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Abstract. We introduce a novel algorithm to learn mixtures of Gamma
distributions. This is an extension of the k-Maximum Likelihood esti-
mator algorithm for mixtures of exponential families. Although Gamma
distributions are exponential families, we cannot rely directly on the ex-
ponential families tools due to the lack of closed-form formula and the
cost of numerical approximation: our method uses Gamma distributions
with a fixed rate parameter and a special step to choose this parameter is
added in the algorithm. Since it converges locally and is computationally
faster than an Expectation-Maximization method for Gamma mixture
models, our method can be used beneficially as a drop-in replacement in
any application using this kind of statistical models.

1 Introduction and prior work

Statistical mixtures are among the most used tools in many applications which
require to model experimental data with probability distributions. Such a mix-
ture is a weighted sum of components which are themselves probability distri-
butions (usually the same distribution is shared by all the components):

m(x) =

k∑
i=1

ωip(x; θi) (1)

The big challenge here is to learn the parameter vectors ω and θ and the number
of components k (we limit us to the case of finite mixtures but some algorithms
may output mixtures with an infinite number of components [1]). One of the
most famous algorithms to learn the parameters ω and θ is the Expectation-
Maximization (EM) algorithm [2].

We address here the problem of learning mixtures of Gamma distributions
(see Fig. 1)). Although not as common as Gaussian mixture models, Gamma
mixtures are of interest in many applications as various as bioinformatics [3],
communication networks modeling [4] or health services analysis [5] and a lot of
work has been devoted to these mixtures.

Our new algorithm is an extension of the k-Maximum Likelihood estimator
(k-MLE) algorithm by Nielsen [6]. It relies on the same principle which was
already used for mixtures of generalized Gaussians [7]. Our contribution is to
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Fig. 1. A mixture of Gamma distributions with 3 components: ω1 = 0.12, α1 = 1, β1 =
1; ω2 = 0.4, α2 = 4, β2 = 2; ω3 = 0.48, α3 = 30, β3 = 0.5.

provide a new algorithm for Gamma mixtures which is faster than methods
based on Expectation-Maximization

Since the studied method relies on the exponential families framework, the
necessary background about exponential families is recalled and we show that
Gamma distributions are members of the exponential families. After a descrip-
tion of two algorithms designed to learn mixtures of exponential families, Breg-
man Soft Clustering, which relies on EM and k-MLE, we explain why they are
not well suited for the particular case of Gamma mixtures. In the following sec-
tion we present our extension of k-MLE which allows to efficiently learn mixtures
of Gamma distributions. In the last section we evaluate the effectiveness of our
proposed algorithm both in terms of computational cost and in terms of quality
of the produced models.

2 Exponential families and their parametrizations

2.1 Definition

Exponential families are a widespread class of distributions and many commonly
used distributions belong to this class (with the notable exception of the uniform
distribution): for example Gaussian, Beta, Gamma, Rayleigh, Von Mises are all
members of this class ([8] provides a vast list of exponential families with their
decomposition). An exponential family is a set of probability mass or probability
density functions which admits the following canonical decomposition:

p(x; θ) = exp(〈t(x), θ〉 − F (θ) + k(x)) (2)

with

– t(x) the sufficient statistic,
– θ the natural parameters,
– 〈·, ·〉 the inner product,



– F the log-normalizer,
– k(x) the carrier measure.

The log-normalizer characterizes the exponential family and is equal to:

F (θ) = log

∫
x

exp(〈t(x), θ〉+ k(x)) dx (3)

Since this log-normalizer F is a strictly convex and differentiable function, it
admits a dual representation by the Legendre-Fenchel transform:

F ?(η) = sup
θ
{〈θ, η〉 − F (θ)} (4)

We get the maximum for θ = (∇F )
−1

(η) and F ? can be computed with:

F ?(η) = 〈η, θ〉 − F (θ) (5)

Thus we deduce that the gradient of F and of its dual F ? are inversely
reciprocal:

∇F = (∇F ?)−1 (6)

The duality between F and its Legendre transform F ? leads to a new
parametrization for the exponential families, which is the dual of the natural
parameters: the so-called expectation parameters η = ∇F (θ). The parameters η
are called expectation parameters since η = E [t(x)] [8].

In the general case, the dual F ? may be not known in closed-form and thus
may require numerical approximation (which is time consuming and submitted
to various practical problems like the choice of the initialization for an iterative
procedure).

2.2 Bregman divergences

Bregman divergences are a family of divergences parametrized by the set of
strictly convex and differentiable functions and is written as:

BF (p‖q) = F (p) − F (q) − 〈p − q, ∇F (q)〉 (7)

The function F is called the generator of the Bregman divergence.
The family of Bregman divergences generalizes a lot of usual divergences, for

example:

– the squared Euclidean distance, for F (x) = x2,
– the Kullback-Leibler (KL) divergence, with the Shannon negative entropy
F (x) =

∑d
i=1 xi log xi (also called Shannon information).



2.3 Bijection between exponential families and Bregman
divergences

Banerjee et al. [9] showed that Bregman divergences are in bijection with the
exponential families through the generator F . For each exponential family with a
log-normalizer F there is one and only one Bregman divergence whose generator
is F ?, the Legendre dual of F . We can rewrite the exponential family in terms
of the corresponding Bregman divergence:

p(x; θ) = exp(〈t(x), θ〉 − F (θ) + k(x)) (8)
= exp(−BF?(t(x)‖η) + F ?(t(x)) + k(x)) (9)

where η is the expectation parameter of the family (η = ∇F (θ)).
This bijection allows in particular to compute the Kullback-Leibler diver-

gence between two members of the same exponential family:

KL (p(x, θ1); p(x, θ2)) =

∫
x

p(x; θ1) log
p(x; θ1)

p(x; θ2)
dx (10)

=BF (θ2‖θ1) (11)

where F is the log-normalizer of the exponential family and the generator of the
associated Bregman divergence.

Thus, computing the Kullback-Leibler divergence between two members of
the same exponential family is equivalent to computing a Bregman divergence
between their natural parameters (with swapped order).

2.4 Gamma is an exponential family

The general case of the Gamma distribution is

p(x;α, β) =
βαxα−1 exp(−βx)

Γ (α)
(12)

with α, β > 0 and x is a positive real number.
The parameter α is called the shape parameter and β is called the rate pa-

rameter (or inverse scale parameter). It is common to find another parametriza-
tion which replace the rate parameter by the scale parameter θ = 1

β .
This distribution is an exponential family with the following parametrization:

Natural parameters (θ1, θ2) = (−β, α− 1)

Sufficient statistics t(x) = (x, log x)



Log normalizer F (θ1, θ2) = (−(θ2 + 1) log(−θ1) + logΓ (θ2 + 1))

Gradient log normalizer ∇F (θ1, θ2) =
(
θ2+1
−θ1 ,− log(−θ1) + ψ(θ2 + 1)

)

Dual log normalizer F ?(η1, η2) =
〈
(∇F )−1(η1, η2), (η1, η2)

〉
−F

(
(∇F )−1(η1, η2)

)
Although the log-normalizer F and its gradient∇F are known in closed-form,

it is not the case for its dual F ? and for the gradient of the dual ∇F ? = (∇F )
−1.

It thus requires numerical approximation, which is computationally costly.

3 Learning mixtures of exponential families

3.1 Bregman Soft Clustering

The Bregman Soft Clustering for mixtures of exponential families has been in-
troduced in [9]. It is actually a meta-algorithm which takes the considered family
as an input of the algorithm and which does not require specific adaptation for
each family, contrary to most of the previously proposed methods. As a variant
of EM, it still relies on the usual two steps:

Expectation step: The usual Expectation-Maximization algorithm gives us
the following formulation for the posterior probabilities:

p(i|xt, η) =
ωip(xt; ηi)∑k
j=1 ωjp(xt; ηj)

(13)

Using the bijection between exponential families, we can replace the prob-
ability density function of the exponential family by its expression using the
associated Bregman divergence.

p(i|xt, η) =
ωi exp (−BF?(t(xi)‖ηi)) exp k(xt)∑k
j=1 ωj exp (−BF?(t(xt)‖ηj)) exp k(xt)

(14)

=
ωi exp (−BF?(t(xt)‖ηi))∑k
j=1 ωj exp (−BF?(t(xt)‖ηj))

(15)

(16)

Since BF?(p‖q) = F ?(p) − F ?(q) − 〈p − q,∇F ?(q)〉 we can expand the ex-
pression of the Bregman divergence in the previous expression:



p(i|xt, η) =
ωi exp (−F ?(t(xt))− F ?(ηi)− 〈t(xt)− ηi,∇F ?(ηi)〉)∑k
j=1 ωj exp (−F ?(t(xt))− F ?(ηj)− 〈t(xt)− ηj ,∇F ?(ηj)〉)

(17)

=
ωi exp (F ?(ηi) + 〈t(xt)− ηi,∇F ?(ηi)〉)∑k
j=1 ωj exp (F ?(ηj) + 〈t(xt)− ηj ,∇F ?(ηj)〉)

(18)

Maximization step: The maximization step is done with the maximum like-
lihood estimator for exponential families [9]. It can be computed as the average
of the sufficient statistics on the observations:

η̂ = E [t(x)] =
1

n

∑
t(xi) (19)

Notice that we get an estimate which lives in the space of the expectation
parameters. If one wants the associated natural parameter θ̂ = ∇F ?(η̂), the ∇F ?
function will be needed, either in closed-form or with a numerical approximation
(which will be computationally costly).

3.2 k-Maximum Likelihood Estimator

Assume we have a set X = {x1, . . . , xn} of n observations which have been
sampled from a finite mixture model with k components. The joint probability
distribution of theses samples with the missing components zi (indicating from
which component each observation xi comes from) is:

p(x1, z1, . . . , xn, zn) =
∏
i

p(zi|ω)p(xi|zi, θ) (20)

Since the variables zi are not observed in practice, we marginalize these
variable and we get:

p(x1, . . . , xn|ω, θ) =
∏
i

∑
j

p(zi = j|ω)p(xi|zi = j, θ) (21)

The straightforward way to optimize this distribution would be to test the kn
labels but this is not tractable in practice. Instead, Expectation-Maximization
optimizes the following quantity, the expected log-likelihood:

l̄(x1, . . . , xn) =
1

n
log p(x1, . . . , xn) (22)

=
1

n

∑
i

log
∑
j

p(zi = j|ω)p(xi|zi = j, θ) (23)



Contrary to this approach, the k-Maximum Likelihood Estimator maximizes
the average complete log-likelihood:

l̄′(x1, z1, . . . , xn, zn) =
1

n
log p(x1, z1, . . . , xn, zn) (24)

=
1

n

∑
i

log
∏
j

(
(ωjpF (xi, θj))

δ(zi)
)

(25)

=
1

n

∑
i

∑
j

δ(zi) (log pF (xi, θj) + logωj) (26)

Since pF is an exponential family, we have:

log pF (xi, θj) = −BF∗(t(x), ηj) + F ?(t(x)) + k(x)︸ ︷︷ ︸
does not depend on θ

(27)

The terms which do not depend on θ are of no interest for the maximization
problem and can be removed: we can then rewrite Eq. (26) to get the equivalent
problem:

arg min
∑
i

∑
j

δ(zi) (BF∗(t(x), ηj)− logωj) (28)

As stated in [6] this problem can be solved for a fixed set of weights ωi using
the Bregman k-means algorithm with the Bregman divergence BF∗ (actually,
any heuristic for k-means is convenient).

The weights can now be optimized by taking ωi = |Ci|
n (where |Ci| is the

number of observations put in the cluster Ci by the solution of the previous
clustering problem). This step amounts to maximize the cross-entropy of the
mixture [6].

The full algorithm can be summarized as follows (see Fig. 2(a) for a block
diagram):

1. Initialization (random or using k-MLE ++[6]);
2. Assignment zi = arg maxj log(ωjpF (xi|θj));
3. Update of the η parameters ηi = 1

nj

∑
x∈Cj t(xi);

Goto step 2 until local convergence;
4. Update of the parameters ωj ;

Goto step 2 until local convergence of the complete likelihood.

4 k-MLE for Gamma

4.1 Gamma with fixed rate parameter

The algorithms described in the two previous sections needs frequent conversions
between natural parameters θ and expectation parameters η. The bijection be-
tween the two parameter spaces uses the functions ∇F and ∇F ? which are not
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(b) Extended k-MLE

Fig. 2. Block diagram for the original algorithm and its extension

known in closed-form for the Gamma distribution. Moreover, the evaluation of
the Bregman divergence BF? is also needed, but the function F ? is also miss-
ing in closed-form. k-MLE may still be applicable to Gamma mixtures but the
numerical approximations needed would dramatically reduce the speed of the
algorithm, which is one of its main interests [10].

To avoid the computational difficulties for the functions which are not known
in closed form, we introduce the Gamma distribution with a fixed rate parameter.
The parameter β is not any more a member of the source parametrization and
is instead a parameter of the distribution.

pβ(x;α) =
βαxα−1 exp(−βx)

Γ (α)
(29)

This is still an exponential family with the following parametrization (a compre-
hensive list of formulas is given in Table 1):

Natural parameters θ = α− 1

Log normalizer F (θ) = −(θ + 1) log(β) + logΓ (θ + 1)



Gradient log normalizer ∇F (θ) = − log(β) + ψ(θ + 1)

Dual log normalizer F ?(η) = 〈∇F ?(η), η〉 − F (∇F ?(η))

Gradient of the dual log normalizer ∇F ?(η) = (∇F )−1(η)

The ∇F function can be inverted in closed-form with respect to the inverse
digamma function ψ−1, giving:

(∇F )−1(η) = ψ−1(η + log β)− 1 = ∇F ?(η) (30)

We can now compute the F ? function by directly applying the Legendre
transform to the log-normalizer F :

F ?(η) = 〈∇F ?(η), η〉 − F (∇F ?(η)) (31)

= η (ψ−1(η + log β)− 1) + ψ−1(η + log β) log β

− logΓ
(
ψ−1(η + log β)

) (32)

Strictly speaking, this is still not a closed-form but, contrary to the functions
we get for the full Gamma distribution, the two missing functions Γ and ψ−1

can be computed efficiently: algorithms for the Γ function are well known [11]
and ψ−1 is numerically well behaved and can be computed efficiently computed
with a dichotomic search 3.

4.2 Maximum likelihood estimator

Results from exponential families [9] give an estimator for the expectation pa-
rameters of the fixed rate family:

η̂ =
1

n

∑
t(xi) =

1

n

∑
log(xi) = − log α̂+ ψ(β) (33)

By derivation of the likelihood function, we get an estimator for the rate
parameter β [4]:

β̂ =
nα̂∑
xi

(34)

3 See http://hips.seas.harvard.edu/files/invpsi.m for a working Matlab imple-
mentation which can be easily translated in any language

http://hips.seas.harvard.edu/files/invpsi.m


PDF pβ(x;α) =
βαxα−1 exp(−βx)

Γ (α)

Λ→ Θ θ = α− 1

Θ → Λ α = θ + 1

Λ→ H η = − log β + ψ(α)

H → Λ α = ψ−1 (η + log β)

Θ → H η = ∇F (θ)

H → Θ θ = ∇F ?(η)

Log normalizer F (θ) = −(θ + 1) log β + logΓ (θ + 1)

Gradient log normalizer ∇F (θ) = − log β + ψ(θ + 1)

Dual log normalizer F ?(η) = η(ψ−1(η + log β)− 1) + ψ−1(η + log β) log β +
logΓ (ψ−1(η + log β))

Gradient dual log normalizer ∇F ?(η) = ψ−1(η + log β)− 1

Sufficient statistic t(x) = log x

Carrier measure k(x) = −βx
Table 1. Gamma distribution with fixed rate as an exponential family

4.3 Learning mixtures

The original k-MLE algorithm builds mixture models where all the components
belong to the same exponential family. Although generic Gamma distributions
are exponential families, Gamma distributions with fixed rate are not in the
same exponential family if the rate parameter is not the same across compo-
nents. In order to build a mixture with a different β parameter for each com-
ponent, we will follow the approach introduced in [7] (for generalized Gaussian)
which adds a supplementary step to the k-MLE procedure (see Fig. 2(b)): before
updating the weights, the family of each component is chosen using a maximum
likelihood estimator. In the Gamma case, it amounts to choosing the rate pa-
rameter of each component, using the MLE given in Eq. (34).

The new k-MLE algorithm for Gamma mixtures (k-MLE-Gamma) can be
summarized as follows:

1. Initialization (random or using k-MLE ++[6]);
2. Assignment zi = arg maxj log(ωjpFj (xi|θj));
3. Update of the η parameters ηi = 1

nj

∑
x∈Cj log(xi);

Goto step 2 until stability (local convergence of the k-means);
4. Update of the parameters ωj and βj (for all j);

Goto step 2 until local convergence of the complete likelihood.



4.4 Convergence to a local maximum

As the one proposed for generalized Gaussian, this algorithm converges to a
local maximum of the complete log-likelihood. We want to minimize the same
cost function as the original k-MLE algorithm, the complete log-likelihood of the
mixture, with the slight difference that the log-normalizer is not shared among
components but now depends on the values βj and is now written Fj instead of
F :

l̄(x1, z1, ..., xn, zn|w, θ) =
1

n

n∑
i=1

k∑
j=1

δj(zi)(log pFj (xi|θj) + logωj) (35)

=
1

n

n∑
i=1

k∑
j=1

δj(zi)
(
−BFj∗(t(xi), ηj)

+ Fj
∗(t(xi)) + kj(xi) + logωj

) (36)

Let Cj be the set of the indices of the observations sampled from the j-th
component. Maximizing the log-likelihood l̄ is equivalent to minimizing the cost
function −l̄:

l̄′ = −l̄ =
1

n

k∑
j=1

∑
i∈Cj

Uj (xi, ηj) (37)

where

Uj(xi, ηj) =−
(
log pFj (xi|θj) + logωj

)
(38)

= BFj∗(t(xi) : ηj)− Fj∗(t(xi)) (39)
− kj(xi)− logωj

is the cost for the observation i to have been sampled from the component j.
Notice this cost depends on j since each component has a different generator Fj
and a different carrier measure kj .

This minimization problem can be solved with the Lloyd k-means algorithm
[12] using the cost function U (which is not a distance nor a divergence and can
even be negative). A proof of the convergence of the Lloyd algorithm for this
cost function is given in [7].

After the execution of the Lloyd algorithm, the log-likelihood has been opti-
mized for fixed ωj and βj . The final step is to update these two parameters using
the proportion of samples in each cluster for the weights and the estimator for
β (from Eq. (34)).



5 Expectation-Maximization for Gamma mixtures

Almhana et al. [4] proposed a specific variant of Expectation-Maximization for
Gamma mixtures. The E step is unchanged compared to the classical EM algo-
rithm, the only changes are in the M step: a specific update step is used for the
α and β parameters. We will use this algorithm as a reference in the experiments
presented in Section 6.

Maximization step Given the current estimate for the parameters ω, α and
β, the new values can be computed with:

ω
(k+1)
i =

1

n

n∑
t=1

p(i|xt, θ(k)) (40)

β
(k+1)
i =

α
(k)
i

∑n
t=1 p(i|xt, θ(k))∑n

t=1 xtp(i|xt, θ(k))
(41)

α
(k+1)
i = α

(k)
i +

1

k
G (42)

with

G =
1

n

n∑
t=1

(
log xt + log β

(k)
i − ψ(α

(k)
i )
)
p(i|xt, θ(k)) (43)

6 Experiments

6.1 On synthetic data

The first experiment evaluates the convergence of k-MLE and the convergence
of EM on a synthetic example: 15000 observations are sampled from a known
three components Gamma mixture and the two evaluated methods are used to
estimate Gamma mixture models with three components. We draw in Fig. 3 the
log-likelihood of each mixture at each iteration of the two algorithms. Although
the goal of k-MLE is to maximize the complete log-likelihood (Eq. (24)) and not
the log-likelihood (Eq. (22) we see that both algorithms converge to a (local)
maximum of the log-likelihood. Moreover k-MLE provides better results and
converges way faster than EM.

6.2 On a real dataset

The second experiment describes experimental results on a real dataset which
collects distances between atoms inside RNA molecules in order to predict the
3D structure of these molecules. Gaussian mixture models were successfully used
to model the density of these distance [13] [14] but since the observations are
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Fig. 3. Log-likelihood with respect to the number of components for k-MLE (dashed
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Fig. 4. Log-likelihood and computation time ratios for k-MLE (right red bars) and EM
(left blue bars) with respect to the number of components in the mixture. EM is our
reference for comparison and thus has the score 1.



intrinsically positive a mixture model with a positive support (remember that
Gaussian distribution is defined on R whereas the Gamma distribution is defined
on R+) would be more statistically meaningful.

Fig. 4 presents results on this dataset, in terms of log-likelihood and compu-
tation time with respect to the number of components in the mixture (4, 8, 12
and 16 components). Since absolute value for likelihood and time are difficult
to compare meaningfully, we plot the mean ratio between the values got with
k-MLE and the one got with EM (which is our reference for comparison and
represented by 1 on the graphics). We see that k-MLE for Gamma mixtures
performs similarly (or even better) to EM for Gamma mixtures for the quality
of the built models and outperforms EM for the computation time (between 10%
and 40%). The only case where k-MLE is worse than EM is for 4 components:
k-MLE seems to be less robust when the number of components is not enough
to model accurately the observations.

7 Conclusion

We presented a new algorithm for mixtures of Gamma distributions which is
both fast and accurate. Accuracy is important since it means that the quality
of the produced models (and thus the performances in the considered applica-
tions) will not decrease: our new algorithm could thus be considered as a drop-in
replacement for other Gamma mixtures algorithms. The faster speed not only
means that the computation time will decrease in applications where Gamma
mixtures are already used but also that these mixtures will become of new inter-
est in areas where the use of the Gamma distribution was theoretically interesting
but not feasible in practice due to the high computation time. Moreover, this
new extension of the k-Maximum Likelihood estimator shows the power and
the genericity of the method which allows interesting perspectives for new and
unexplored kinds of mixtures.
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