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FAST LEARNING RATE OF MULTIPLE KERNEL LEARNING:
TRADE-OFF BETWEEN SPARSITY AND SMOOTHNESS

BY TAIJI SUZUKI1 AND MASASHI SUGIYAMA2

University of Tokyo and Tokyo Institute of Technology

We investigate the learning rate of multiple kernel learning (MKL) with
�1 and elastic-net regularizations. The elastic-net regularization is a compo-
sition of an �1-regularizer for inducing the sparsity and an �2-regularizer for
controlling the smoothness. We focus on a sparse setting where the total num-
ber of kernels is large, but the number of nonzero components of the ground
truth is relatively small, and show sharper convergence rates than the learning
rates have ever shown for both �1 and elastic-net regularizations. Our analysis
reveals some relations between the choice of a regularization function and the
performance. If the ground truth is smooth, we show a faster convergence rate
for the elastic-net regularization with less conditions than �1-regularization;
otherwise, a faster convergence rate for the �1-regularization is shown.

1. Introduction. Learning with kernels such as support vector machines has
been demonstrated to be a promising approach, given that kernels were chosen
appropriately [Schölkopf and Smola (2002), Shawe-Taylor and Cristianini (2004)].
So far, various strategies have been employed for choosing appropriate kernels,
ranging from simple cross-validation [Chapelle et al. (2002)] to more sophisticated
“kernel learning” approaches [Ong, Smola and Williamson (2005), Argyriou et al.
(2006), Bach (2009), Cortes, Mohri and Rostamizadeh (2009a), Varma and Babu
(2009)].

Multiple kernel learning (MKL) is one of the systematic approaches to learning
kernels, which tries to find the optimal linear combination of prefixed base-kernels
by convex optimization [Lanckriet et al. (2004)]. The seminal paper by Bach,
Lanckriet and Jordan (2004) showed that this linear-combination MKL formula-
tion can be interpreted as �1-mixed-norm regularization (i.e., the sum of the norms
of the base kernels). Based on this interpretation, several variations of MKL were
proposed, and promising performance was achieved by “intermediate” regulariza-
tion strategies between the sparse (�1) and dense (�2) regularizers, for example,
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a mixture of �1-mixed-norm and �2-mixed-norm called the elastic-net regular-
ization [Shawe-Taylor (2008), Tomioka and Suzuki (2009)] and �p-mixed-norm
regularization with 1 < p < 2 [Micchelli and Pontil (2005), Kloft et al. (2009)].

Together with the active development of practical MKL optimization algo-
rithms, theoretical analysis of MKL has also been extensively conducted. For
�1-mixed-norm MKL, Koltchinskii and Yuan (2008) established the learning rate
d(1−s)/(1+s)n−1/(1+s) + d log(M)/n under rather restrictive conditions, where n

is the number of samples, d is the number of nonzero components of the ground
truth, M is the number of kernels and s (0 < s < 1) is a constant representing the
complexity of the reproducing kernel Hilbert spaces (RKHSs). Their conditions
include a smoothness assumption of the ground truth. For elastic-net regulariza-
tion (which we call elastic-net MKL), Meier, van de Geer and Bühlmann (2009)
gave a near optimal convergence rate d(n/ log(M))−1/(1+s). Recently, Koltchinskii
and Yuan (2010) showed that MKL with a variant of �1-mixed-norm regulariza-
tion (which we call L1-MKL) achieves the minimax optimal convergence rate,
which successfully captured sharper dependency with respect to log(M) than the
bound of Meier, van de Geer and Bühlmann (2009) and established the bound
dn−1/(1+s) + d log(M)/n. Another line of research considers the cases where the
ground truth is not sparse, and bounds the Rademacher complexity of a candidate
kernel class by a pseudo-dimension of the kernel class [Srebro and Ben-David
(2006), Ying and Campbell (2009), Cortes, Mohri and Rostamizadeh (2009b),
Kloft, Rückert and Bartlett (2010)]. Fast learning rate of MKL in nonsparse set-
tings is given by Kloft and Blanchard (2012) for �p-mixed-norm regularization and
by Suzuki (2011a, 2011b) for regularizations corresponding to arbitrary monoton-
ically increasing norms.

In this paper, we focus on the sparse setting (i.e., the total number of kernels
is large, but the number of nonzero components of the ground truth is relatively
small), and derive sharp learning rates for both L1-MKL and elastic-net MKL. Our
new learning rates,

d(1−s)/(1+s)n−1/(1+s)R
2s/(1+s)
1,f ∗ + d log(M)

n
,(L1-MKL)

d(1+q)/(1+q+s)n−(1+q)/(1+q+s)R
2s/(1+q+s)
2,g∗ + d log(M)

n
,(Elastic-net MKL)

are faster than all the existing bounds, where R1,f ∗ is the �1-mixed-norm of the
truth, R2,g∗ is a kind of �2-mixed-norm of the truth and q (0 ≤ q ≤ 1) is a constant
depending on the smoothness of the ground truth.

Our contributions are summarized as follows:

(a) The sharpest existing bound for L1-MKL given by Koltchinskii and Yuan
(2010) achieves the minimax rate on the �∞-mixed-norm ball [Raskutti, Wain-
wright and Yu (2009, 2012)]. Our work follows this line and shows that the learn-
ing rates for L1-MKL and elastic-net MKL further achieve the minimax rates on
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the �1-mixed-norm ball and �2-mixed-norm ball, respectively, both of which are
faster than that on the �∞-mixed-norm ball. This result implies that the bound by
Koltchinskii and Yuan (2010) is tight only when the ground truth is evenly spread
in the nonzero components.

(b) We included the smoothness q of the ground truth into our learning rate,
where the ground truth is said to be smooth if it is represented as a convolution of a
certain function and an integral kernel; see Assumption 2. Intuitively, for larger q ,
the truth is smoother. We show that elastic-net MKL properly makes use of the
smoothness of the truth: The smoother the truth is, the faster the convergence
rate of elastic-net MKL is. That is, the resultant convergence rate of elastic-net
MKL becomes as if the complexity of RKHSs was s

1+q
instead of the true com-

plexity s. Meier, van de Geer and Bühlmann (2009) and Koltchinskii and Yuan
(2010) assumed q = 0 and Koltchinskii and Yuan (2008) considered a situation of
q = 1. Our analysis covers both of those situations and is more general since any
0 ≤ q ≤ 1 is allowed.

(c) We investigate a relation between the sparsity and the smoothness. Roughly
speaking, L1-MKL generates a sparser solution while elastic-net MKL generates
a smoother solution. When the smoothness q of the truth is small (say q = 0),
we give a faster convergence rate of L1-MKL than that of elastic-net MKL. On the
other hand, if the truth is smooth, elastic-net MKL can make use of the smoothness
of the truth. In that situation, the learning rate of elastic-net MKL could be faster
than L1-MKL.

The relation between our analysis and existing analyses is summarized in Ta-
ble 1.

2. Preliminaries. In this section, we formulate elastic-net MKL, and summa-
rize mathematical tools that are needed for our theoretical analysis.

TABLE 1
Relation between our analysis and existing analyses

Penalty Smoothness Minimax Convergence rate
(q) optimality

KY (2008) �1 q = 1 ? d(1−s)/(1+s)n−1/(1+s) + d log(M)
n

MGB (2009) elastic-net q = 0 × (
log(M)

n )1/(1+s)(d + R2
2,g∗)

KY (2010) �1 q = 0 �∞-ball
(d+R1,f ∗ )

n1/(1+s) + d log(M)
n

This paper elastic-net 0 ≤ q ≤ 1 �2-ball ( d
n )(1+q)/(1+q+s)R

2s/(1+q+s)
2,g∗ + d log(M)

n

�1 q = 0 �1-ball d(1−s)/(1+s)

n1/(1+s) R
2s/(1+s)
1,f ∗ + d log(M)

n
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2.1. Formulation. Suppose we are given n samples {(xi, yi)}ni=1 where xi be-
longs to an input space X and yi ∈ R. We denote the marginal distribution of X

by �. We consider an MKL regression problem in which the unknown target func-
tion is represented as f (x) =∑M

m=1 fm(x), where each fm belongs to a different
RKHS Hm(m = 1, . . . ,M) with a kernel km over X × X .

The elastic-net MKL we consider in this paper is the version considered in
Meier, van de Geer and Bühlmann (2009),

f̂ = arg min
fm∈Hm

(m=1,...,M)

1

n

N∑
i=1

(
yi −

M∑
m=1

fm(xi)

)2

(1)

+
M∑

m=1

(
λ

(n)
1 ‖fm‖n + λ

(n)
2 ‖fm‖Hm + λ

(n)
3 ‖fm‖2

Hm

)
,

where ‖fm‖n :=
√

1
n

∑n
i=1 fm(xi)2 and ‖fm‖Hm is the RKHS norm of fm in

Hm. The regularizer is the mixture of �1-term
∑M

m=1(λ
(n)
1 ‖fm‖n + λ

(n)
2 ‖fm‖Hm)

and �2-term
∑M

m=1 λ
(n)
3 ‖fm‖2

Hm
. In that sense, we say that the regularizer is of

the elastic-net type3 [Zou and Hastie (2005)]. Here the �1-term is a mixture
of the empirical L2-norm ‖fm‖n and the RKHS norm ‖fm‖Hm . Koltchinskii
and Yuan (2010) considered �1-regularization that contains only the �1-term:∑

m(λ
(n)
1 ‖fm‖n + λ

(n)
2 ‖fm‖Hm). To distinguish the situations of λ

(n)
3 = 0 and

λ
(n)
3 > 0, we refer to the learning method (1) with λ

(n)
3 = 0 as L1-MKL and that

with λ
(n)
3 > 0 as elastic-net MKL.

By the representer theorem [Kimeldorf and Wahba (1971)], the solution f̂

can be expressed as a linear combination of nM kernels: ∃αm,i ∈ R, f̂m(x) =∑n
i=1 αm,ikm(x, xi). Thus, using the Gram matrix Km = (km(xi, xj ))i,j , the regu-

larizer in (1) is expressed as

M∑
m=1

(
λ

(n)
1

√
α�

m

KmKm

n
αm + λ

(n)
2

√
α�

mKmαm + λ
(n)
3 α�

mKmαm

)
,

where αm = (αm,i)
n
i=1 ∈ R

n. Thus, we can solve the problem by an SOCP (second-
order cone programming) solver as in Bach, Lanckriet and Jordan (2004), the co-
ordinate descent algorithms [Meier, van de Geer and Bühlmann (2008)] or the
alternating direction method of multipliers [Boyd et al. (2011)].

3There is another version of MKL with elastic-net regularization considered in Shawe-Taylor

(2008) and Tomioka and Suzuki (2009), that is, λ
(n)
2
∑M

m=1 ‖fm‖Hm
+ λ

(n)
3
∑M

m=1 ‖fm‖2
Hm

(i.e.,
there is no ‖fm‖n term in the regularizer). However, we focus on equation (1) because the above one
is too loose to properly bound the irrelevant components of the estimated function.
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2.2. Notation and assumptions. Here, we present several assumptions used in
our theoretical analysis and prepare notation.

Let H = H1 ⊕ · · · ⊕ HM . We utilize the same notation f ∈ H indicating both
the vector (f1, . . . , fM) and the function f =∑M

m=1 fm (fm ∈ Hm). This is a little
abuse of notation because the decomposition f =∑M

m=1 fm might not be unique
as an element of L2(�). However, this will not cause any confusion. We denote by
f ∗ ∈ H the ground truth satisfying the following assumption (the decomposition
f ∗ =∑M

m=1 f ∗
m of the truth might not be unique but we fix one possibility).

ASSUMPTION 1 (Basic assumptions).

(A1-1) There exists f ∗ = (f ∗
1 , . . . , f ∗

M) ∈ H such that E[Y |X] =∑M
m=1 f ∗

m(X),
and the noise εi := yi − f ∗(xi) is bounded as |εi | ≤ L (a.s.).

(A1-2) For each m = 1, . . . ,M , the kernel function km is continuous and
supX∈X |km(X,X)| ≤ 1.

The first assumption in (A1-1) ensures the model H is correctly specified, and
the technical assumption |εi | < L allows εif to be Lipschitz continuous with re-
spect to f . The assumption of correct specification can be relaxed to misspeci-
fied settings, and the bounded noise can be replaced with i.i.d. Gaussian noise as
in Raskutti, Wainwright and Yu (2012). However, for the sake of simplicity, we
assume these conditions. It is known that assumption (A1-2) gives the relation
‖fm‖∞ ≤ ‖fm‖Hm ; see Chapter 4 of Steinwart and Christmann (2008).

Let an integral operator Tm :L2(�) → L2(�) corresponding to a kernel func-
tion km be

Tmf =
∫

km(·, x)f (x)d�(x).

It is known that this operator is compact, positive and self-adjoint [see Theo-
rem 4.27 of Steinwart and Christmann (2008)], and hence the spectral theorem
shows that there exist an at most countable orthonormal system {φ�,m}∞�=1 and
eigenvalues {μ�,m}∞�=1 such that

Tmf =
∞∑

�=1

μ�,m〈φ�,m,f 〉L2(�)φ�,m(2)

for f ∈ L2(�). Here we assume {μ�,m}∞�=1 is sorted in descending order, that is,
μ1,m ≥ μ2,m ≥ μ3,m ≥ · · · ≥ 0. Associated with Tm, we can define an operator
T̃m : Hm → Hm as

〈
f ′

m, T̃mfm

〉
Hm

= E
[
f ′

m(X)fm(X)
]= 〈

f ′
m,

∫
km(·, x)fm(x)d�(x)

〉
Hm

.
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For the canonical inclusion map ιm : Hm → L2(�), one can check that the follow-
ing commutative relation holds:

Tmιmfm = ιmT̃mfm,

Hm

ιm

T̃m

Hm

ιm

L2(�)
Tm

L2(�).

Thus we use the same notation for Tm and T̃m and denote by Tm referring to both
operators.

Due to Mercer’s theorem [Ferreira and Menegatto (2009)], km has the following
spectral expansion:

km

(
x, x′)= ∞∑

k=1

μk,mφk,m(x)φk,m

(
x′),

where the convergence is absolute and uniform. Thus, the inner product of
the RKHS Hm can be expressed as 〈fm,gm〉Hm =∑∞

k=1 μ−1
k,m〈fm,φk,m〉L2(�) ×

〈φk,m, gm〉L2(�).

The following assumption is regarding the smoothness of the true function f ∗
m.

ASSUMPTION 2 (Convolution assumption). There exist a real number 0 ≤
q ≤ 1 and g∗

m ∈ Hm such that

f ∗
m = T q/2

m g∗
m.(A2)

We denote (g∗
1 , . . . , g∗

M) and
∑M

m=1 g∗
m by g∗ (we use the same notation for

both “vector” and “function” representations with a slight abuse of notation). The
constant q represents the smoothness of the truth f ∗

m because f ∗
m is generated by

operating the integral operator T
q/2
m to g∗

m (f ∗
m(x) =∑∞

�=1 μ
q/2
�,m〈φ�,m, g∗

m〉L2(�) ×
φ�,m(x)), and high-frequency components are suppressed as q becomes large.
Therefore, as q becomes larger, f ∗ becomes “smoother.” Assumption (A2) was
considered in Caponnetto and De Vito (2007) to analyze the convergence rate of
least-squares estimators in a single kernel setting. In MKL settings, Koltchinskii
and Yuan (2008) showed a fast learning rate of MKL assuming q = 1, and Bach
(2008) showed the consistency of MKL under q = 1. Proposition 9 of Bach (2008)
gave a sufficient condition to fulfill (A2) with q = 1 for translation invariant ker-
nels km(x, x′) = hm(x − x′). Meier, van de Geer and Bühlmann (2009) considered
a situation with q = 0 on Sobolev space; the analysis of Koltchinskii and Yuan
(2010) also corresponds to q = 0. Note that (A2) with q = 0 imposes nothing on
the smoothness about the truth, and our analysis also covers this case.
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We show in Appendix A that as q increases, the space of the functions that
satisfy (A2) becomes “simpler.” Thus, it might be natural to expect that, under
convolution assumption (A2), the learning rate becomes faster as q increases. Al-
though this conjecture is actually true, it is not obvious because the convolution
assumption only restricts the ground truth, not the search space.

Next we introduce a parameter representing the complexity of RKHSs. By
Theorem 4.27 of Steinwart and Christmann (2008), the sum of μ�,m is bounded
(
∑

� μ�,m < ∞), and thus μ�,m decreases with order �−1 (μ�,m = o(�−1)). We
further assume the sequence of the eigenvalues converges even faster to zero.

ASSUMPTION 3 (Spectral assumption). There exist 0 < s < 1 and c such that

μj,m ≤ cj−1/s, (1 ≤ ∀j,1 ≤ ∀m ≤ M),(A3)

where {μj,m}∞j=1 is the spectrum of the kernel km; see equation (2).

It was shown that spectral assumption (A3) gives a bound on the entropy number
of the RKHSs [Steinwart, Hush and Scovel (2009)]. Remember that the ε-covering
number N (ε, B G ,L2(�)) with respect to L2(�) for a Hilbert space G is the min-
imal number of balls with radius ε needed to cover the unit ball B G in G [van der
Vaart and Wellner (1996)]. The ith entropy number ei(G → L2(�)) is the infi-
mum of ε > 0 for which N (ε, B G ,L2(�)) ≤ 2i−1. If spectral assumption (A3)
holds, there exists a constant c̃ that depends only on s and c such that the ith
entropy number is bounded as

ei

(
Hm → L2(�)

)≤ c̃i−1/(2s),(3)

and the converse is also true; see Theorem 15 of Steinwart, Hush and Scovel (2009)
and Steinwart and Christmann (2008) for details. Therefore, if s is large, at least
one of the RKHSs is “complex,” and if s is small, all the RKHSs are “simple.”
A more detailed characterization of the entropy number in terms of the spectrum
is provided in Appendix A. The entropy number of the space of functions that
satisfy the Convolution assumption (A2) is also provided there.

Finally, we impose the following technical assumption related to the sup-norm
of members in the RKHSs.

ASSUMPTION 4 (Sup-norm assumption). Along with the spectral assump-
tion (A3), there exists a constant C1 such that

‖fm‖∞ ≤ C1‖fm‖1−s
L2(�)‖fm‖s

Hm
(∀fm ∈ Hm,m = 1, . . . ,M),(A4)

where s is the exponent defined in spectral assumption (A3).

This assumption might look a bit strong, but this is satisfied if the RKHS is a
Sobolev space or is continuously embeddable in a Sobolev space. For example,
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the RKHSs of Gaussian kernels are continuously embedded in all Sobolev spaces,
and thus satisfy sup-norm assumption (A4). More generally, RKHSs with γ -times
continuously differentiable kernels on a closed Euclidean ball in R

d are also con-
tinuously embedded in a Sobolev space, and satisfy the sup-norm assumption (A4)
with s = d

2γ
; see Corollary 4.36 of Steinwart and Christmann (2008). Therefore,

this assumption is common for practically used kernels. A more general neces-
sary and sufficient condition in terms of real interpolation is shown in Bennett
and Sharpley (1988). Steinwart, Hush and Scovel (2009) used this assumption to
show the optimal convergence rates for regularized regression with a single kernel
function where the true function is not contained in the model, and one can find
detailed discussions about the assumption there.

We denote by I0 the indices of truly active kernels, that is,

I0 := {
m | ∥∥f ∗

m

∥∥
Hm

> 0
}
.

We define the number of truly active components as d := |I0|. For f =∑M
m=1 fm ∈

H and a subset of indices I ⊆ {1, . . . ,M}, we define HI =⊕
m∈I Hm, and denote

by fI ∈ HI the restriction of f to an index set I , that is, fI =∑
m∈I fm.

Now we introduce a geometric quantity that represents dependency between
RKHSs. That quantity is related to the restricted eigenvalue condition [Bickel,
Ritov and Tsybakov (2009)] and is required to show a nice convergence property
of MKL. For a given set of indices I ⊆ {1, . . . ,M} and b ≥ 0, we define

βb(I ) := sup
{
β > 0

∣∣∣β ≤ ‖∑M
m=1 fm‖L2(�)

(
∑

m∈I ‖fm‖2
L2(�))

1/2
,

∀f ∈ H such that b
∑
m∈I

‖fm‖L2(�) ≥ ∑
m/∈I

‖fm‖L2(�)

}
.

For I = I0, we abbreviate βb(I0) as

βb := βb(I0).

This quantity plays an important role in our analysis. Roughly speaking, this rep-
resents the correlation between RKHSs under the condition that the components
within the relevant indices I well “dominate” the rest of the components. One can
see that βb(I ) is nonincreasing with respect to b. The quantity βb is first introduced
by Bickel, Ritov and Tsybakov (2009) to define the restricted eigenvalue condition
in the context of parametric model such as the Lasso and the Dantzig selector. In
the context of MKL, Koltchinskii and Yuan (2010) introduced this quantity to an-
alyze a convergence rate of L1-MKL. We will assume that βb(I0) is bounded from
below with some b > 0 so that we may focus on bounding the L2(�)-norm of the
“low-dimensional” components {f̂m − f ∗

m}m∈I0 , instead of all the components.
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Here we give a sufficient condition that βb(I ) is bounded from below. For a
given set of indices I ⊆ {1, . . . ,M}, we introduce a quantity κ(I ) representing the
correlation of RKHSs inside the indices I ,

κ(I ) := sup
{
κ ≥ 0

∣∣∣κ ≤ ‖∑m∈I fm‖2
L2(�)∑

m∈I ‖fm‖2
L2(�)

,∀fm ∈ Hm (m ∈ I )

}
.

Similarly, we define the canonical correlations of RKHSs between I and I c as
follows:

ρ(I) := sup
{ 〈fI , gIc〉L2(�)

‖fI‖L2(�)‖gIc‖L2(�)

∣∣∣fI ∈ HI , gIc ∈ HI c , fI �= 0, gIc �= 0
}
.

These quantities give a connection between the L2(�)-norm of f ∈ H and the
L2(�)-norm of {fm}m∈I as shown in the following lemma. The proof is given in
Appendix B.

LEMMA 1. For all I ⊆ {1, . . . ,M}, we have

‖f ‖2
L2(�) ≥ (1 − ρ(I)2)κ(I )

(∑
m∈I

‖fm‖2
L2(�)

)
,

thus

β∞(I ) ≥
√(

1 − ρ(I)2
)
κ(I ).

Koltchinskii and Yuan (2008) and Meier, van de Geer and Bühlmann (2009)
analyzed statistical properties of MKL under the incoherence condition where (1−
ρ(I0)

2)κ(I0) is bounded from below, that is, RKHSs are not too dependent on each
other. In this paper, we employ a less restrictive condition where βb is bounded
from below for some positive real b.

3. Convergence rate analysis. In this section, we present our main result.

3.1. The convergence rate of L1-MKL and elastic-net MKL. Here we derive
the learning rate of the estimator f̂ defined by equation (1). We may suppose that
the number of kernels M and the number of active kernels d are increasing with
respect to the number of samples n. Our main purpose of this section is to show
that the learning rate can be faster than the existing bounds. The existing bound has
already been shown to be optimal on the �∞-mixed-norm ball [Koltchinskii and
Yuan (2010), Raskutti, Wainwright and Yu (2012)]. Our claim is that the conver-
gence rates can further achieve the minimax optimal rates on the �1-mixed-norm
ball and �2-mixed-norm ball, which are faster than that on the �∞-mixed-norm
ball.
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Define η(t) for t > 0 and ξn(λ) for given λ > 0 as

η(t) := max(1,
√

t, t/
√

n), ξn := ξn(λ) = max
(

λ−s/2
√

n
,

λ−1/2

n1/(1+s)
,

√
log(M)

n

)
.

For a given function f =∑M
m=1 fm ∈ H and 1 ≤ p ≤ ∞, we define the �p-mixed-

norm of f as

Rp,f :=
(

M∑
m=1

‖fm‖p
Hm

)1/p

.

Let

b1 = 16
(

1 +
√

d maxm∈I0 ‖g∗
m‖Hm

R2,g∗

)
, b2 = 16.

Then we obtain the convergence rate of L1- and elastic-net MKL as follows.

THEOREM 2 (Convergence rate of L1-MKL and elastic-net MKL). Suppose
Assumptions 1–4 are satisfied. Then there exist constants C̃1, C̃2 and ψs depending
on s, c,L,C1 such that the following convergence rates hold:

(Elastic-net MKL). Set λ
(n)
1 = ψsη(t)ξn(λ), λ(n)

2 = λ
(n)
1 λ1/2, λ(n)

3 = λ where λ =
d1/(1+q+s)n−1/(1+q+s)R

−2/(1+q+s)
2,g∗ . Then for all n satisfying log(M)√

n
≤ 1 and

C̃1

β2
b1

ψs

√
nξn(λ)2d ≤ 1,(4)

the generalization error of elastic-net MKL is bounded as∥∥f̂ − f ∗∥∥2
L2(�)

≤ C̃2

β2
b1

(
d(1+q)/(1+q+s)n−(1+q)/(1+q+s)R

2s/(1+q+s)
2,g∗

(5)
+ d(q+s)/(1+q+s)n−(1+q)/(1+q+s)−q(1−s)/((1+s)(1+q+s))

× R
2/(1+q+s)
2,g∗ + d log(M)

n

)
η(t)2,

with probability 1 − exp(−t) − exp(−min{ β4
b1

log(M)

C̃2
1ψ2

s nξn(λ)4d2 ,
β2

b1
C̃1ψsξn(λ)2d

}) for all

t ≥ 1.
(L1-MKL). Set λ

(n)
1 = ψsη(t)ξn(λ), λ

(n)
2 = λ

(n)
1 λ1/2, λ

(n)
3 = 0 where λ =

d(1−s)/(1+s)n−1/(1+s)R
−2/(1+s)
1,f ∗ . Then for all n satisfying log(M)√

n
≤ 1 and

C̃1

β2
b2

ψs

√
nξn(λ)2d ≤ 1,(6)
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the generalization error of L1-MKL is bounded as

∥∥f̂ − f ∗∥∥2
L2(�) ≤ C̃2

β2
b2

(
d(1−s)/(1+s)n−1/(1+s)R

2s/(1+s)
1,f ∗

(7)

+ d(s−1)/(1+s)n−1/(1+s)R
2/(1+s)
1,f ∗ + d log(M)

n

)
η(t)2,

with probability 1 − exp(−t) − exp(−min{ β4
b2

log(M)

C̃2
1ψ2

s nξn(λ)4d2 ,
β2

b2
C̃1ψsξn(λ)2d

}) for all

t ≥ 1.

The proof of Theorem 2 is provided in Section S.3 of the supplementary ma-
terial [Suzuki and Sugiyama (2013)]. The bounds presented in the theorem can
be further simplified under additional conditions. To show simplified bounds, we
assume that βb1 and βb2 are bounded from below by a positive constant; cf. the
restricted eigenvalue condition, Bickel, Ritov and Tsybakov (2009). There exists
C2 > 0 such that βb2 ≥ βb1 ≥ C2. This condition is satisfied if β16(1+√

d) ≥ C2

because
√

d maxm∈I0 ‖g∗
m‖Hm

R2,g∗ ≤ √
d . Then we obtain simplified bounds with weak

conditions. If R1,f ∗ ≤ Cd with a constant C (this holds if ‖f ∗
m‖Hm ≤ C for all m),

then the first term in the learning rate (7) of L1-MKL dominates the second term,
and thus equation (7) becomes∥∥f̂ − f ∗∥∥2

L2(�) ≤ Op

(
d(1−s)/(1+s)n−1/(1+s)R

2s/(1+s)
1,f ∗ + d log(M)

n

)
.(8)

Similarly, as for the bound of elastic-net MKL, if R2
2,g∗ ≤ Cnq/(1+s)d with a con-

stant C (this holds if ‖g∗
m‖Hm ≤ √

C for all m), then equation (5) becomes∥∥f̂ − f ∗∥∥2
L2(�)

(9)

≤ Op

(
d(1+q)/(1+q+s)n−(1+q)/(1+q+s)R

2s/(1+q+s)
2,g∗ + d log(M)

n

)
.

Here notice that the tail probability can be bounded as

exp
(
−min

{
β4

b1
log(M)

C̃2
1ψ2

s nξn(λ)4d2
,

β2
b1

C̃1ψsξn(λ)2d

})
≤ exp

(−min
{
log(M),

√
n
})

= 1

M
,

under the conditions of equation (4) and log(M)√
n

≤ 1 [the same inequality also holds
under equation (6), even if we replace βb1 with βb2 ].

We note that, as s becomes smaller (the RKHSs become simpler), both learning
rates of L1-MKL and elastic-net MKL become faster if R1,f ∗,R2,g∗ ≥ 1. Although
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the solutions of both L1-MKL and elastic-net MKL are derived from the same
optimization framework (1), there appear to be two convergence rates (8) and (9)
that posses different characteristics depending on λ

(n)
3 = 0, or not. There appears to

be no dependency on the smoothness parameter q in bound (8) of L1-MKL, while
bound (9) of elastic-net MKL depends on q . Let us compare these two learning
rates on the two situations: q = 0 and q > 0.

(i) (q = 0). In this situation, the true function f ∗ is not smooth and g∗ = f ∗
from the definition of q . The terms with respect to d are d(1−s)/(1+s) for L1-
MKL (8) and d1/(1+s) for elastic-net MKL (9). Thus, L1-MKL has milder de-
pendency on d . This might reflect the fact that L1-MKL tends to generate sparser
solutions. Moreover, one can check that the learning rate of L1-MKL (8) is bet-
ter than that of elastic-net MKL (9) because Jensen’s inequality R1,f ∗ ≤ √

dR2,f ∗
gives

d(1−s)/(1+s)n−1/(1+s)R
2s/(1+s)
1,f ∗ ≤ d1/(1+s)n−1/(1+s)R

2s/(1+s)
2,f ∗ .

This suggests that, when the truth is nonsmooth, L1-MKL is preferred.
(ii) (q > 0). We see that, as q becomes large (the truth becomes smooth),

the convergence rate of elastic-net MKL becomes faster. The convergence rate
with respect to n in the presented bound is n−(1+q)/(1+q+s) for elastic-net MKL
that is faster than that of L1-MKL (n−1/(1+s)). We suggest that this shows
that elastic-net MKL properly captures the smoothness of the truth f ∗ us-
ing the additional �2-regularization term. As we observed above, we obtained
a faster convergence bound of L1-MKL than that of L2-MKL when q = 0.
However, if f ∗ is sufficiently smooth (g∗ is small), as q increases, there ap-
pears “phase-transition,” that is, the convergence bound of elastic-net MKL
turns out to be faster than that of L1-MKL [d(1−s)/(1+s)n−1/(1+s)R

2s/(1+s)
1,f ∗ ≥

d(1+q)/(1+q+s)n−(1+q)/(1+q+s)R
2s/(1+q+s)
2,g∗ ]. This might indicate that, when the

truth f ∗ is smooth, elastic-net MKL is preferred.
An interesting observation here is that depending on the smoothness q of the

truth, the preferred regularization changes. Here, we would like to point out that
the comparison between L1-MKL and elastic-net MKL is just based on the upper
bounds of the convergence rates. Thus there is still the possibility that L1-MKL
can also make use of the smoothness q of the true function to achieve a faster rate.
We will give discussions about this issue in Section 6.

Finally, we give a comprehensive representation of Theorem 2 that gives a clear
correspondence to the minimax optimal rate given in the next subsection.

COROLLARY 3. Suppose the same condition as Theorem 2. Define s̃ = s
1+q

.

Then there exists constant C̃′ depending on s, c,L,C1 such that the following con-
vergence rates hold:
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(Elastic-net MKL). If 1 ≤ R2,g∗ and ‖g∗
m‖Hm ≤ C (∀m ∈ I0) with a constant C,

then for all p ≥ 2, elastic-net MKL achieves the following convergence rate:

∥∥f̂ − f ∗∥∥2
L2(�) ≤ C̃′

β2
b1

(
d1−2s̃/(p(1+s̃))n−1/(1+s̃)R

2s̃/(1+s̃)
p,g∗ + d log(M)

n

)
η(t)2,

with probability 1 − exp(−t) − 1/M for all t ≥ 1.
(L1-MKL). If 1 ≤ R1,f ∗ and ‖f ∗

m‖Hm ≤ C (∀m ∈ I0) with a constant C, then
for all p ≥ 1, L1-MKL achieves the following convergence rate:

∥∥f̂ − f ∗∥∥2
L2(�) ≤ C̃′

β2
b2

(
d1−2s/(p(1+s))n−1/(1+s)R

2s/(1+s)
p,f ∗ + d log(M)

n

)
η(t)2,

with probability 1 − exp(−t) − 1/M for all t ≥ 1.

PROOF. Due to Jensen’s inequality, we always have R2,g∗ ≤ d1/2−1/pRp,g∗
for p ≥ 2 and R1,f ∗ ≤ d1−1/pRp,f ∗ for p ≥ 1. Thus we have

d1/(1+s̃)n−1/(1+s̃)R
2s̃/(1+s̃)
2,g∗ ≤ d1−2s̃/(p(1+s̃))n−1/(1+s̃)R

2s̃/(1+s̃)
p,g∗ ,

d(1−s)/(1+s)n−1/(1+s)R
2s/(1+s)
1,f ∗ ≤ d1−2s/(p(1+s))n−1/(1+s)R

2s/(1+s)
p,f ∗ .

Combining this and the discussions to derive equations (8) and (9), we have the
assertion. �

Below, we show that bounds (8) and (9) achieve the minimax optimal rates on
the �1-mixed-norm ball and the �2-mixed-norm ball, respectively.

3.2. Minimax learning rate of �p-mixed-norm ball. Here we consider a simple
setup to investigate the minimax rate. First, we assume that the input space X
is expressed as X = X̃ M for some space X̃ . Second, all the RKHSs {Hm}Mm=1
are induced from the same RKHS H̃ defined on X̃ . Finally, we assume that the
marginal distribution � of input is the product of a probability distribution Q,
that is, � = QM . Thus, an input x = (x̃(1), . . . , x̃(M)) ∈ X = X̃ M is concatenation
of M random variables {x̃(m)}Mm=1 independently and identically distributed from
the distribution Q. Moreover, the function class H is assumed to be a class of
functions f such that f (x) = f (x̃(1), . . . , x̃(M)) =∑M

m=1 fm(x̃(m)), where fm ∈ H̃
for all m. Without loss of generality, we may suppose that all functions in H̃ are
centered: E

X̃∼Q
[f (X̃)] = 0 (∀f ∈ H̃). Furthermore, we assume that the spectrum

of the kernel k̃ corresponding to the RKHS H̃ decays at the rate of −1
s
. That is, in

addition to Assumption 3, we impose the following lower bound on the spectrum:
There exist c′, c (> 0) such that

c′j−1/s ≤ μj ≤ cj−1/s,(10)
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where {μj }j is the spectrum of the integral operator T
k̃

with respect to the ker-
nel k̃; see equation (2). We also assume that the noise {εi}ni=1 is generated by the
Gaussian distribution with mean 0 and standard deviation σ .

Let H0(d) be the set of functions with d nonzero components in H defined by
H0(d) := {(f1, . . . , fM) ∈ H | #{m | ‖fm‖Hm �= 0} ≤ d}. We define the �p-mixed-
norm ball (p ≥ 1) with radius R in H0(d) as

Hd,q
�p

(R) :=
{
f =

M∑
m=1

fm

∣∣∣∣∃(g1, . . . , gM) ∈ H0(d), fm = T q/2
m gm,

(
M∑

m=1

‖gm‖p
Hm

)1/p

≤ R

}
.

In Raskutti, Wainwright and Yu (2012), the minimax learning rate on Hd,0
�∞ (R)

(i.e., p = ∞ and q = 0) was derived.4 We show (a lower bound of) the minimax
learning rate for more general settings (1 ≤ p ≤ ∞ and 0 ≤ q ≤ 1) in the following
theorem.

THEOREM 4. Let s̃ = s
1+q

. Assume d ≤ M/4. Then the minimax learning
rates are lower bounded as follows. If the radius of the �p-mixed-norm ball Rp

satisfies Rp ≥ d1/p
√

log(M/d)
n

, there exists a constant Ĉ1 such that

inf
f̂

sup
f ∗∈Hd,q

�p
(Rp)

E
[∥∥f̂ − f ∗∥∥2

L2(�)

]
(11)

≥ Ĉ1

(
d1−2s̃/(p(1+s̃))n−1/(1+s̃)R2s̃/(1+s̃)

p + d log(M/d)

n

)
,

where “inf” is taken over all measurable functions of the samples {(xi, yi)}ni=1,
and the expectation is taken for the sample distribution.

A proof of Theorem 4 is provided in Section S.7 of the supplementary material
[Suzuki and Sugiyama (2013)].

Substituting q = 0 and p = 1 into the minimax learning rate (11), we see
that the learning rate (8) of L1-MKL achieves the minimax optimal rate of the
�1-mixed-norm ball for q = 0. Moreover, the learning rate of L1-MKL (i.e.,
minimax optimal on the �1-mixed-norm ball) is fastest among all the optimal
minimax rates on �p-mixed-norm ball for p ≥ 1 when q = 0. To see this, let
Rp,f ∗ := (

∑
m ‖f ∗

m‖p
Hm

)1/p; then, as in the proof of Corollary 3, we always have

4The set FM,d,H(R) in Raskutti, Wainwright and Yu (2012) corresponds to Hd,0
�∞ (R) in the current

paper.
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R1,f ∗ ≤ d1−1/pRp,f ∗ ≤ dR∞,f ∗ due to Jensen’s inequality, and consequently we
have

d(1−s)/(1+s)n−1/(1+s)R
2s/(1+s)
1,f ∗ ≤ d1−2s/(p(1+s))n−1/(1+s)R

2s/(1+s)
p,f ∗

(12)
≤ dn−1/(1+s)R

2s/(1+s)
∞,f ∗ .

On the other hand, the learning rate (9) of elastic-net MKL achieves the mini-
max optimal rate (11) on the �2-mixed-norm ball (p = 2). When q = 0, the rate of
elastic-net MKL is slower than that of L1-MKL, but the optimal rate is achieved
over the whole range of smoothness parameter 0 ≤ q ≤ 1, which is advantageous
against L1-MKL. Moreover, the optimal rate on the �2-mixed-norm ball is still
faster than that on the �∞-mixed-norm ball due to relation (12).

The learning rates of both L1 and elastic-net MKL coincide with the minimax
optimal rate of the �∞-mixed-norm ball when the truth is homogeneous. For sim-
plicity, assume q = 0. If ‖f ∗

m‖Hm = 1 (∀m ∈ I0) and f ∗
m = 0 (otherwise), then

Rp,f ∗ = d1/p . Thus, both rates are dn−1/(1+s) + d log(M)
n

; that is, the minimax rate
on the �∞-mixed-norm ball. We also notice that this homogeneous situation is the
only situation where those convergence rates coincide with each other. As we will
see later, the existing bounds are the minimax rate on the �∞-mixed-norm ball and
thus are tight only in the homogeneous setting.

4. Optimal parameter selection. We need the knowledge of parameters such
as q, s, d,R1,f ∗,R2,g∗ to obtain the optimal learning rate shown in Theorem 2;
however, this is not realistic in practice.

To overcome this problem, we give an algorithmic procedure such as cross-
validation to achieve the optimal learning rate. Roughly speaking, we split the data
into the training set and the validation set and utilize the validation set to choose
the optimal parameter. Given the data D = {(xi, yi)}ni=1, the training set Dtr is
generated by using the half of the given data Dtr = {(xi, yi)}n′

i=1 where n′ = �n
2�

and the remaining data is used as the validation set Dte = {(xi, yi)}ni=n′+1. Let f̂�

be the estimator given by our MKL formulation (1) where the parameter setting
� = (λ

(n)
1 , λ

(n)
2 , λ

(n)
3 ) is employed, and the training set Dtr is used instead of the

whole data set D.
We utilize a clipped estimator so that the estimator bounded in a way that makes

the validation procedure effective. Given the estimator f̂� and a positive real B >

0, the clipped estimator f̌� is given as

f̌�(x) :=

⎧⎪⎪⎨⎪⎪⎩
B,

(
B ≤ f̂�(x)

)
,

f̂�(x),
(−B < f̂�(x) < B

)
,

−B,
(
f̂�(x) ≤ −B

)
.

To appropriately choose B , we assume that we can roughly estimate the sup-
norm ‖f ∗‖∞ of the true function, and B is set to satisfy ‖f ∗‖∞ < B . This as-
sumption is not unrealistic because if we set B sufficiently large so that we have
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maxi |yi | < B , then with high probability such B satisfies ‖f ∗‖∞ < B . It should
be noted that if ‖f ∗‖∞ < B , the generalization error of the clipped estimator f̌�

is not greater than that of the original estimator f̂�,∥∥f̌� − f ∗∥∥
L2(�) ≤ ∥∥f̂� − f ∗∥∥

L2(�),

because |f̌�(x) − f ∗(x)| ≤ |f̂�(x) − f ∗(x)| for all x ∈ X .
Now, for a finite set of parameter candidates �n ⊂ R+ × R+ × R+, we choose

an optimal parameter that minimizes the error on the validation set,

�Dte := argmin
�∈�n

1

|Dte|
∑

(xi ,yi )∈Dte

(
f̌�(xi) − yi

)2
.(13)

Then we can show that the estimator f̌�Dte
achieves the optimal learning rate. To

show this, we determine the finite set �n of the candidate parameters as follows:
let �n := {1/n2,2/n2, . . . ,1} and

�n = {
(λ1, λ2, λ3) | λ1, λ3 ∈ �n,λ2 = λ1λ

1/2
3

}
∪ {(λ1, λ2, λ3) | λ1, λ ∈ �n,λ2 = λ1λ

1/2, λ3 = 0
}
.

With this parameter set, we have the following theorem that shows the optimality
of the validation procedure (13).

THEOREM 5. Suppose Assumptions 1–4 are satisfied. Assume R1,f ∗ ,
R2,g∗ ≥ 1, βb2 ≥ βb1 ≥ C2 and ‖f ∗

m‖Hm,‖g∗
m‖Hm ≤ C3 with some constants

C2,C3 > 0, and suppose n satisfies log(M)√
n

≤ 1 and

C̃1

β2
b1

ψs

√
nξn(λ(1))

2d ≤ 1 and
C̃1

β2
b2

ψs

√
nξn(λ(2))

2d ≤ 1,

where λ(1) = d1/(1+q+s)n−1/(1+q+s)R
−2/(1+q+s)
2,g∗ , λ(2) = d(1−s)/(1+s)n−1/(1+s) ×

R
−2/(1+s)
1,f ∗ and C̃1 is the constant introduced in the statement of Theorem 2.

Then there exist a universal constant C̃4 and a constant C̃3 depending on
s, c,L,C1,C2,C3 such that∥∥f̌�Dte

− f ∗∥∥2
L2(�)

≤ C̃3

(
d(1−s)/(1+s)n−1/(1+s)R

2s/(1+s)
1,f ∗

∧ d(1+q)/(1+q+s)n−(1+q)/(1+q+s)R
2s/(1+q+s)
2,g∗ + d log(M)

n

)
η(t)2

+ C̃4
B2(τ + log(1 + n))

n
,

with probabitlity 1 − 2 exp(−t) − exp(−τ) − 2
M

, where a ∧ b means min{a, b}.
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This can be shown by combining our bound in Theorem 2 and the technique
used in Theorem 7.2 of Steinwart and Christmann (2008). According to Theo-
rem 5, the estimator f̌�Dte

with the validated parameter �Dte achieves the mini-
mum learning rate among the oracle bound for L1-MKL (8) and that for elastic-net
MKL (9) if B is sufficiently small. Therefore, the optimal rate is almost attainable

[at the cost of the term B2 log(1+n)
n

] by a simple executable algorithm.

5. Comparison with existing bounds. In this section, we compare our bound
with the existing bounds. Roughly speaking, the difference between the existing
bounds is summarized in the following two points (see also Table 1 summarizing
the relations between our analysis and existing analyses):

(a) Our learning rate achieves the minimax rate of the �1-mixed-norm ball or
the �2-mixed-norm ball, instead of the �∞-mixed-norm ball.

(b) Our bound includes the smoothing parameter q (Assumption 2), and thus is
more general and faster than existing bounds.

The first bound on the convergence rate of MKL was derived by Koltchinskii
and Yuan (2008), which assumed q = 1 and 1

d

∑
m∈I0

(‖g∗
m‖2

Hm
/‖f ∗

m‖2
Hm

) ≤ C.
Under these rather strong conditions, they showed the bound

d(1−s)/(1+s)n−1/(1+s) + d log(M)

n
.

Our convergence rate (8) of L1-MKL achieves this learning rate without the two
strong conditions. Moreover, for the smooth case q = 1, we have shown that
elastic-net MKL has a faster rate n−2/(2+s) instead of n−1/(1+s) with respect to n.

The second bound was given by Meier, van de Geer and Bühlmann (2009),
which shows (

log(M)

n

)1/(1+s)(
d + R2

2,f ∗
)

for elastic-net regularization under the condition q = 0. Their bound almost
achieves the minimax rate on the �∞-mixed-norm ball except the log(M) factor.
Compared with our bound (9), their bound has the additional log(M) factor and
the term with respect to d and R2,f ∗ is larger than d1/(1+s)R

2s/(1+s)
2,f ∗ in our learning

rate of elastic-net MKL because Young’s inequality yields

d1/(1+s)R
2s/(1+s)
2,f ∗ ≤ 1

1 + s
d + s

1 + s
R2

2,f ∗ ≤ d + R2
2,f ∗ .

Moreover, our result for elastic-net MKL covers all 0 ≤ q ≤ 1.
Most recently, Koltchinskii and Yuan (2010) presented the bound

n−1/(1+s)(d + R1,f ∗) + d log(M)

n
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for L1-MKL and q = 0. Their bound achieves the minimax rate on the �∞-mixed-
norm ball, but is looser than our bound (8) of L1-MKL because, by Young’s in-
equality, we have

d(1−s)/(1+s)R
2s/(1+s)
1,f ∗ ≤ 1 − s

1 + s
d + 2s

1 + s
R1,f ∗ ≤ d + R1,f ∗ .

In fact, their bound is d2s/(1+s) times slower than ours if the ground truth is in-
homogeneous. To see this, suppose ‖f ∗

m‖Hm = m−1 (m ∈ I0 = {1, . . . , d}) and
f ∗

m = 0 (otherwise). Then their bound is n−1/(1+s)d + d log(M)
n

, while our bound

for L1-MKL is n−1/(1+s)d(1−s)/(1+s) + d log(M)
n

. Moreover, their formulation of
L1-MKL is slightly different from ours. In their formulation, there are additional
constraints such that ‖fm‖Hm ≤ Rm (∀m) with some constants Rm in the optimiza-
tion problem described in equation (1). Due to these constraints, their formulation
is a bit different from the practically used one (in practice, we do not usually im-
pose such constrains). Instead, our analysis requires an additional assumption on
the sup-norm (Assumption 4) to control the discrepancy between the empirical
and population means of the square of an element in RKHS, 1

n

∑n
i=1 f 2

m(xi) −
E[f 2

m] (fm ∈ Hm). In addition, they assumed the global boundedness; that is, the
sup-norm of f ∗ is bounded by a constant, ‖f ∗‖∞ = ‖∑M

m=1 f ∗
m‖∞ ≤ C. This

assumption is standard and does not affect the convergence rate in single kernel
learning settings. However, in MKL settings, it is pointed out that the rate is not
minimax optimal in large d regime [in particular d = �(

√
n)] under the global

boundedness [Raskutti, Wainwright and Yu (2012)]. Our analysis omits the global
boundedness by utilizing the sup-norm assumption (Assumption 4).

All of the bounds explained above focused on either q = 0 or 1. On the other
hand, our analysis is more general in that the whole range of 0 ≤ q ≤ 1 is covered.

6. Discussion about adaptivity of �1-regularization. In this section, we dis-
cuss the issue, “is it really true that �1-regularization cannot possess adaptivity
to the smoothness?” According to Theorem 2 and the following discussion, the
convergence rate of L1-MKL does not have dependency on the smoothness of the
true function. However, this is just an upper bound. Thus, there is still possibility
that L1-MKL can make use of the smoothness of the true function. We give some
remarks about this issue.

According to our analysis, it is difficult to improve the bound of Theorem 2
without any additional assumptions. On the other hand, it is possible to show this
if we may assume some additional conditions.

A technical reason that makes it difficult to show adaptivity of L1-MKL is that
the �1-regularization is not differentiable at 0. Indeed, the sub-gradient of ‖fm‖Hm

is fm/‖fm‖Hm if fm �= 0, and compared with that of ‖fm‖2
Hm

(which is fm), there
is a difference of a factor 1/‖fm‖Hm . This makes it difficult to control the behavior
of the estimator around 0. To avoid this difficulty, we assume that the estimator f̂m

is bounded below as follows.
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ASSUMPTION 5 (Lower bound assumption). There exist constants hm >

0 (m ∈ I0) such that

‖f̂m‖Hm ≥ hm (∀m ∈ I0),(A5)

with probability 1 − pn.

We will give a justification of this assumption later (Lemma 7). If we admit this
assumption, we have the following convergence bound. Define

R̂2,g∗ :=
(∑

m∈I0

‖g∗
m‖2

Hm

hm

)1/2

,

b3 := 32
(

1 +
√

d maxm∈I0(‖g∗
m‖Hm/hm)

R̂2,g∗

)
.

THEOREM 6. Suppose Assumptions 1–5 are satisfied, and ‖g∗
m‖Hm ≤ C for

all m ∈ I0. Set

λ = d1/(1+q+s)n−1/(1+q+s)R̂
−2/(1+q+s)
2,g∗ .

Moreover we set λ
(n)
1 , λ

(n)
2 and λ

(n)
3 as λ

(n)
1 = 2ψsη(t)ξn(λ), λ

(n)
2 =

max{λη(t), λ
(n)
1 λ1/2}, λ

(n)
3 = 0 where ψs is same as Theorem 2. Similarly define

λ
(n)
1 (t ′), λ(n)

2 (t ′) corresponding to some fixed t ′, and λ̃ = (λ
(n)
2 (t ′)/λ(n)

1 (t ′))2. Then
there exist constants C̃3, C̃′

3, C̃4 depending on s, c,L,C1,C, b3, t
′ such that for

all n satisfying log(M)√
n

≤ 1 and

C̃3

β2
b3

ψs

√
nξ2

n (λ)d ≤ 1, C̃′
3ψs

√
nξ2

n (λ̃)λ̃d ≤ λ
(n)
2

(
t ′
)
,(14)

we have that∥∥f̂ − f ∗∥∥2
L2(�)

(15)

≤ C̃4

β2
b3

(
d(1+q)/(1+q+s)n−(1+q)/(1+q+s)R̂

2s/(1+q+s)
2,g∗ + d log(M)

n

)
η(t)2,

with probability 1 − exp(−t) − exp(−t ′) − 2/M − pn.

The proof of Theorem 6 can be found in Section S.4 of the supplementary mate-
rial [Suzuki and Sugiyama (2013)]. The theorem shows that with the rather strong
assumption (Assumption 5), we can show that L1-MKL also possesses adaptivity
to the smoothness. Bound (15) is close to the minimax optimal rate on the �2-
mixed-norm ball where R̂2,g∗ appears instead of R2,g∗ . Here we observe that hm
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appears in the denominator in R̂2,g∗ . Therefore, for small hm, R̂2,g∗ is larger than
R2,g∗ , which can make bound (15) larger than that of elastic-net MKL. This is due
to the indifferentiability of �1-regularization as explained above.

Next, we give a justification of Assumption 5.

LEMMA 7. If ‖f̂m − f ∗
m‖L2(�) → 0 in probability, then

P

(
‖f̂m‖Hm ≥ ‖f ∗

m‖Hm

2

)
→ 1.

PROOF. On the basis of decomposition (2) of the kernel function, we write
f ∗

m = ∑∞
j=1 aj,mφj,m and f̂m = ∑∞

j=1 âj,mφj,m. Then we have that ‖f ∗
m‖2

Hm
=∑∞

j=1 μ−1
j,ma2

j,m. Now we define Jf ∗
m

to be a finite number such that√∑Jf ∗
m

j=1 μ−1
j,ma2

j,m ≥ 3
4‖f ∗

m‖Hm . Noticing that op(1) ≥ ‖f̂m − f ∗
m‖2

L2(�) =∑∞
j=1(aj,m − âj,m)2 ≥∑Jf ∗

m

j=1(aj,m − âj,m)2, we have that

‖f̂m‖Hm =

√√√√√√
Jf ∗

m∑
j=1

μ−1
j,mâ2

j,m +
∞∑

j=Jf ∗
m

+1

μ−1
j,mâ2

j,m

≥
√√√√√Jf ∗

m∑
j=1

μ−1
j,mâ2

j,m

≥
√√√√√Jf ∗

m∑
j=1

μ−1
j,ma2

j,m −
√√√√√Jf ∗

m∑
j=1

μ−1
j,m(aj,m − âj,m)2

≥ 3

4

∥∥f ∗
m

∥∥
Hm

− μ
−1/2
Jf ∗

m

√√√√√Jf ∗
m∑

j=1

(aj,m − âj,m)2 = 3

4

∥∥f ∗
m

∥∥
Hm

− op(1).

This gives the assertion. �

One can see from the proof that the convergence rate in Lemma 7 depends
on f ∗

m. If d is sufficiently small, we observe that the proof of Theorem 2 gives

that ‖f ∗
m − f̂m‖L2(�)

p→ 0 (m ∈ I0). In this situation, if we set hm = ‖f ∗
m‖Hm/2,

‖f ∗
m‖Hm ≥ hm (m ∈ I0) is satisfied with high probability for sufficiently large n.
The above discussion seems a proper justification to support the adaptivity of

�1-regularization. However, we would like to remark the following two concerns
about the discussion. First, in a situation where d increases as the number of sam-
ples increases, it is hardly expected that ‖f ∗

m‖Hm > c with some positive con-
stant c. It is more natural to suppose that minm∈I0 ‖f ∗

m‖Hm → 0 as d increases. In
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that situation, R̂2,g∗ becomes much larger as d increases. Second, since Tm is not
invertible, ‖g∗

m‖Hm/‖f ∗
m‖Hm is not bounded. Thus for hm = ‖f ∗

m‖Hm/2, we have
no guarantee that R̂2,g∗ is reasonably small so that the convergence bound (15)
is meaningful. Both of these two concerns are caused by the indiffirentiability of
�1-regularization at 0. Moreover these concerns are specific to high-dimensional
situations. If d = M = 1 (or d and M are sufficiently small), then we do not need
to worry about such issues.

We have shown that in a restrictive situation, �1-regularization can possess adap-
tivity to the smoothness of the true function and achieve a near minimax optimal
rate on the �2-mixed-norm ball. It is a future work to clarify whether the lower
bounded assumption (Assumption 5) is a necessary condition or not.

7. Conclusion. We have presented a new learning rate of both L1-MKL and
elastic-net MKL, which is tighter than the existing bounds of several MKL for-
mulations. According to our bound, the learning rates of L1-MKL and elastic-net
MKL achieve the minimax optimal rates on the �1-mixed-norm ball and the �2-
mixed-norm ball, respectively, instead of the �∞-mixed-norm ball. We have also
shown that a procedure like cross validation gives the optimal choice of the param-
eters. We have discussed a relation between the regularization and the convergence
rate. Our theoretical analysis suggests that there is a trade-off between the sparsity
and the smoothness; that is, if the true function is sufficiently smooth, elastic-
net regularization is preferred; otherwise, �1-regularization is preferred. This the-
oretical insight supports the recent experimental results [Cortes, Mohri and Ros-
tamizadeh (2009b), Kloft et al. (2009), Tomioka and Suzuki (2009)] such that in-
termediate regularization between �1 and �2 often shows favorable performances.

APPENDIX A: EVALUATION OF ENTROPY NUMBER

Here, we give a detailed characterization of the covering number in terms of the
spectrum using the operator Tm. Accordingly, we give the complexity of the set
of functions satisfying the convolution assumption (Assumption 2). We extend the
domain and the range of the operator Tm to the whole space of L2(�) and define
its power T

β
m :L2(�) → L2(�) for β ∈ [0,1] as

T β
mf :=

∞∑
k=1

μ
β
k,m〈f,φk,m〉L2(�)φk,m

(
f ∈ L2(�)

)
.

Moreover, we define a Hilbert space Hm,β as

Hm,β :=
{ ∞∑

k=1

bkφk,m

∣∣∣∣∣
∞∑

k=1

μ
−β
k,mb2

k < ∞
}
,

and equip this space with the Hilbert space norm ‖∑∞
k=1 bkφk,m‖Hm,β :=√∑∞

k=1 μ
−β
k,mb2

k. One can check that Hm,1 = Hm; see Theorem 4.51 of Steinwart
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and Christmann (2008). Here we define, for R > 0,

Hq
m(R) := {

fm = T q/2
m gm | gm ∈ Hm,‖gm‖Hm ≤ R

}
.(16)

Then we obtain the following lemma.

LEMMA 8. Hq
m(1) is equivalent to the unit ball of Hm,1+q : Hq

m(1) = {fm ∈
Hm,1+q | ‖fm‖Hm,1+q

≤ 1}.

This can be shown as follows. For all fm ∈ Hq
m(1), there exists gm ∈

Hm such that fm = T
q/2
m gm and ‖gm‖Hm ≤ 1. Thus gm = (T

q/2
m )−1fm =∑∞

k=1 μ
−q/2
k,m 〈fm,φk,m〉L2(�)φk,m and 1 ≥ ‖gm‖Hm = ∑∞

k=1 μ−1
k,m〈gm,

φk,m〉2
L2(�) = ∑∞

k=1 μ
−(1+q)
k,m 〈fm,φk,m〉2

L2(�). Therefore, fm is in Hq
m(1) if and

only if the norm of f in Hm,1+q is well-defined and not greater than 1.
Now Theorem 15 of Steinwart, Hush and Scovel (2009) gives an upper bound

of the entropy number of Hm,β as

ei

(
Hm,β → L2(�)

)≤ Ci−β/(2s),

where C is a constant depending on c, s, β . This inequality with β = 1 corresponds
to equation 3. Moreover, substituting β = 1 + q into the above equation, we have

ei

(
Hm,β → L2(�)

)≤ Ci−(1+q)/(2s).(17)

APPENDIX B: PROOF OF LEMMA 1

PROOF OF LEMMA 1. For J = I c, we have

Pf 2 = ‖fI‖2
L2(�) + 2〈fI , fJ 〉L2(�) + ‖fJ ‖2

L2(�)

≥ ‖fI‖2
L2(�) − 2ρ(I)‖fI‖L2(�)‖fJ ‖L2(�) + ‖fJ ‖2

L2(�)

≥ (
1 − ρ(I)2)‖fI‖2

L2(�) ≥ (1 − ρ(I)2)κ(I )

(∑
m∈I

‖fm‖2
L2(�)

)
,

where we used Cauchy–Schwarz’s inequality in the last line. �
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SUPPLEMENTARY MATERIAL

Supplementary material for: Fast learning rate of multiple kernel learning:
trade-off between sparsity and smoothness (DOI: 10.1214/13-AOS1095SUPP;
.pdf). Due to space constraints, we have moved the proof of the main theorem to a
supplementary document [Suzuki and Sugiyama (2013)].
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