerate all guesses that these methods make. This

provides exact guess numbers, but fewer guesses than we

simulate with other methods. Across our different test

sets, the mangling-rule-based methods make between

about 1013 and 1015 guesses.

4.1 Training Data

To train our algorithms, we used a mixture of leaked and

cracked password sets. We believe this is ethical because

these password sets are already publicly available and we

cause no additional harm with their use.

We explore two different sets of training data. We term

the first set the Password Guessability Service (PGS)

training set, used by prior work [89]. It contains the

Rockyou [90] and Yahoo! [43] leaked password sets. For

guessing methods that use natural language, it also in-

cludes the web2 list [11], Google web corpus [47], and

an inflection dictionary [78]. This set totals 33 million

passwords and 5.9 million natural-language words.

The second set (the PGS++ training set) augments the

PGS training set with additional leaked and cracked pass-

word sets [1,2,3,6,7,9,12,13,14,15,16,20,23,25,42,43,

55,56,57,62,63,67,75,77,85,90]. For methods that use

natural language, we include the same natural-language

sources as the PGS set. This set totals 105 million pass-

words and 5.9 million natural-language words.

4.2 Testing Data

For our testing data we used passwords collected from

Mechanical Turk (MTurk) in the context of prior re-

search studies, as well as a set sampled from the leak

of plaintext passwords from 000webhost [40]. In addi-

tion to a common policy requiring only eight characters,

we study three less common password policies shown to

be more resistant to guessing [66,80]: 4class8, 3class12,

and 1class16, all described below. We chose the MTurk

sets to get passwords created under more password poli-

cies than were represented in leaked data. Passwords

generated using MTurk have been found to be similar

to real-world, high-value passwords [38, 66]. Nonethe-

less, we chose the 000webhost leak to additionally com-

pare our results to real passwords from a recently leaked

password set. In summary, we used five testing datasets:

• 1class8: 3,062 passwords longer than eight charac-

ters collected for a research study [59]

• 1class16: 2,054 passwords longer than sixteen char-

acters collected for a research study [59]

• 3class12: 990 passwords that must contain at least

three character classes (uppercase letters, lowercase

letters, symbols, digits) and be at least twelve char-

acters long collected for a research study [80]

• 4class8: 2,997 passwords that must contain all four

character classes and be at least eight characters

long collected for a research study [66]

• webhost: 30,000 passwords randomly sampled

from among passwords containing at least eight

characters in the 000webhost leak [40]

4.3 Guessing Configuration

PCFG We used a version of PCFG with termi-

nal smoothing and hybrid structures [60], and in-

cluded natural-language dictionaries in the training data,

weighted for each word to count as one tenth of a pass-

word. We also separated training for structures and ter-

minals, and trained structures only on passwords that

conform to the target policy. This method does not gen-

erate passwords that do not match the target policy.

For PCFG, Monte Carlo methods are not able to es-

timate unique guess numbers for passwords that have

the same probability. This phenomenon manifests in the

Monte Carlo graphs with jagged edges, where many dif-

ferent passwords are assigned the same guess number

(e.g., in Figure 5c before 1023). We assume that an opti-

mal attacker could order these guesses in any order, since

they all have the same likelihood according to the model.

Hence, we assign the lowest guess number to all of these

guesses. This is a strict overestimate of PCFG’s guessing

effectiveness, but in practice does not change the results.
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(c) Tutoring

Figure 2: Alternative training methods for neural networks. The x-axes represent the number of guesses in log scale. The y-axes

show the corresponding percentage of 1class16 passwords guessed. In (b), WithNL is a neural network trained with natural-language

dictionaries, and NoNL is a neural network trained without natural-language dictionaries.

Markov Models We trained 4-, 5-, and 6-gram mod-

els. Prior work found the 6-gram models and additive

smoothing of 0.01 to be an effective configuration for

most password sets [65]. Our results agree, and we use

the 6-gram model with additive smoothing in our tests.

We discard guesses that do not match the target policy.

Mangling Wordlist Methods We compute guess num-

bers using the popular cracking tools Hashcat and John

the Ripper (JtR). For Hashcat, we use the best64 and

gen2 rule sets that are included with the software [83].

For JtR, we use the SpiderLabs mangling rules [86]. We

chose these sets of rules because prior work found them

effective in guessing general-purpose passwords [89]. To

create the input for each tool, we uniqued and sorted the

respective training set by descending frequency. For JtR,

we remove guesses that do not match the target policy.

For Hashcat, however, we do not do so because Hash-

cat’s GPU implementation can suffer a significant perfor-

mance penalty. We believe that this models a real-world

scenario where this penalty would also be inflicted.

5 Evaluation

We performed a series of experiments to tune the train-

ing of our neural networks and compare them to exist-

ing guessing methods. In Section 5.1, we describe ex-

periments to optimize the guessing effectiveness of neu-

ral networks by using different training methods. These

experiments were chosen primarily to guide our deci-

sions about model parameters and training along the de-

sign space we describe in Section 3.2, including training

methods, model size, training data, and network architec-

ture. In Section 5.2, we compare the effectiveness of the

neural network’s guessing to other guessing algorithms.

Finally, in Section 5.3, we describe our browser imple-

mentation’s effectiveness, speed, and size, and we com-

pare it to other browser password-measuring tools.

5.1 Training Neural Networks

We conducted experiments exploring how to tune neural

network training, including modifying the network size,

using sub-word models, including natural-language dic-

tionaries in training, and exploring alternative architec-

tures. We do not claim that these experiments are a com-

plete exploration of the space. Indeed, improving neural

networks is an active area of research.

Transference Learning We find that the transference

learning training, described in Section 3.2, improves

guessing effectiveness. Figure 2a shows in log scale

the effect of transference learning. For example, at 1015

guesses, 22% of the test set has been guessed with trans-

ference learning, as opposed to 15% without transfer-

ence learning. Using a 16 MB network, we performed

this experiment on our 1class16 passwords because they

are particularly different from the majority of our train-

ing set. Here, transference learning improves password

guessing mostly at higher guess numbers.

Including Natural-Language Dictionaries We exper-

imented with including natural-language dictionaries in

the neural network training data, hypothesizing that do-

ing so would improve guessing effectiveness. We per-

formed this experiment with 1class16 passwords because

they are particularly likely to benefit from training on

natural-language dictionaries [91]. Networks both with

and without natural language data were trained using the

transference learning method on long passwords. Nat-

ural language was included with the primary batch of

training data. Figure 2b shows that, contrary to our hy-

potheses, training on natural language decreases the neu-

ral network’s guessing effectiveness. We believe neural

networks do not benefit from natural language, in con-

trast to other methods like PCFG, because this method of

training does not differentiate between natural-language

dictionaries and password training. However, training

data could be enhanced with natural language in other

ways, perhaps yielding better results.



184 25th USENIX Security Symposium USENIX Association

1class16 Large
1class16 Small

1class8 Large
1class8 Small
4class8 Large
4class8 Small

Webhost Large
Webhost Small

0%

30%

60%

90%

10
1

10
4

10
7
10

10
10

13
10

16
10

19
10

22
10

25

Guesses

P
e
rc

e
n
t 
g
u
e
s
s
e
d

Figure 3: Neural network size and password guessability.

Dotted lines are large networks; solid lines are small networks.

Password Tokenization We find that using hybrid,

sub-word level password models does not significantly

increase guessing performance at low guess numbers.

Hybrid models may represent the same word in multiple

different ways. For example, the model may capture a

word as one token, ‘pass’, or as the letters ‘p’, ‘a’, ‘s’, ‘s’.

Because Monte Carlo simulations assume that passwords

are uniquely represented, instead of using Monte Carlo

methods to estimate guess numbers, we calculated guess

numbers by enumerating the most probable 107 guesses.

However, at this low number of guesses, we show this

tokenization has only a minor effect, as shown in Fig-

ure 4b. We conducted this experiment on long passwords

because we believed that they would benefit most from

tokenization. This experiment shows that there may be

an early benefit, but otherwise the models learn similarly.

We consider this result to be exploratory both due to our

low guessing cutoff and because other options for tuning

the tokenization could produce better results.

Model Size We find that, for at least some password

sets, neural network models can be orders of magnitude

smaller than other models with little effect on guessing

effectiveness. We tested how the following two model

sizes impact guessing effectivess: a large model with

1,000 LSTM cells or 15,700,675 parameters that uses

60 MB, and a small model with 200 LSTM cells or

682,851 parameters that takes 2.7 MB.

The results of these experiments are shown in Figure 3.

For 1class8 and 4class8 policies, the effect of decreas-

ing model size is minor but noticeable. However, for

1class16 passwords, the effect is more dramatic. We at-

tribute differences between the longer and shorter poli-

cies with respect to model size to fundamental differ-

ences in password composition between those policies.

Long passwords are more similar to English language

phrases, and modeling them may require more param-

eters, and hence larger networks, than modeling shorter

passwords. The webhost test set is the only set for which

the larger model performed worse. We believe that this

is due to the lack of suitability of the particular training

data we used for this model. We discuss the differences

in training data more in Section 5.2.

Tutored Networks To improve the effectiveness of our

small model at guessing long passwords, we attempted to

tutor our small neural network with randomly generated

passwords from the larger network. While this had a mild

positive effect with light tutoring, at a roughly one to two

ratio of random data to real data, the effect does not seem

to scale to heavier tutoring. Figure 2c shows minimal

difference in guessing accuracy when tutoring is used,

and regardless of whether it is light or heavy.

Backwards vs. Forwards Training As described in

Section 3.2, processing input backwards rather than for-

wards can be more effective in some applications of

neural networks [48]. We experiment with guessing

passwords backwards, forwards, and using a hybrid ap-

proach where half of the network examines passwords

forwards and the other half backwards. We observed

only marginal differences overall. At the point of great-

est difference, near 109 guesses, the hybrid approach

guessed 17.2% of the test set, backwards guessed 16.4%

of the test set and forwards guessed 15.1% of the test set.

Figure 4a shows the result of this experiment. Since the

hybrid approach increases the amount of time required to

train with only small improvement in accuracy, for other

experiments we use backwards training.

Recurrent Architectures We experimented with two

different types of recurrent neural-network architectures:

long short-term memory (LSTM) models [54] and a re-

finement on LSTM models [58]. We found that this

choice had little effect on the overall output of the net-

work, with the refined LSTM model being slightly more

accurate, as shown in Figure 4c.

5.2 Guessing Effectiveness

Compared to other individual password-guessing meth-

ods, we find that neural networks are better at guessing

passwords at a higher number of guesses and when tar-

geting more complex or longer password policies, like

our 4class8, 1class16, and 3class12 data sets. For exam-

ple, as shown in Figure 5b, neural networks guessed 70%

of 4class8 passwords by 1015 guesses, while the next best

performing guessing method guesses 57%.

Models differ in how effectively they guess specific

passwords. MinGuess, shown in Figure 5, represents an

idealized guessing approach in which a password is con-

sidered guessed as soon as it is guessed by any of our
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(a) Training direction.
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(b) Tokenization on long passwords.
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(c) LSTM vs. refined LSTM.

Figure 4: Additional tuning experiments. Our LSTM experiments tested on complex passwords with 16M parameters. We found

very little difference in performance. Our experiments on tokenization examined long passwords. Our experiments on training

direction involved training backwards, forwards, and both backwards and forwards with 16M parameters on complex passwords.

guessing approaches, including neural networks, Markov

models, PCFG, JtR, and Hashcat. That MinGuess out-

performs neural networks suggests that using multiple

guessing methods should still be preferred to using any

single guessing method for accurate strength estimation,

despite the fact that neural networks generally outper-

form other models individually.

For all the password sets we tested, neural networks

outperformed other models beginning at around 1010

guesses, and matched or beat the other most effective

methods before that point. Figures 5-6 show the per-

formance of the different guessing methods trained with

the PGS data set, and Figures 7-8 show the same guess-

ing methods trained with the PGS++ data set. Both data

sets are described in more detail in Section 4.1. In this

section, we used our large, 15.7 million parameter neu-

ral network, trained with transference learning on two

training sets. While performance varies across guessing

method and training set, in general we find that the neural

networks’ performance at high guess numbers and across

policies holds for both sets of training data with one ex-

ception, discussed below. Because these results hold for

multiple training and test sets, we hypothesize that neu-

ral networks would also performe well in guessing pass-

words created under many policies that we did not test.

In the webhost test set using the PGS++ training data,

neural networks performed worse than other methods.

For webhost, all guessing methods using the PGS++ data

set were less effective than the PGS data set, though

some methods, such as PCFG, were only slightly af-

fected. Because all methods perform worse, and because,

when using the PGS training data, neural networks do

better than other methods—similar to other test sets—

we believe that the PGS++ training data is particularly

ineffective for this test set. As Figure 3 shows, this is the

only data set where a smaller neural network performs

significantly better than the larger neural network, which

suggests that the larger neural network model is fitting

itself more strictly to low-quality data, which limits the

larger network’s ability to generalize.

Qualitatively, the types of passwords that our imple-

mentation of neural networks guessed before other meth-

ods were novel passwords that were dissimilar to pass-

words in the training set. The types of passwords that our

implementation of neural networks were late to guess but

that were easily guessable by other methods often were

similar to words in the natural-language dictionaries, or

were low-frequency occurrences in the training data.

Resource Requirements In general, PCFGs require

the most disk, memory, and computational resources.

Our PCFG implementation stored its grammar in 4.7GB

of disk space. Markov models are the second largest

of our implementations, requiring 1.1GB of disk space.

Hashcat and JtR do not require large amounts of space

for their rules, but do require storing the entire training

set, which is 756MB. In contrast, our server-side neural

network requires only 60MB of disk space. While 60MB

is still larger than what could effectively be transferred to

a client without compression, it is a substantial improve-

ment over the other models.

5.3 Browser Implementation

While effective models can fit into 60MB, this is still too

large for real-time password feedback in the browser. In

this section, we evaluate our techniques for compress-

ing neural network models, discussed in Section 3.3, by

comparing the guessing effectiveness of the compressed

models to all server-side models—our large neural net-

work, PCFG, Markov models, JtR, and Hashcat.

Model Encoding Our primary size metric is the gzip-

ed model size. Our compression stages use the JSON for-

mat because of its native support in JavaScript platforms.

We explored using the MsgPack binary format [4], but

found that after gzip compression, there was no bene-

fit for encoding size and minor drawbacks for decoding

speed. The effects of different pipeline stages on com-

pression are shown in Table 1.
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(b) 4class8 passwords
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(c) 1class16 passwords

Figure 5: Guessability of our password sets for different

guessing methods using the PGS data set. MinGuess stands

for the minimum number of guesses for any approach. Y-axes

are differently scaled to best show comparative performance.

Weight and Probability Curve Quantization Be-

cause current methods of calculating guess numbers

from probabilities are too slow, taking hours or days to

return results, we precompute a mapping from password

probability to guess number and send the mapping to the

client, as described in Section 3.3.2. Such a mapping

can be efficiently encoded by quantizing the probability-

to-guess-number curve. Quantizing the curve incurs safe

errors—i.e., we underestimate the strength of passwords.
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(a) 3class12 passwords
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(b) Webhost passwords

Figure 6: Guessability of our password sets for different

guessing methods using the PGS data set (continued).

We also quantize the model’s parameters in the browser

implementation to further decrease the size of the model.

Both weight and curve quantization are lossy operations,

whose effect on guessing we show in Figure 9. Curve

quantization manifests in a saw-tooth shape to the guess-

ing curve, but the overall shape of the guessing curve is

largely unchanged.

Evaluating Feedback Speed Despite the large amount

of computation necessary for computing a password’s

guessability, our prototype implementation is efficient

enough to give real-time user feedback. In general,

feedback quicker than 100 ms is perceived as instanta-

neous [72]; hence, this was our benchmark. We per-

formed two tests to measure the speed of calculating

guess numbers: the first measures the time to produce

guess numbers with a semi-cached password; the second

computes the total time per password. The semi-cached

test measures the time to compute a guess number when

adding a character to the end of a password. We believe

this is representative of what a user would experience in

practice because a user typically creates a password by

typing it in character by character.
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Figure 10: Client-side guess numbers compared to the minimum guess number of all server-side methods. The number in

the bin represents the number of passwords in that bin. For example, neural networks rated 358 passwords as being guessed with

between 100 and 104 guesses, while server-side approaches rate them as taking between 104 and 108 guesses. The test passwords

are our 1class8 set. The Yahoo! meter does not provide guess numbers and, as such, has a different x-axis. Overestimates of strength

are shown in shades of red, underestimates in shades of purple, and accurate estimates in shades of green. Color intensity rises with

the number of passwords in a bin.

Pipeline stage Size gzip-ed Size

Original JSON format 6.9M 2.4M

Quantization 4.1M 716K

Fixed point 3.1M 668K

ZigZag encoding 3.0M 664K

Removing spaces 2.4M 640K

Table 1: The effect of different pipeline stages on model size.

This table shows the small model that targets the 1class8 pass-

word policy, with 682,851 parameters. Each stage includes the

previous stage, e.g., the fixed-point stage includes the quanti-

zation stage. We use gzip at the highest compression level.

Total Unsafe

1
cl

as
s8 Neural Network 1311 164

zxcvbn 1331 270

Yahoo! 1900 984

4
cl

as
s8 Neural Network 1826 115

zxcvbn 1853 231

Yahoo! 1328 647

Table 2: The number of total and unsafe misclassifications

for different client-side meters. Because the Yahoo! meter

provides different binning, we pre-process its output for fairer

comparison, as described in Section 5.3.

We perform both tests on a laptop running OSX with a

2.7 GHz i7 processor and using the Chrome web browser

(version 48). We randomly selected a subset of 500 pass-

words from our 1class8 training set for these tests. In the

semi-cached test, the average time to compute a guess

number is 17 ms (stdev: 4 ms); in the full-password test,

the average time is 124 ms (stdev: 48 ms). However,

both the semi-cached test and the uncached test perform

fast enough to give quick feedback to users.

Comparison to Other Password Meters We com-

pared the accuracy of our client-side neural network im-

plementation to other client-side password-strength es-

timators. Approximations of password strength can be

under- or overestimates. We call overestimates of pass-

word strength unsafe errors, since they represent pass-

words as harder to guess than they actually are. We show

that our meter can more precisely measure passwords’

resistance to guessing with up to half as many unsafe er-

rors as existing client-side models, which are based on

heuristics. Our ground truth for this section is the ideal-

ized MinGuess method, described in Section 5.2.

Prior work found nearly all proactive password-

strength estimators to be inconsistent and to poorly es-

timate passwords’ resistance to guessing [33]. The

most promising estimator was Dropbox’s zxcvbn me-

ter [94, 95], which relies on hand-crafted heuristics, sta-

tistical methods, and plaintext dictionaries as training

data to estimate guess numbers. Notably, these plain-

text dictionaries are not the same as those used for our

training data, limiting our ability to fully generalize from

these comparisons. Exploring other ways of configur-

ing zxcvbn is beyond the scope of this evaluation. We

compare our results to both zxcvbn and the Yahoo! me-

ter, which is an example of using far less sophisticated

heuristics to estimate password strength.

The Yahoo! meter does not produce guess numbers

but bins passwords as weakest, weaker, weak, strong,

and stronger. We ignore the semantic values of the bin

names, and examine the accuracy with which the me-

ter classified passwords with different guess numbers (as

computed by the MinGuess of all guessing methods) into

the five bins. To compare the Yahoo! meter to our mini-

mum guess number (Table 2), we take the median actual

guess number of each bin (e.g., the “weaker” bin) and

then map the minimum guess number for each password

to the bin that it is closest to on a log scale. For exam-

ple, in the Yahoo! meter, the guess number of 5.4 · 104

is the median of the “weaker” bin; any password closer

to 5.4 · 104 than to the medians of other bins on a log

scale we consider as belonging in the “weaker” bin. We

intend for this to be an overestimate of the accuracy of
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Figure 7: Guessability of our password sets for different

guessing methods using the PGS++ data set. MinGuess

stands for the minimum number of guesses for any approach.

the Yahoo! meter. Nonetheless, both our work and prior

work [33] find the Yahoo! meter to be less accurate than

other approaches, including the zxcvbn meter.

We find that our client-side neural network approach

is more accurate than the other approaches we test, with

up to two times fewer unsafe errors and comparable safe

errors, as shown in Figure 10 and Table 2. Here, we used

our neural network meter implementation with the tun-

ing described in Section 3.4. We performed the 1class8
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Figure 8: Guessability of our password sets for different

guessing methods using the PGS++ data set (continued).

test with the client-side Bloom filter, described in Sec-

tion 3.3.1, while the 4class8 test did not use the Bloom

filter because it did not significantly impact accuracy.

Both tests scale the network output down by a factor

of 300 and ignore case to give more conservative guess

numbers. We chose the scaling factor to tune the net-

work to make about as many safe errors as zxcvbn. In

addition, we find that, compared to our neural network

implementation, the zxcvbn meter’s errors are often at

very low guess numbers, which can be particularly un-

safe. For example, for the 10,000 most likely passwords,

zxcvbn makes 84 unsafe errors, while our neural net-

work only makes 11 unsafe errors.

Besides being more accurate, we believe the neural

network approach is easier to apply to other password

policies. The best existing meter, zxcvbn, is hand-

crafted to target one specific password policy. On the

other hand, neural networks enable easy retargeting to

other policies simply by retraining.
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Figure 9: Compressed browser neural network with weight

and curve quantization compared an unquantized network.

Browser is our browser network with weight and curve quanti-

zation. Server is the same small neural network without weight

and curve quantization.

6 Conclusion

This paper describes how to use neural networks to

model human-chosen passwords and measure pass-

word strength. We show how to build and train neu-

ral networks that outperform state-of-the-art password-

guessing approaches in efficiency and effectiveness, par-

ticularly for non-traditional password policies and at

guess numbers above 1010. We also demonstrate how to

compress neural network password models so that they

can be downloaded as part of a web page. This makes

it possible to build client-side password meters that pro-

vide a good measure of password strength.

Tuning neural networks for password guessing and de-

veloping accurate client-side password-strength metrics

both remain fertile research grounds. Prior work has used

neural networks to learn the output of a larger ensemble

of models [24] and obtained better results than our net-

work tutoring (Section 5.1). Other work achieves higher

compression ratios for neural networks than we do by

using matrix factorization or specialized training meth-

ods [51, 96]. Further experiments on leveraging natural

language, tokenized models, or other neural-networks ar-

chitectures might allow passwords to be guessed more

effectively. While we measured client-side strength met-

rics based on guessing effectiveness, a remaining chal-

lenge is giving user-interpretable advice to improve pass-

words during password creation.
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