
Fast Learning Neural Network using modified Corners Algorithm

Rahul Kala
1

rahulkalaiiitm@yahoo.co.in

Anupam Shukla
2

dranupamshukla@gmail.com

Ritu Tiwari
3

rt_twr@yahoo.co.in

1, 2, 3

Department of Information Technology

Indian Institute of Information Technology and Management, Gwalior, INDIA

Citation: R. Kala, A. Shukla, R. Tiwari (2009) Fast Learning Neural Network using modified

Corners Algorithm, Proceedings of the IEEE Global Congress on Intelligent System, Xiamen,

China, pp 367-373.

Full Version Available At: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5208956

© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

Abstract

In the past we have seen various

developments in the philosophy and application of

neural networks. We today have backpropagation

algorithm, Hopfield networks, perceptrons, etc All

these are very precise tools which model the data very

well. But unfortunately, the problem being faced these

days is of training the neural network in short span of

time, over the test data. All the above mentioned tools

may not be useful in various situations where the

neural network needs to be trained rapidly. Hence the

solutions offered to the same were the Corners rule

and the associated CC1 to CC4 algorithms. All these

had various pros and cons. This paper uses a different

type of modeling to represent data and hence solve the

problem of fast learning. Here we have taken the help

of distance separation of training data and an

unknown input to calculate the most probable output in

the neural network. This algorithm is better than the

others as it does not place any special restrictions on

the inputs, which was the case with CC3. Also the

algorithm uses an input model very similar to the

traditional model, in terms of inputs and outputs.

Hence the users may find it very easy to switch

between the traditional neural network style and the

network proposed in this paper.

The algorithm sets up a neural network. The

weights are assigned by looking at the inputs. In

testing, the inputs are provided and the most probable

output is calculated. The neural network uses a single

hidden layer. The best neurons of the hidden layer are

invoked at every input. This algorithm was trained on

some points of a 2 color picture. When we tried to

reproduce it, the results showed the algorithm was

efficient and accurate

Key Words: Neural Network, Fast learning,

Instantaneous learning, Corners Algorithm

1. Introduction

Neural Networks are one of the best choices

these days to solve any problem of predictions using

unstructured or structured data. They have found a

huge variety of uses in various places. These are being

extensively used in biomedical, robotics, etc. The data

used to train these networks is often quite large. One of

the main disadvantages of using these is the time taken

for training. Usually the training takes a big span of

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5208956

time that makes the neural networks useless to be put

on a set of situations. Fast learning is a good tool in

these kinds of scenarios.

Numerous means were suggested for fast

training of the neural network [15, 16]. In this paper we

mainly study the Corners Algorithm [1, 2] that solves

the problem. Based on this algorithm, several methods

to train the new feedforward network were presented.

These included CC1, CC2, CC3 and then CC4.

[12,13,14]

This paper proposes a new algorithm which

would solve the problem of instantaneous learning or

fast learning. All the inputs are given to the neural

network. The neural network has one hidden layer.

This layer is directly connected to the output neuron.

Hence this algorithm has to select the best neurons out

of the hidden layer neurons and activate them. This

algorithm finds out the best neurons by examining the

similarity between the training input and the given

input. Since this is an instantaneous learning algorithm,

the number of neurons in hidden layer is equal to the

number of inputs given in training data, with each

neuron representing one input.

Like the other algorithms we also have

something similar to the radius of generalization. This

factor is set at start and is applied to all outputs. The

higher this factor, the more 0s would be there in output

and vice versa.

Section 2 of the paper talks about the

motivation of the algorithm and the fast learning

network. Section 3 covers all the aspects of the

algorithm. This includes the assumptions, general

description, weights and activation functions, training

and testing. We take one example to clarify the points.

We also discuss the advantages of this algorithm.

Section 4 gives the results of the algorithm. Section 5 is

for conclusion.

2. Motivation and Prerequisites

He we discuss the motivation and the present

works in this area, which are the guiding factors behind

the development. We also present some details which

should be known before hand.

2.1 Motivation

As discussed above, various algorithms have

been proposed to solve the problem of fast leaning. The

basic motivation of all these is the time we save in the

training, even though compared to the cost of accuracy.

These methods are a fast way of instantaneously

training the artificial neural network for short memory

[11].

This problem was first solved by Corners

Algorithm [1, 2]. This provided a breakthrough in the

fast learning. Now the weights were assigned by

considering the inputs. Experiments showed than this

approach was much faster than the conventional

approach, with the loss of some accuracy.

Several algorithms to train the new

feedforward network were presented. These algorithms

were of three kinds. In the first of these (CC1) the

weights were obtained upon the use of the perceptron

algorithm. In the second (CC2), the weights were

obtained by inspection from the data, but this did not

provide generalization. In the third (CC3), the weights

obtained by the second method were modified in a

variety of ways that amounted to randomization and

which now provided generalization. During such

randomization some of the learnt patterns could be

misclassified; further checking and adjustment of the

weights was, therefore, necessitated. Various

comparisons were reported in [3, 4, 5]. The

comparisons showed that the new technique could be

200 times faster than the fastest version of the

backpropagation algorithm with excellent

generalization performance. CC4 algorithm was also

introduced later on. This algorithm placed some

restrictions on the style on input, and hence was good

in a limited sense. This algorithm was further improved

and the generalizations were removed [6, 7, 8, 9, 10].

2.2 Fast Learning Network

In this section we discuss, in brief, various the

fast learning networks. A fast learning network is a

network in which there is only one hidden layer, and

the number of neurons in the hidden layer is always

equal to the number of input cases for the training. This

is shown in Fig.1

Figure 1: A Fast Learning Model

As we can see in this model, there are 4

hidden input layers (H1 to H4). This means that there

would be only 4 input/output cases for the training of

this network. This phenomenon has a special

significance in fast learning algorithms. We apply the

weights to all the neurons of the hidden layers only by

seeing the inputs. Hence the extra overload of the

backpropagation and constant learning is reduced. We

just need to scan the inputs once.

2.2.1 Hidden Layer Weights and Activation

Function

The weights of the hidden layer can be

assigned by just seeing the inputs. We choose the

weights in such a way, such that at every sequence of

test cases, only one neuron is activated. Rest all the

other neurons fail to activate. This means that the

combination of weight is in such a way that when the

1st input is applied, the H1 is activated, H2, H3 and H4

are dead. Similarly in second input sequence only H2 is

activated

2.2.2 Output weights and Activation

Function

As discussed, on the application of any input,

only one neuron is activated. The output weights are

taken such that the summation gives the correct results.

Hence if the output required is high, the weight is high

and vice versa.

3 New Fast Learning Algorithm

In this section we describe the algorithm. We

look at the inputs, outputs, assumptions and the

implementation details

3.1 Assumptions

The following are the key assumptions for the

algorithm, as compared to the normal artificial neural

network. These assumptions must be addressed, before

applying the algorithm

 Every output is always either 0 or 1.

 The training data consists of enough points for

the algorithm to perform. The higher the

number of these points, the better the

accuracy.

 We also assume that very high accuracy is not

needed. As the fast learning algorithms are

never very accurate as compared to neural

networks with backpropagation training.

 The number of training inputs are enough to

fit on the system’s primary memory

3.2 General Description

This algorithm is motivated from the

traditional Corners Algorithm. The main aspect of the

algorithm is the use of modified weight and activation

functions which fire the most appropriate neurons for

predicting the output. For the training data, only one

neuron is fired.

The general steps of the algorithm have been

given in Figure 2. The general model of the system is

given in Figure 3. We discuss each one of these steps in

the coming sub sections

Figure 2: The general procedure of the algorithm

Figure 3: The Network Architecture for the Algorithm

We have added an extra input. This is called

the radius of generalization. This input is used for the

controlling of the output. In this algorithm, we use this

input to control the output. The more positive this

number, the more number of 1s would be present in the

final output, when used in test mode. Similarly, he

more negative this number, the more number of 0s

Y

Input 1

Input 2

Radius of

Gen (I3)

I1

I2

H1

H2

H3

H4

Determine the systems

inputs and outputs.

(All outputs 0 or 1).

Apply an extra input

for radius of

generalization

In training, apply the

inputs and assign the

weights to all hidden

neurons and output

neuron

Test the algorithm with

known and unknown

input sequence

would be present in the final output, when used in test

mode.

3.2.1 Weights and Activation Functions

The task here is to assign weights to all

neurons and to find out their activations functions. We

know that for the training data, only one neuron has to

be activated corresponding to the input.

Weights of hidden layer: We know that the network

has x number of hidden layers, where x is the number

of input cases in the training data. Our job is to assign

weights to all the hidden neurons for each of the inputs.

As this is a fast training algorithm, the weights are

assigned just by looking at the input sequences.
Let the inputs given to the Neural Network for

x test cases be (I11,I21), (I12,I22), (I13,I23)……(Ix1,Ix2).

Here any Iij represents a particular input. The weights

of an input sequence i for a corresponding hidden layer

j is denoted by Hij. For this algorithm we take Hij equal

to the j
th

 input of the i
th

 input sequence Iij. Hence the

weights of the hidden layer would be (I11,I21), (I12,I22),

(I13,I23) ……(Ix1,Ix2).

Hence the weight vector of the hidden layer is

the same as the input sequence vector of the training

data. This is shown in Figure 4.

The last input I3 is the radius of generalization

which is artificially applied to each of the inputs of the

hidden layer.

Figure 4: The weights of the hidden layer

Activation Functions of hidden layer: A hidden layer

takes all the inputs. For every input it has an associated

weight. Conventional neural networks used to multiply

the weights to the input sequence and add the results. In

this algorithm we take a different approach. Here we

take the square of distance between the input and

weight in place of multiplication.

For an input Ii(=Ii1,Ii2) and Hidden Layer Hj

whose weights for the two inputs are Ij1, Ij2, we have

the input to the hidden neuron as:

Input to Hj = (Ii1-Ij1)
2
+(Ii2-Ij2)

2

Also we have an artificial input I3. This is

added to the result directly (assume corresponding

weight to be 0 and I3 as input).

The output of this neuron will be 1 or 0

always. The procedure is slightly modified. The main

aim is to find the closest match from the historical

trained network (in test mode). Hence the neuron

output is 1 just for the set of neurons which are having

minimum input (obtained from sum of distances of

weights and inputs + I3). Hence the algorithm

calculates the input of each neuron in the hidden layers,

selects the minimum distances. For the set of neurons

closest to the input, the output is 1 and for all others,

the output is 0.

It may be seen that when we train the network,

the product of any input with its corresponding hidden

neuron will be zero (distance of point with itself) and

for the others will be non-zero (distance of 2 different

points). When we multiply all the corresponding

weights of a particular neuron with the inputs and add

their results, we get a zero answer when an input is

same as the corresponding weight else answer is non-

zero (provided input sequences have no input in

common). It may be observed that any hidden layer

neuron i has weights (Ii1,Ii2) with corresponding input

sequence (Ii1,Ii2). If we simulate the network, we get the

input of the hidden layer as (Ii1-Ii1)
2
+(Ii2-Ii2)

2
, which is

always zero. Hence in training, only one neuron is

selected for every input.

Weights of the Output Layer: The hidden layer

selects a set of neurons in all cases and gives its results.

Hence the weight of an output layer for an input from

hidden layer neuron i is high (or 1), if the result of

input sequence i is high (or 1) and the weight is low (or

-1), if the corresponding output is low (or 0). Hence the

output vector weight is equal to the output vector given

in the training data sequence with 0 replaced by -1.

Activation Function of Output Layer: This is

exactly as done in any neural network. The inputs are

multiplied with the corresponding weights and the

results are added. The final answer is the output.
The output of the neuron is high (or 1) if the

input is greater than or equal to 0, and low (or 0) if the

input is less than 0.

I24

I14

I23

I13

I22

I12

I21

I11

I21,I22,I23,I24

I1

I2

H1

H2

H3

H4

I11,I12,I13,I14

Table 1: Working in Test Mode

 Input to Output to Output

Input Output Weights H1 H2 H3 H4 H1 H2 H3 H4 Weights

3 5 0 1 3 5 0 2 4 2 1 0 0 0 1

2 6 0 0 2 6 2 0 2 8 0 1 0 0 -1

1 5 0 0 1 5 4 2 0 10 0 0 1 0 -1

4 4 0 1 4 4 2 8 10 0 0 0 0 1 1

Figure 5: The network architecture of the example

Table 2: The performance of the algorithm

Picture Original Training Points

(marked with I and O)

Picture generated Statistics

................

................

.......###......

....#########...

...###########..

..#############.

..#####...######

..####.....#####

..####.#...#####

...#####...#####

....###....#####

...........#####

...........#####

..........######

.........#######

........########

...O....O....O..

.....O.....O....

.......#I#......

...O##I###I##O..

.O.#I#######I#..

.OI###I##I##I#IO

..#####...######

.O#I##.O.O.##I##

..I##IOI...I####

...#I###...####I

.O..#I#..O.##I##

.........O.#####

......O....#I###

..O.....O.###I##

.........I######

..O....OI####I##

................

................

......#####.....

.....#######....

....#########.#.

..#############.

..#####....####.

..####.....#####

..####.##.######

..####.#...#####

...#####...#####

....##.....#####

...........#####

..........######

........########

........########

Correctly Matched: 238

Incorrectly Matched: 18

Total Points: 256

Radius of generalization: 0

Correctness:92%

For r=1, Correctness=90% (232

Correct)

For r=2,

Correctness=84% (216

Correct)

For r=-1,

Correctness=91% (234

Correct)

For r=-2,

Correctness=89%(228 Correct)

................

.......###......

......#####.....

....#########...

..#############.

..#############.

..#####.#######.

..####.....#####

.########.######

..#######.######

...#####...#####

...###.....#####

...........#####

.........#######

........########

........########

................

.......###......

.....#######....

....#########..#

..##############

.###############

.###############

..#######.######

.########.######

.########.######

...#####...#####

...####....#####

....#......#####

.........#######

.......#########

.......#########

................

................

.......###......

.....#######....

....#########...

...###########..

...###.....###..

...##......####.

..###......#####

...###.....#####

...####.....####

....#......#####

...........#####

..........######

.........#######

.........#######

................

................

.......###......

.....#######....

.....#######....

...###########..

...###.....###..

...##......####.

...##......#####

...##......#####

....###.....####

....#.......####

...........#####

...........#####

..........######

.........#######

3,2,1,4

4

4

5

1
6

2
5

3

5,6,5,4

I1

I2

H1

H2

H3

H4

O

1

1

0

0

3.2.3 Training the neural network

This is procedure to supply the input sequence to the

network and set the corresponding weights of the

hidden layer and the output layer. As we know that for

every input sequence, only one neuron should be

activated. Hence the weights are modeled in such a way

as explained above. The inputs are taken and examined

one by one. For every input sequence, the weights are

set as explained above. Finally, at the end of input

sequence, the network is ready and set.

3.2.4 Testing the neural network

After the neural network has been set, we are

ready to test. We supply the various inputs whose

outputs are unknown. The neural network performs as

explained above and gives the outputs.

3.2.5 Example

Following is an example to explain the points

discussed in section 3. We suppose that a neural

network takes 2 inputs. Both these inputs are integers

which vary from 0 to 15. There is one output that can

be either 0 or 1.

We have the procedure of setting up the

network summarized in table 1. The network

architecture is given in Figure 3 and 5.

3.3 Advantages of the algorithm

We have various algorithms that solve the

problem of fast neural network learning. The algorithm

is better than most of the others because of the

following reasons:

 This architecture is very close to the actual

neural network architecture and hence users

may have very less problems in switching

between the conventional and new approach

 This algorithm does not split the inputs into

bits and take them as separate input. Hence

the structure is very simple. This was a major

problem in the preceding algorithms.

 The algorithm can independently take any

number of inputs, without internal combining.

This thing was not there in any of the earlier

algorithms.

 The computation is less as the inputs are not

in bits.

4 Results

The algorithm was tested using a simple

picture learning problem. A picture was taken which

consisted of black and white pixels. Some points of the

picture were taken and used as training data. The

network was trained using this data set. Then the

algorithm was put into use. It was made to regenerate

the picture. All the points were passed as the input. The

neural network was made to predict whether the pixel

is white or black. These were plotted.

The size of the picture was 16X16. Hence

there were a total of 256 points. We used a neural

network with 2 inputs. One with the x coordinate and

the other with the y coordinate. We trained the neural

network with 47 points from the picture. The results are

given in table 2. We also varied the radius of

generalization to see its effect on the working of the

algorithm.

It can be easily seen that the efficiency of the

algorithm is 92% with only 47 points trained out of

256. Hence using the algorithm we have been able to

train a neural network very fast. Even though we have

compromised with the efficiency, the performance

improvement in speed is a big boom for various

applications.

5 Conclusions

In this paper we have successfully proposed

and tested a new algorithm that can be used for

efficient fast training of the neural networks. We know

the various problems because of which there is a need

of fast learning in neural networks. Hence various

algorithms had come up. This algorithm efficiently

does the work with a better architecture.

We studied the theoretical foundations of the

algorithm. Also the number of hidden layer neurons

used were equal to the number of inputs given in

training data. Only a set of neurons were made to

activate in every input. The corresponding outputs were

computed by the output neuron.

When we simulated the algorithm, we got an

acceptable efficiency of 92%. The time required by the

algorithm was very less as compared to the time taken

by the neural networks. Hence this algorithm can be

very easily used for the fast training of the neural

networks.

6 References

[1] S.C. Kak, On training feedforward neural networks.

Pramana -J. of Physics, 40, 35-42 (1993).

[2] S.C. Kak, New algorithms for training feedforward neural

networks. Pattern Recognition Letters, 15, 295-298 (1994).

[3] S.C. Kak and J. Pastor, Neural networks and methods for

training neural networks. U.S. Patent No. 5,426,721, June

20, 1995.

[4] P. Raina, Comparison of learning and generalization

capabilities of the Kak and the backpropagation algorithms.

Information Sciences 81, 261- 274 (1994).

[5] K.B. Madineni, Two corner classification algorithms for

training the Kak feedforward neural network. Information

Sciences 81, 229-234 (1994).

[6] Abhilash Ponnath, Instantaneously Trained Neural

Networks, 1,2,3

[7] Pritam Rajagopal, The Basic Kak Neural Network with

Complex Inputs, PhD Thesis

[8] Adityan Rishiyur, Neural Networks with Complex and

Quaternion Inputs

[9] Subhash C. Kak, On generalization by neural networks,

ELSEVIER Information Sciences 111 (1998) 293-302

[10] Anupam Shukla, Shivanshu Mittal, Fast Learning

Neural Network using Advanced Algorithms, MTech Thesis,

IIITM Gwalior

[11] M. T. Hagan, H. B. Demuth, M. Beale, Neural Network

Design, PWS Publishing Cp, Massachusetts 1996

[12] S. C. Kak, New training algorithm in feedforward neural

networks, First International Conference on Fuzzy Theory

and technology, Durham N.C., October 1992. Also in Wang

PP(Editor), Advance in fuzzy theory and technologies,

Durham, N.C. Bookwright Press, 1993

[13] S. C. Kak and J Pastor, Neural Networks and methods

for training neural networks, US Patent No 5,426,721, June

20, 1995

[14] S. C. Kak, A class of instantaneously trained neural

networks, Information Sciences, 148,97-102,2002

[15] Rey-Chue Hwang, Yu-Ju Chen, Shang-Jen Chuang,

Huang-Chu Huang, Wei-Der Chang, Fast Learning Neural

Network with Modified Neurons, Proceedings of the Third

International Conference on Information Technology and

Applications (ICITA’05), IEEE Computer Society

[16] Enrique Castillo, A Very Fast Learning Method for

Neural Networks Based on Sensitivity Analysis, Journal of

Machine Learning Research 7 (2006) 1159–1182

