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Abstract: In this paper, we propose a fast Line Segment Detection algorithm for Polarimetric synthetic
aperture radar (PolSAR) data (PLSD). We introduce the Constant False Alarm Rate (CFAR) edge
detector to obtain the gradient map of the PolSAR image, which tests the equality of the covariance
matrix using the test statistic in the complex Wishart distribution. A new filter configuration is
applied here to save time. Then, the Statistical Region Merging (SRM) framework is utilized for the
generation of line-support regions. As one of our main contributions, we propose a new Statistical
Region Merging algorithm based on gradient Strength and Direction (SRMSD). It determines the
merging predicate with consideration of both gradient strength and gradient direction. For the
merging order, we set it by bucket sort based on the gradient strength. Furthermore, the pixels are
restricted to belong to a unique region, making the algorithm linear in time cost. Finally, based on
Markov chains and a contrario approach, the false alarm control of line segments is implemented.
Moreover, a large scene airport detection method is designed based on the proposed line segment
detection algorithm and scattering characteristics. The effectiveness and applicability of the two
methods are demonstrated with PolSAR data provided by UAVSAR.

Keywords: line segment detection; Statistical Region Merging; a contrario approach; polarimetric
synthetic aperture radar (PolSAR)

1. Introduction

Detection of line segments in images, as a basic processing function, plays a crucial
role in various applications. Line segments can describe a variety of objects, such as roads,
rivers, airports, and more [1]. More importantly, when the quality of the image decreases,
line segments are more stable and clear than edge features [2]. Therefore, line segment
detection has been successfully applied to image registration [3,4], target detection [5,6],
target recognition [7], change detection [8,9], etc.

The polarimetric synthetic aperture radar (PolSAR) is an advanced imaging radar
system which measures the reflectivity of targets using four polarizations [10]. The addi-
tional information in PolSAR can be utilized by target detection algorithms to improve
performance; for instance, Li et al. [11] implemented marine oil slick detection using polari-
metric decomposition components and descriptors, and He et al. [12] used multi-channel
scattering information for ship detection of PolSAR data. Hence, image interpretation by
PolSAR data has received increasing attention. This paper aims to design an algorithm for
detecting line segments of PolSAR images, providing basic characteristics for advanced
image interpretation tasks.

Recently, many approaches have been developed for line segment detection. One of
the well-known methods is Hough Transform (HT), proposed by Duda and Hart [13], which
has attracted much attention. This method constructs the parameter space using edge pixels
and performs peak detection within the parameter space to determine the position of line

Remote Sens. 2022, 14, 5842. https://doi.org/10.3390/rs14225842 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225842
https://doi.org/10.3390/rs14225842
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5284-6663
https://orcid.org/0000-0003-4906-6142
https://doi.org/10.3390/rs14225842
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14225842?type=check_update&version=1


Remote Sens. 2022, 14, 5842 2 of 21

segments. Based on the concept of HT, a large number of line segment detection algorithms
have been proposed [14–16]. However, such methods perform line segment detection using
binary edge mapping, discarding the strength and direction information of the gradient,
which makes it more susceptible to interference from noise. To enable such methods to be
applied to SAR images with strong speckle [17,18], Wei et al. [19] proposed the Image Edge
Field Accumulation (IEFA) straight-line detection method, utilizing both edge strength and
direction information for peak detection to detect line segments. Subsequently, Wei et al. [2]
used the Fourier transform and the central slice theorem to transform the image from
the space domain to the frequency domain, which accelerates the straight-line extraction
process. In addition, Xiong et al. [20] proposed to decompose the edge information in
parameter space into horizontal and vertical components, stripping off part of the random
edge information, which reduces the interference of pseudo-peaks with the line segment
detection results.

Other typical line segment detection methods are referred to as non-HT methods.
Non-HT methods use local information to detect line segments. The Line Segment De-
tector (LSD) [21] and Edge Drawing Line Segments Detection (EDLines) [22] methods are
representative algorithms. They group the pixels by the gradient direction and validate
each group of pixels by the Helmholtz principle [23] and a contrario approach. By intro-
ducing the knowledge of undirected graphs, Cho et al. [24] designed a Linelet-based line
segment detection (Linelet-LSD) method. Linelets are defined as horizontally or vertically
connected pixels. Linelets and the relationships between them form an undirected graph,
which can help to achieve line segment detection. Moreover, with the development of deep
learning [25,26], Li et al. [27] implemented the detection of line segments using a deep
learning-based model. For the characteristics of SAR images, Liu et al. [28] modified the
LSD, obtaining Line Segment Detector for SAR images (LSDSAR).

Line segment detection for optical and SAR images has been thoroughly studied.
However, due to the multiplicative noise and multi-polarization information of PolSAR
data, the gradient calculation methods used for optical and SAR data cannot obtain accurate
gradient results from PolSAR data. Furthermore, there are fewer studies on line segment
detection for PolSAR data. An important contribution was made by D. Borghys [29], who
proposed a scheme for detecting linear features in PolSAR images using the Hotellings
test. Based on this, Jin [30] proposed a linear feature detection method for PolSAR images
by replacing the Hotellings test with the Wilks test. In [31], a fuzzy linear feature detector
was constructed from the Wishart likelihood ratio test statistic. Nevertheless, all the above
algorithms detect many curves in PolSAR data along with the line segments. Moreover,
the width of the obtained linear region is large, which leads to difficulty in describing the
line segments accurately. To address the above problems, we propose a PolSAR image
Line Segment Detection method (PLSD) which concentrates on detecting the line segments
in PolSAR images. PLSD can be divided into three stages. In the first stage, the gradient
map of the PolSAR image is acquired by the improved Constant False Alarm Rate (CFAR)
edge detector [32]. Then, Statistical Region Merging based on gradient Strength and
Direction (SRMSD) is applied to obtain line-support regions. Finally, to validate the line-
support regions, an extension of the a contrario approach is utilized, which is based on the
Helmholtz principle [23] and Markov chains. In addition, based on PLSD, we propose a
large scene airport detection method for PolSAR images. The experimental results validate
the effectiveness of the two methods and demonstrate the potential of line segments for
application in PolSAR images.

In all, the main contributions of this paper are as follows:

1. The literature on line segment detection is surveyed and the importance of line
segments in the image interpretation task is determined. Then, we propose a new fast
line segment detection algorithm, PLSD, to detect line segments in PolSAR images. It
can detect line segments in linear time.

2. Based on PLSD and the scattering characteristics of airports, we propose an airport
detection method for large scenes.
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3. The results of the above two detection methods and the state-of-the-art (SOTA)
method are compared on several PolSAR images. The superiority of the two models
is demonstrated.

The rest of this paper is organized as follows. Section 2 describes the design details
of the PLSD and the airport detection method. Experimental results are presented and
analyzed in Section 3. Section 4 discusses the parameter settings and algorithm complexity
of the line segment detector. Finally, Section 5 draws conclusions.

2. Method

This section introduces our proposed methods, including the line segment detector
and the airport detection method. First, the line segment detector is described. Specifi-
cally, the edge detector with the covariance matrix is described first, followed by SRMSD,
then the line segment validation method is presented. Finally, the complete PLSD algo-
rithm is provided and the airport detection algorithm based on the line segment detector
is introduced.

2.1. Line Segment Detection for PolSAR (PLSD)

To obtain line segments from PolSAR images, PLSD is divided into three steps: (1) ob-
taining the gradient strength and gradient direction of each point in PolSAR images by
improved edge detector with covariance matrix; (2) performing SRMSD to acquire line-
support regions; and (3) utilizing the Helmholtz principle [23] and Markov chains, the line-
support region is validated, removing the false alarms. The flowchart of the PLSD is
illustrated in Figure 1.

Figure 1. Flowchart of the PLSD.

2.1.1. Edge Detector with Covariance Matrix

PolSAR measures the backscattering coefficient of the target using multiple combi-
nations of transmitting and receiving antenna polarizations. In the case of a full PolSAR,
each resolution unit is described by a 2 × 2 complex scattering matrix S, as shown in
Equation (1):

S =

[
Shh Shv
Svh Svv

]
(1)

where the elements Sij in the scattering matrix represent the complex scattering coefficient,
with i denoting the transmitting polarization and j denoting the receiving polarization.

Under the monostatic backscattering case, there exists a reciprocity theorem, i.e.,
Shv = Svh; the scattering matrix becomes symmetric, and can be reduced to a three-dimensional

single-look scattering vector Ω =
[
Shh

√
2Shv Svv

]T
, with T being transpose. We discuss

this backscattering case in the following part of this paper.
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For the purpose of speckle reduction, multi-look processing is usually performed on
PolSAR data. For multi-look PolSAR data, each pixel can be represented by a covariance
matrix C, which is defined as

C =
1
L

L

∑
i=1

Ωi×Ω∗Ti (2)

where the superscript ∗T denotes the conjugate transpose, L represents the number of
looks, and Ωi is the scattering vector to be averaged. The covariance matrix C follows
a complex Wishart distribution, i.e., C ∈ WC(q, L, ∑), with ∑ = E

(
Ω × Ω∗T

)
and with q

representing the dimension of the scattering vector. For a fully polarimetric SAR under the
monostatic backscattering case, q = 3. This can be described by the following probability
density function:

P
(
C|∑

)
=

Lq×L × |C|L−q × exp
(
−L× Tr

(
∑−1C

))
K(L, q)× |∑ |L

(3)

K(L, q) = πq(q−1)/2
q

∏
j=1

Γ(L− j + 1) (4)

where Γ(. . .) is the Gamma function, while Tr(. . .) and | . . . | denote the trace and determi-
nant, respectively.

Suppose Cx and Cy are independent and both follow a complex Wishart distribution,

i.e., Cx ∈ WC(q, L, ∑x) and Cy ∈ WC

(
q, L, ∑y

)
. Then, their equality can be tested by the

Wishart likelihood ratio test (LRT) statistic, Q [33], and Q becomes

Q =
(2× L)2×q×L

L2×q×L ×
|Cx|L × |Cy|L

|Cx + Cy|2×L (5)

To simplify the calculation, the ln operation is applied to Q according to [33]:

ln Q = L×
(
2× q× ln 2 + ln |Cx|+ ln |Cy| − 2 ln |Cx + Cy|

)
(6)

The term ln Q is limited by [−∞, 0], with ln Q = 0 for Cx = Cy.
Based on Equation (6), the polarimetric CFAR Edge Detector [32] is proposed. It visits

each pixel in the image continuously, applying a set of filters with different orientations
for each pixel. The filter estimates the average covariance matrix on both sides of the
center pixel and then calculates the Wishart likelihood ratio test statistic as a measure
of the probability of edge pixels. Usually, to achieve better edge detection, eight sets of
filters with different orientations are provided at each pixel in the image. This increases
the computational complexity of edge detection. We designed the filter setup as shown in
Figure 2 according to the approach in [21], which reduces computational complexity and
maintains good accuracy. To be specific, with the LRT statistic ln Q calculated as shown
in Equation (6) for the left and right filter configurations shown in Figure 2a, we can find
the horizontal gradient intensity of the center pixel. The size of the filter window is set
by a speckle suppression parameter ρ, i.e., w f = dlog(10)× ρe, l f = 2 × w f + 1. The
gradient Gv(x, y) along the vertical direction can be computed in the same way, as shown
in Figure 2b. The strength |GR(x, y)| and direction ang(GR(x, y)) at a position (x, y) are
defined as

|GR(x, y)| =
√

Gh(x, y)2 + Gv(x, y)2 (7)

ang(GR(x, y)) = arctan
Gv(x, y)
Gh(x, y)

(8)
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(a) (b)

Figure 2. Edge detection filter configuration, l f : length of the filter, w f : width of the filter,
l f = 2 × w f + 1. (a) Filter setting for the horizontal gradient calculation. (b) Filter setting for the
vertical gradient calculation.

2.1.2. Statistical Region Merging Based on Gradient Strength and Direction

In optical images, the gradient map is obtained by performing a difference operation
on adjacent pixels. To ensure that the gradient of each point is only affected by the adjacent
pixels, the region affected by the pixel mutation is small, i.e., the width of the region having
the same gradient direction is small. Therefore, grouping the adjacent pixels with similar
gradient directions provides accurate line-support regions.

Nevertheless, this method is not applicable to PolSAR images. In [28], LSDSAR was
used to replace the finite-differences method with the ratio-based calculation method in
order to obtain a more accurate gradient map. However, LSDSAR does not consider the
problem that the gradient maps obtained by the ratio-based calculation method have
a large width at the pixel mutations. The same problem appears in the gradient maps
obtained by the CFAR edge detector. Therefore, a line-support region generation algorithm
based on the gradient direction alone increases the width of the line-support region and
even change its direction, decreasing the detection accuracy of the line segment. In the
proposed method, we consider both gradient strength and gradient direction to diminish
the damage. As shown in Figure 3c, when the the pixel mutation is closer, the gradient
strength is higher. Hence, the utilization of gradient strength can effectively distinguish
edge points from interference points. In addition, the average attributes of the regions are
more representative compared to the attributes of the pixels at the edges of the regions,; thus,
the Statistical Region Merging (SRM) algorithm is used. Overall, we propose a line-support
region generation algorithm called SRMSD that is more suitable for PolSAR data.

(a) (b) (c)

Figure 3. Gradient map. (a) PauliRGB map. (b) Gradient direction map. (c) Gradient strength map.

Meanwhile, the seed pixel selection of statistical region merging has an important
influence on the final result. Pixels with higher gradient strength are selected as seed pixels



Remote Sens. 2022, 14, 5842 6 of 21

first, as they are more likely to belong to line segments. In addition, the gradient direction
of the seed pixels is considered to be similar to the line segment direction. Therefore,
the gradient direction of each tested pixel is compared with the gradient direction of the
seed pixel, preventing the appearance of line segments in the region with slow gradient
direction change, i.e., the scene shown in Figure 4a. The effectiveness of this measure is
demonstrated in Figure 4b,c.

(a) (b) (c)

Figure 4. Effect of the seed pixel direction. (a) Scenes with slow directional changes. (b) With seed
pixel direction information. (c) Without seed pixel direction information.

Figure 5 illustrates the process of SRMSD. Specifically, a pixel is first selected as the
seed pixel, as shown in Figure 5a. The gradient direction of the seed pixel is α0, and the
initial region angle is set to α0 as well. Then, the pixels adjacent to the line-support region
are tested and added it to the region if it satisfies the following conditions:

(1) Gradient strength equals the average region strength up to a strength tolerance µ;
(2) Gradient direction equals the region angle up to an angle tolerance η;
(3) Gradient direction equals the initial region angle α0 up to an angle tolerance η.

(a) (b) (c)

Figure 5. Process of SRMSD. The arrow represents the gradient direction and the length represents
the gradient strength. (a) Selection of the seed pixel. (b) Iterative process of SRMSD. (c) Results
of SRMSD.

At each iteration, the region angle α is updated to

α = arctan


n
∑

i=1
sin(angi)

n
∑

i=1
cos(angi)

 (9)

where n is the number of pixels in the line-support region. The process is repeated until
none of the adjacent pixels satisfies the join condition. The final result of the SRMSD is
obtained as shown in Figure 5c.
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Moreover, Algorithm 1 provides the implementation details of SRMSD according
to [28]. It is worth noting that we specify that a pixel can only be added to a unique
line-support region, making the SRMSD greedy and linear in time.

Algorithm 1 SRMSD

Require: A gradient strength image Gs; a gradient direction image Gd; a starting pixel (x,
y); an angle threshold µ; a strength threshold η; An image Status that records whether
pixels have been added to a region.

Ensure: Line-support Region: region.
1: region← (x, y)
2: αregion ← Gd(x, y)
3: Sx ← cos(αregion)
4: Sy ← sin(αregion)
5: for pixel P(xr, yr) in region do
6: for Pa(xa, ya) adjacent to P and Status(xa, ya) = Not Used do
7: if Diff(Gd(xa, ya), αregion) < µ and Diff(Gd(xa, ya), Gd(x, y)) < µ and Diff(Gs(xa, ya),

Gs(xr, yr)) < η then
8: Add Pa to region.
9: Status(xa, ya)← Used.

10: Sx ← Sx + cos(Gd(xa, ya)).
11: Sy ← Sy + sin(Gd(xa, ya)).
12: αregion ← arctan(Sy/Sx).
13: end if
14: end for
15: end for
16: return region;

2.1.3. Line Segment Validation

Following the SRMSD, further validation is required for each line-support region.
The line-support region is composed of a set of pixels, while the line segment is represented
by a rectangle [34]. To unify them, a rectangle is used to approximate each line-support
region. The rectangle with four parameters, i.e., length, width, angle, and center of the
rectangle, is shown in Figure 6. The length and width of the rectangle are defined as the
length and width of the minimum bounding rectangle for the line-support region. With the
gradient strength as the mass of the pixel, the center of the rectangle is defined as the center
of mass [35], and the first inertia axis to select the rectangle’s angle.

Figure 6. Rectangular description of the line-support region.

The validation of line segments using the a contrario approach is already present in
several methods, such as LSD, EDLines, etc. In the a contrario approach, the detection
of line segments is treated as a simplified hypothesis testing problem. It is based on
the Helmholtz principle [23], i.e., no meaningful structure should happen by chance in a
random configuration. A line segment, as a structure with perceptual significance, has
obvious anisotropy; thus, it should not appear in the background model. The background
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model, as Desolneux et al. [36] state, is simply one in which all gradient directions are
independent and uniformly distributed. Such a background model has good isotropy;
therefore, line segments can be judged as outliers in the background model.

However, the filter-based gradient calculation method requires local averaging, result-
ing in gradient directions that do not satisfy the assumption of independent distribution.
Fortunately, Myaskouvskey et al. [37] extended the a contrario approach by introducing
Markov chains, allowing the modelling of the background model with the presence of
low-order dependent events. Here, we say that the extended background model is H0.
For a random image I0 (defined on the grid Ψ = [1, N]× [1, M]) obeying the H0 model, I0
should satisfy the following:

(1) ∀m ∈ Ψ , Angle(∇I0(m)) is uniformly distributed over [0, 2π];
(2) The family {Angle(∇I0(m))}m∈Ψ follows a Markov chain of order one.

Prior to validation by a contrario approach, the aligned pixels within the rectangle,
i.e., where the gradient direction of the pixel is approximately orthogonal to the rectangle’s
direction, need to be counted. A rectangle is considered a valid line-support region if the
percentage of aligned pixels in the rectangle exceeds the density threshold D. Otherwise,
we let µ = µ/2 and perform SRMSD again.

For a rectangle r with m (X1, . . . , Xm) pixels, the joint distribution of the pixels is
described by a Markov chain of order one; that is, we specify that for all 1 < i ≤ m,

P(Xi = xi|Xi−1, . . . , X1 = x1) = P(Xi = xi|Xi−1 = xi−1) (10)

Therefore, the distribution of aligned pixels is characterized by P(X1 = x1|X0 = x0)
for x1, x0 ∈ {0, 1}.

Suppose that r contains n(r) pixels and k aligned pixels, and that the number of aligned
pixels of rectangle r in I0 is k0. The Number of False Alarms (NFA) [37] of r is denoted as

NFA(r) = NR × PH0(k0 ≥ k) (11)

where NR denotes the number of rectangles in I, which can be approximated as 5× (M× N)5/2

in an image of size M × N [28]. As I0 follows the Markov chain assumption, PH0(k0 ≥ k)
can be found by

PH0(k0 ≥ k)

= ∑
x1+...+xn(r)≥k

P(X1 = x1)×
n(r)
∏

t=1
P(Xt = xt|Xt−1 = xt−1)

(12)

A heavy computational burden results from the straightforward computation of
Equation (12). Therefore, a dynamic programming algorithm [38] is employed to achieve

more efficient computation. Letting Yt =
n
∑
j=t

Xj, it can be observed that for t < n − 1

we have

P(Yt ≥ k) =

P(Yt+1 ≥ k|Xt = 0)× P(Xt = 0)

+ P(Yt+1 ≥ k− 1|Xt = 1)× P(Xt = 1)

(13)



Remote Sens. 2022, 14, 5842 9 of 21

In addition, for x ∈ {0, 1} and k
′ ≥ 1,

P
(

Yt+1 ≥ k
′ |Xt = x

)
= ∑

y∈{0,1}
P
(

Yt+2 ≥ k
′ − y, Xt+1 = y|Xt = x

)
= P

(
Yt+2 ≥ k

′ |Xt+1 = 0
)
× P(Xt+1 = 0|Xt = x)

+P
(

Yt+2 ≥ k
′ − 1|Xt+1 = 1

)
× P(Xt+1 = 1|Xt = x)

(14)

and P
(

Yn ≥ k
′ |Xn−1 = x

)
is provided by

P
(

Yn ≥ k
′ |Xn−1 = x

)
=


1

P(1|x)
0

k
′
= 0,

k
′
= 1,

otherwise.
(15)

2.1.4. The Complete PLSD Algorithm

The complete PLSD algorithm is shown in Algorithm 2 with reference to [21,28]. Status
determines that pixels are assigned to one unique line-support region within SRMSD, which
is the key to ensuring that the algorithm completes in linear time.

Algorithm 2 PLSD

Require: An image I; Speckle suppression parameter ρ; the angle tolerance µ; the strength
tolerance η; the NFA threshold ε and the density threshold D.

Ensure: A list of line segment L.
1: Initialization:

• Apply the CFAR edge detector with parameter ρ on the input image to obtain the
gradient strength map Gs and the gradient direction map Gd.

• Compute OrderedList, sorting the pixels of I in descending order according to
gradient strength.

• Define Status, All(Status)← Not Used.
2: for pixel P (x, y) in OrderedList do
3: region← SRMSD(P (x, y), Gs, Gd, µ, η, Status);
4: rect← Rectangle(region);
5: while AlignedPixelDensity(rect, µ) < D do
6: region← Refine(region);
7: rect← Rectangle(region);
8: end while
9: nfa← NFA(rect);

10: if nfa<ε then
11: ADD rect to L;
12: Status(region)← Used;
13: else
14: region← Not Used;
15: end if
16: end for
17: return L;

2.2. PLSD-Based Airport Detection on PolSAR Images

One possible application of line segment detection is airport detection, because the
edges of runways appear as line segments on the image. It is extensively used for pre-
processing of aircraft detection [39,40]. In addition to the ability to form line segments,
a priori knowledge that surface scattering is the dominant scattering mechanism in the
airport region can help to detect the airport. Based on the line segment detector and
scattering characteristics, we design a new large scene airport detection method.
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The airport detection method is divided into two steps. In the first stage, Yamaguchi
four-component-based Fuzzy C-Means (Y-FCM) is utilized to acquire the airport Region
Of Interest (ROI). In the second stage, the precise airport region is obtained by PLSD to
validate the airport ROI. Figure 7 shows the flowchart of the airport detection method.

Figure 7. Flowchart of the airport detection method. ⊕means take the intersection. Red rectangles
mark the airport region.

(1) Y-FCM: We apply the Yamaguchi four-component decomposition [41] to the PolSAR
data. Four scattering components are obtained, i.e., the surface scattering component (PS),
the double-bounce scattering component (PD), the volume scattering component (PV), and
the helix scattering component (PH). Different terrains have different polarization scattering
properties. The main scattering mechanism of the runway is surface scattering, as it has
a moderately rough surface. Fuzzy C-Means (FCM) [42], as a soft clustering algorithm,
allows each sample to belong to multiple classes with varying degrees of membership.
Moreover, as FCM is more robust to the selection of initial clustering centers, excellent
clustering results can be obtained. With [PS, PD, PV , PH ] as the characteristic of each pixel,
FCM is utilized to classify the pixels with different scattering. The Y-FCM is implemented
as described below.

Set the number of class m and the initial cluster centers−→cj (j = 1, 2, 3 . . . , m). To reduce
the subsequent computational complexity, m can be set to a larger value. In our experiments,
m is set to 15. The initial clustering centers are obtained by taking a random choice.

Then, the degree of membership uij of pixel xi and the j-th class is calculated based on
[PS, PD, PV , PH ]:

uij =

1
||xi−cj ||22

m
∑

j=1

1
||xi−cj ||22

(16)

After each iteration, the cluster centers need to be updated, as follows:

−→cj =

N
∑

i=1
u2

ij ×
−→xi

N
∑

i=1
u2

ij

(17)

Considering the small sum of PD, PV , and PH in the runway, we take the class with
the smallest sum of PD, PV , and PH as the ROI for subsequent detection. It is worth noting
that Y-FCM performs only one iteration to obtain the accurate ROI.
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(2) PLSD: Next, PLSD is performed to acquire line segments in the PolSAR images.
To test the parallelism of the line segments, we define the rule for parallel lines according
to [43]. Suppose the line segments L and S consist of the point sets {Lx, x = 1, . . . , NL} and
{Sx, x = 1, . . . , NS}, respectively, with DL and DS being their angles. If L and S are parallel,
they must first satisfy the angle similarity condition, i.e., 〈DL, DS〉 < Angthred. Furthermore,
for each point Li on the line segment L, we must find the line P that passes through Li and is
perpendicular to L. If P intersects S at Si, we find the Euclidean distance disi between Li and
Si and obtain the average value dis of the distance set {disx, x = 1, . . . , NL}. The percentage
of points in the set {disx, x = 1, . . . , NL} smaller than dis is PerL. The proportion PerS can
be obtained in the same way. If both PerL and PerS are smaller than the threshold Perthred,
the line segments L and S are considered parallel. In our experiments, we set Angthred = 3°
and Perthred = 0.7.

Finally, the ROI is validated by line segments. A region is considered an airport region
if there are parallel line segments within the ROI.

3. Result

In this section, the results of our proposed algorithms and other comparative meth-
ods are reported for PolSAR images. First, the PolSAR datasets are presented, followed
by the performance comparison of different methods and in-depth analysis of SRMSD.
Finally, the applicability of the line segment detection method is demonstrated based on
airport detection.

3.1. Datasets

Here, we choose three pieces of PolSAR data to demonstrate the effectiveness of our
proposed algorithm, consisting of a river, a road, and an airport, as shown in Figure 8. The
PolSAR data were provided by the UAVSAR project. They are acquired in L-band with an
azimuth resolution of 4.9 m and a range resolution of 7.2 m, and are based on a four-look
GRD product. More detailed information on the data is listed in Table 1.

Figure 8. PauliRGB images of the three PolSAR data. (a) Simple road area. (b) Kona airport.
(c) Complex river area.
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Table 1. Descriptions of three PolSAR data items for line detection.

Image Size (Pixel) Acquisition Date Location

Figure 8a 300× 300 September 2017 Fort Smith, Canada
Figure 8b 700× 700 January 2012 Hawaii Island, America
Figure 8c 2281× 1400 May 2015 Calumet, Louisiana, America

Figure 8a is of a short road in Fort Smith, Canada with a simple background. Figure 8b
shows the Kona airport, located on Hawaii Island, America. The difference between the
runway of the airport and the surrounding environment forms the line segment. Figure 8c is
an area located in Calumet, Louisiana, America, containing a river with a well-defined edge.
The complexity of its scenarios poses a considerable challenge to the line segment detector.

3.2. Comparison of Line Segment Detection Algorithms

In this subsection, we compare the line segment detection results of six methods,
i.e., LSD [21], EDLines [22], Linelet-LSD [23], LSDSAR [28], HT [15], and our proposed
method. The parameter settings of comparison methods are set as optimal values according
to independently experiments with ten times for each image. Note that all the methods are
implemented using the MATLAB language on a PC with a 2.6-GHz i5 CPU.

Figure 9 presents the line segment detection results of different methods for Figure 8a,b.
The first and third rows show the detection results on the PauliRGB image, and the results
on the solid color background are shown in the second and fourth rows. Figure 9a shows
the results of LSD, where we can see that most of the detected line segments are locate in
the region of gradient variation. Nevertheless, there are errors of miss detection, such as
parts of roads and runways. Figure 9b,e suffers from the same errors of line segment miss
detection. In addition, they over-cut the line segments into small line segments. The results
in Figure 9c demonstrate that the Linelet-LSD method can effectively detect more line
segments. However, it generates more false alarms as well, and appears to engage in
serious over-cutting of the line segments. The results of LSDSAR depicted in Figure 9d
seem better than all of the former methods, with most of the line segments detected well
and with fewer over-cutting errors. Nevertheless, the most serious false alarms appear in
these results, and line segments even appear in the ocean. Figure 9f shows the results of
our proposed method; it can be observed that it finds a better tradeoff between accurate
detection of line segments and removal of false alarms.

In addition, the number of line segments and the time cost of the different methods
are provided in Table 2. It can be seen that our line segment detector has the best detection
performance, and the detection time is lower than most of the others.

The detection performance of LSD, Linelet-LSD, LSDSAR, and PLSD in complex sce-
narios is discussed below. Figure 10 shows the line segment detection results of the four
methods in a complex scenario. From Figure 10a,b, it can be seen that when using the
LSD, there are many obvious line segment regions missed in the results, although most
of the detected line segments are correct (for example, the regions marked by red circles
in Figure 10a,b). This indicates that the edge detection method of LSD, i.e., the difference
method, is not well adapted to PolSAR images. The results of Linelet-LSD in Figure 10c,d
seem to detect more line segments. Nevertheless, the over-cutting of line segments is
very serious, as Linelet-LSD detects Linelets (short line segments) in horizontal or vertical
directions and forms line segments by aggregating them. Figure 10e,f shows the result
of the LSDSAR method, where it can be seen that most of the line segments can be cor-
rectly discriminated with fewer over-cutting results than LSD and Linelet-LSD. However,
in the homogeneous region the detection result is not very satisfactory, as there exist a
large number of false alarms. In addition, line segments are detected in curved regions.
The detection results of our proposed approach are shown in Figure 10g,h, where it can be
seen that both false alarms and over-cutting are well controlled. The reason for this is that our
proposed method both considers the statistical model of the distribution in PolSAR images
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and utilizes the a contrario approach to validate the line-support region. More importantly,
we incorporate both the direction and strength information of the gradient into the SRM,
resulting in more accurate detection of line-support regions with less over-cutting than other
methods. Therefore, it can be demonstrated that our method outperforms the other three
methods in terms of the ability to the preservation of complete line segments and elimination
of false alarms.

Table 2. Line segment detection results.

Method Image Number of Line
Segments Times (s)

LSD
Figure 8c
Figure 8b
Figure 8a

319
26
1

4145.76
60.12
0.85

EDLines
Figure 8c
Figure 8b
Figure 8a

728
152
9

46.29
8.54
2.12

Linelet-LSD
Figure 8c
Figure 8b
Figure 8a

4782
580
33

15,007.67
211.27
8.31

LSDSAR
Figure 8c
Figure 8b
Figure 8a

2663
442
52

8.84
1.74
0.28

HT
Figure 8c
Figure 8b
Figure 8a

62
69
6

0.11
0.05
0.04

PLSD
Figure 8c
Figure 8b
Figure 8a

538
49
2

6.69
1.52
0.27

(a) (b) (c) (d) (e) (f)

Figure 9. Line segment detection results of different methods for PolSAR image. (a) LSD. (b) EDLines.
(c) Linelet-LSD. (d) LSDSAR. (e) HT. (f) PLSD.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Line segment detection results of different methods in complex scenarios. (a,b) LSD.
(c,d) Linelet-LSD. (e,f) LSDSAR. (g,h) PLSD. Red circle: obvious line areas missed in the results.

3.3. In-Depth Analysis of the SRMSD

In this subsection, we focus on the performance improvement introduced by the
addition of gradient strength. Figure 11a,b shows the results of line segment detection with
and without strength information, respectively. Figure 11c,e shows the enlarged results of
the two selected areas marked with red rectangles in Figure 11a,b. What we can observe
from Figure 11a,b is that the addition of strength information removes false alarms. Most
of the removed line segments exist in the interior of the river, as shown in Figure 11e,f. Due
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to the fact that the gradient calculation with filter-based methods generates interference
points at the pixel mutations, they have similar gradient directions to the edge points,
making SRM by the gradient direction alone unable to distinguish the edge points from
the interference points. A large number of line segments appear in between the rivers that
are expected to not appear, as shown in Figure 11e. In comparison, our method considers
the gradient strength, separating the edge points from the interference points. Therefore,
the line segment in the middle of the river is removed, as shown in Figure 11c.

(a) (b)

(c) (d) (e) (f)

Figure 11. Enhancement of gradient strength. (a) With gradient strength. (b) Without gradient
strength. (c,d) Enlarged results of the red rectangular areas in (a). (e,f) Enlarged results of the red
rectangular areas in (b).

To further evaluate the effect of gradient strength addition, Table 3 displays the statis-
tics on the detection results for both cases. It can be seen that the difference in detection
time between the two cases is not significant. Therefore, the incorporation of gradient
strength imposes almost no additional time burden on the algorithm. Meanwhile, the addi-
tion of strength information reduces the number of incorrect line segments. Furthermore,
the line segments in Figure 11a have a smaller average width than thoes in Figure 11b,
demonstrating the superiority of our new SRMSD algorithm.

Table 3. Comparison of results with and without gradient strength.

Number of Line
Segments

Average Width of Line
Segments (Pixel) Time (s)

With strength 538 4.8753 6.48
Without strength 575 5.7394 6.41

The histograms of the line-width obtained by the line segment detector with and
without strength information are shown in Figure 12a,b, respectively. It can be seen that
the width of the line segment is concentrated between four and five after the incorporation
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of the strength information. In comparison, the width of the line segment without strength
information is more apparent in [5,6]. Furthermore, the number of line segments in
Figure 12a is lower than in Figure 12b when the width of the line segments exceeds 5,
demonstrating the effectiveness of the incorporated strength information.

(a) (b)

Figure 12. Statistics on line segment width. (a) With strength information. (b) Without strength information.

3.4. Comparison of Airport Detection Methods

Four PolSAR images were used to demonstrate the effectiveness of our airport de-
tection method. The images are L-band GRD products provided by the UAVSAR project.
Details are shown in Table 4. The airports are located in mountainous, seaside, and ur-
ban areas.

Table 4. Description of the data for airport detection.

Name Image Size (Pixel) Airport Size
(Pixel) Acquisition Data Location

Coldfoot Airport 4297 × 2697 249 × 214 10/2015 Coldfoot, America
Perales Airport 4164 × 2878 136 × 427 04/2014 Ibague, Colombia

Kona Airport 3195 × 2141 658 × 177 01/2012 Hawaii Island,
America

Changuinola
Airport 3086 × 2162 55 × 187 02/2010 Changuinola,

Panama

In order to demonstrate the effectiveness of our method, we compared it with CSA-
SOACM [44]. CSA-SOACM utilizes local contrast to obtain the airport ROI; then, the ROI
is examined by line segments. Finally, the airport contour is refined in the airport area with
Active Contour Model (ACM). Furthermore, we replaced PLSD with other line segment
detectors. However, LSD and Linelet-LSD are difficult to apply to airport detection in large
scenarios due to heavy time consumption. Meanwhile, owing to the poor results of EDLines
and HT for line segment detection, all airport targets were lost. Only LSDSAR-based airport
detection (LSDSAR-AD) was able to achieve promising detection results.

Figure 13 presents the results of airport detection. The airport areas are marked with a
red rectangle. It can be seen that our method accurately detects the airports. CSA-SOACM
shows false alarms and incomplete detection. This because of the CSA-SOACM not utilizing
the polarization information of PolSAR data as well as due to for its inaccurate line segment
detection. Although two airports are detected by LSDSAR-AD, a large number of false
alarms occur. This can be attributed to the result of line segment detection by LSDSAR.
LSDSAR detects a large number of line segments in homogeneous regions, leading to the
false alarms.

The results of airport detection prove the superiority of PLSD and demonstrate the
applicability of line segment detection.
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(a) (b) (c)

Figure 13. Comparison of airport detection results. (a) Ours. (b) CSA-SOACM. (c) LSDSAR-AD.

4. Discussion

This section discusses the parameter settings and algorithmic complexity of PLSD.
First, the effects of different free parameter settings are analyzed and the optimal parameters
determined on our dataset are provided, followed by analysis of the algorithm’s complexity.

4.1. Parameter Settings

There are five parameters in PLSD: the speckle suppression parameter ρ, angle toler-
ance µ, strength tolerance η, NFA threshold ε, and density threshold D; ρ is used to control
the size of the filter for the gradient calculation. Increasing the value of ρ helps to suppress
the speckle, providing more accurate gradient calculation results; in turn, however, it
increases the number of interference points. According to our experiments, we find that
setting ρ to 4 provides the best performance in most scenarios. However, it may not be able
to distinguish line segments that are very close to each other, such as the river branches
in Figure 8c. Setting ρ to a smaller value, e.g., 2, can solve this problem. Here, µ and η
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are the angle tolerance and strength tolerance used in the search for line-support regions,
respectively. A small value is more restrictive, leading to over-cutting of line segments.
A large value leads to the merging of unrelated pixels, resulting in large regions. We set µ
to 22.5 according to [45], and obtained good results. For the selection of η, we analyzed the
gradient strength obtained by ρ at different values, as shown in Figure 14. We chose two
rows of the PauliRGB image; the strength profiles are displayed in Figure 14a. Although the
value of ρ is different, the gradient strength always shows a large drop somewhere, owing
to the filter deviating from the pixel mutation. The points are marked in Figure 14b–f with
green dotted lines, with the gradient strength showing a large decrease. With η set to 3,
the edge points (points inside the dotted line) and interference points (points outside the
dotted line) are well distinguished. Similar to other contrario approaches, the NFA thresh-
old ε represents an upper bound on the average number of detections that we allow in a
pure noise image. Usually, setting it to 1 yields good performance. The density threshold D
is used to control the density of aligned pixels in the line-support region. During SRMSD,
the angle tolerance µ decreases until the density of aligned pixels in the line-support region
is greater than D. The presence of speckles leads to inaccurate gradient direction detection;
thus, too large values of D have the effect of over-cutting the line segments into small
subsegments, as shown in Figure 15. Therefore, we suggest a value of 0.4 for D, and confirm
its validity is in the experiments.

(a) (b) (c)

(d) (e) (f)

Figure 14. Analytical results for µ with different ρ. (a) PauliRGB Image (red lines represent the pixel
locations, which are the 50th and 150th rows, respectively). (b) ρ = 1. (c) ρ = 2. (d) ρ = 3. (e) ρ = 4.
(f) ρ = 5.
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(a) (b)

Figure 15. Line segment detection results for different values of D. (a) D = 0.4. (b) D = 0.8.

Unless explicitly mentioned, we use the default setting ρ = 4, µ = 22.5°, η = 3, ε = 1,
and D = 0.4 in our proposed algorithm.

4.2. Complexity of the PLSD Algorithm

For our proposed algorithm, the computational costs mainly consist of gradient
strength and direction acquisition, line-support region generation, and line segment valida-
tion. The computation of the gradient strength and direction is proportional to the number
of pixels and the size of the filter. Pixel sorting is achieved by bucket sorting, an operation
that can be performed in linear time. The computational time of the line-support region
generation algorithm is proportional to the number of visited pixels. It is worth noting that
no overlap exists between the regions. Thus, the number of visited pixels is proportional to
the total number of pixels in the image. The line segment validation can be divided into
two tasks, i.e., counting aligned pixels in the line-support region and calculation of NFA.
The former is proportional to the total number of pixels involved in all regions. The latter
needs to be computed for each region to ensure that it is proportional to the number of
regions. Both the number of line-support regions and the total number of pixels involved in
the line-support regions are at most equal to the number of pixels. All in all, the execution
time of PLSD is proportional to the number of pixels in the image.

5. Conclusions

This paper proposes a fast line segment detection algorithm for PolSAR images.
To reduce the time consumption of the CFAR edge detector, a new filter setup is designed.
Then, the SRM framework is utilized to quickly find the line-support region. Considering
both gradient strength and gradient direction, we design a new similarity measure that
effectively suppresses the interference gradient points and makes the line-support region
narrower. Finally, according to the Helmholtz principle and a contrario approach, the line-
support regions are validated to remove false alarms. Meanwhile, we analyze the free
parameters of PLSD and provide a default setting, which achieves satisfactory results in all
our experiments. Furthermore, we propose a large scene airport detection method based
on PLSD and scattering characteristics. The experimental results demonstrate that PLSD
is able to detect line segments more accurately than other line segment detectors while
effectively controlling time consumption in large scenes.

To a certain extent, the quality of the edge detector determines the accuracy of subse-
quent line segment detection. In future research, we plan to modify the filter shape and
distribution probability model of the edge detection algorithm to achieve more accurate
line segment detection in heterogeneous regions. Moreover, we intend to reduce the com-
putational complexity with the adaptive removal of regions with weak gradient strength
before acquiring line segment support regions.



Remote Sens. 2022, 14, 5842 20 of 21

Author Contributions: Conceptualization, D.W. and Q.L.; Methodology, D.W. and F.M.; Software,
F.M.; Data curation, Q.L.; Writing—Original draft preparation, D.W. and F.M.; Visualization, D.W.;
Investigation, F.M. and Q.Y.; Supervision, F.M. and Q.L.; Resources, Q.L. and Q.Y.; Validation, D.W.;
Writing—Reviewing and Editing, Q.L. and F.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is funded by the national Natural Science Foundation of China: 61871413,
62171016, 62201027; Fundamental Research Funds for the Central Universities: XK2020-03.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, L.; Weng, T.; Xing, J.; Li, Z.; Yuan, Z.; Pan, Z.; Tan, S.; Luo, R. Employing deep learning for automatic river bridge detection

from SAR images based on adaptively effective feature fusion. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102425. [CrossRef]
2. Wei, Q.R.; Feng, D.Z.; Zheng, W.; Zheng, J.B. Rapid line-extraction method for SAR images based on edge-field features. IEEE

Geosci. Remote Sens. Lett. 2017, 14, 1865–1869. [CrossRef]
3. Zhao, M.; Wu, Y.; Pan, S.; Zhou, F.; An, B.; Kaup, A. Automatic registration of images with inconsistent content through

line-support region segmentation and geometrical outlier removal. IEEE Trans. Image Process. 2018, 27, 2731–2746. [CrossRef]
[PubMed]

4. Sui, H.; Xu, C.; Liu, J.; Hua, F. Automatic optical-to-SAR image registration by iterative line extraction and Voronoi integrated
spectral point matching. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6058–6072. [CrossRef]

5. Liu, N.; Cui, Z.; Cao, Z.; Pi, Y.; Dang, S. Airport detection in large-scale SAR images via line segment grouping and saliency
analysis. IEEE Geosci. Remote Sens. Lett. 2018, 15, 434–438. [CrossRef]

6. Tang, G.; Xiao, Z.; Liu, Q.; Liu, H. A novel airport detection method via line segment classification and texture classification.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 2408–2412. [CrossRef]

7. Luo, Y.T.; Zhao, L.Y.; Zhang, B.; Jia, W.; Xue, F.; Lu, J.T.; Zhu, Y.H.; Xu, B.Q. Local line directional pattern for palmprint recognition.
Pattern Recognit. 2016, 50, 26–44. [CrossRef]

8. Huang, J.; Liu, Y.; Wang, M.; Zheng, Y.; Wang, J.; Ming, D. Change Detection of High Spatial Resolution Images Based on
Region-Line Primitive Association Analysis and Evidence Fusion. Remote Sens. 2019, 11, 2484. [CrossRef]

9. Yue, Z.; Gao, F.; Xiong, Q.; Wang, J.; Huang, T.; Yang, E.; Zhou, H. A novel semi-supervised convolutional neural network method
for synthetic aperture radar image recognition. Cogn. Comput. 2021, 13, 795–806. [CrossRef]

10. Yin, Q.; Hong, W.; Zhang, F.; Pottier, E. Optimal combination of polarimetric features for vegetation classification in PolSAR
image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3919–3931. [CrossRef]

11. Li, G.; Li, Y.; Hou, Y.; Wang, X.; Wang, L. Marine oil slick detection using improved polarimetric feature parameters based on
polarimetric synthetic aperture radar data. Remote Sens. 2021, 13, 1607. [CrossRef]

12. He, J.; Wang, Y.; Liu, H.; Wang, N. PolSAR ship detection using local scattering mechanism difference based on regression kernel.
IEEE Geosci. Remote Sens. Lett. 2017, 14, 1725–1729. [CrossRef]

13. Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15.
[CrossRef]

14. Samal, A.; Edwards, J. Generalized Hough transform for natural shapes. Pattern Recognit. Lett. 1997, 18, 473–480. [CrossRef]
15. Cha, J.; Cofer, R.H.; Kozaitis, S.P. Extended Hough transform for linear feature detection. Pattern Recognit. 2006, 39, 1034–1043.

[CrossRef]
16. Fernandes, L.A.; Oliveira, M.M. Real-time line detection through an improved Hough transform voting scheme. Pattern Recognit.

2008, 41, 299–314. [CrossRef]
17. Ma, F.; Zhang, F.; Xiang, D.; Yin, Q.; Zhou, Y. Fast task-specific region merging for SAR image segmentation. IEEE Trans. Geosci.

Remote Sens. 2022, 60, 1–16. [CrossRef]
18. Ma, F.; Zhang, F.; Yin, Q.; Xiang, D.; Zhou, Y. Fast SAR image segmentation with deep task-specific superpixel sampling and soft

graph convolution. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [CrossRef]
19. Wei, Q.R.; Feng, D.Z. Extracting line features in SAR images through image edge fields. IEEE Geosci. Remote Sens. Lett. 2016,

13, 540–544. [CrossRef]
20. Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.; Xu, J. Robust line detection of synthetic aperture radar images based on vector radon

transformation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5310–5320. [CrossRef]
21. Von Gioi, R.G.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A fast line segment detector with a false detection control. IEEE

Trans. Pattern Anal. Mach. Intell. 2008, 32, 722–732. [CrossRef] [PubMed]
22. Akinlar, C.; Topal, C. EDLines: A real-time line segment detector with a false detection control. Pattern Recognit. Lett. 2011,

32, 1633–1642. [CrossRef]
23. Desolneux, A.; Moisan, L.; Morel, J.M. From Gestalt Theory to Image Analysis: A Probabilistic Approach; Springer Science & Business

Media: New York, NY, USA, 2007; Volume 34.

http://doi.org/10.1016/j.jag.2021.102425
http://dx.doi.org/10.1109/LGRS.2017.2738703
http://dx.doi.org/10.1109/TIP.2018.2810516
http://www.ncbi.nlm.nih.gov/pubmed/29553926
http://dx.doi.org/10.1109/TGRS.2015.2431498
http://dx.doi.org/10.1109/LGRS.2018.2792421
http://dx.doi.org/10.1109/LGRS.2015.2479681
http://dx.doi.org/10.1016/j.patcog.2015.08.025
http://dx.doi.org/10.3390/rs11212484
http://dx.doi.org/10.1007/s12559-019-09639-x
http://dx.doi.org/10.1109/JSTARS.2019.2940973
http://dx.doi.org/10.3390/rs13091607
http://dx.doi.org/10.1109/LGRS.2017.2731049
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1016/S0167-8655(97)00023-8
http://dx.doi.org/10.1016/j.patcog.2005.05.014
http://dx.doi.org/10.1016/j.patcog.2007.04.003
http://dx.doi.org/10.1109/TGRS.2022.3141125
http://dx.doi.org/10.1109/TGRS.2021.3108585
http://dx.doi.org/10.1109/LGRS.2016.2523560
http://dx.doi.org/10.1109/JSTARS.2019.2954818
http://dx.doi.org/10.1109/TPAMI.2008.300
http://www.ncbi.nlm.nih.gov/pubmed/20224126
http://dx.doi.org/10.1016/j.patrec.2011.06.001


Remote Sens. 2022, 14, 5842 21 of 21

24. Cho, N.G.; Yuille, A.; Lee, S.W. A novel linelet-based representation for line segment detection. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 40, 1195–1208. [CrossRef] [PubMed]

25. Yang, J.Y.; Li, H.C.; Hu, W.S.; Pan, L.; Du, Q. Adaptive Cross-Attention-Driven Spatial–Spectral Graph Convolutional Network
for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

26. Li, H.C.; Hu, W.S.; Li, W.; Li, J.; Du, Q.; Plaza, A. A3CLNN: Spatial, spectral and multiscale attention ConvLSTM neural network
for multisource remote sensing data classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 747–761. [CrossRef]

27. Zhao, K.; Han, Q.; Zhang, C.B.; Xu, J.; Cheng, M.M. Deep hough transform for semantic line detection. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 44, 4793–4806. [CrossRef]

28. Liu, C.; Abergel, R.; Gousseau, Y.; Tupin, F. LSDSAR, a Markovian a contrario framework for line segment detection in SAR
images. Pattern Recognit. 2020, 98, 107034. [CrossRef]

29. Borghys, D.; Lacroix, V.; Perneel, C. Edge and line detection in polarimetric SAR images. In Proceedings of the 2002 International
Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002; Volume 2, pp. 921–924.

30. Jin, R.; Zhou, W.; Yin, J.; Yang, J. Cfar line detector for polarimetric sar images using wilks’ test statistic. IEEE Geosci. Remote Sens.
Lett. 2016, 13, 711–715. [CrossRef]

31. Zhou, G.; Cui, Y.; Chen, Y.; Yang, J.; Rashvand, H.; Yamaguchi, Y. Linear feature detection in polarimetric SAR images. IEEE
Trans. Geosci. Remote Sens. 2010, 49, 1453–1463. [CrossRef]

32. Schou, J.; Skriver, H.; Nielsen, A.A.; Conradsen, K. CFAR edge detector for polarimetric SAR images. IEEE Trans. Geosci. Remote
Sens. 2003, 41, 20–32. [CrossRef]

33. Conradsen, K.; Nielsen, A.A.; Schou, J.; Skriver, H. A test statistic in the complex Wishart distribution and its application to
change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 4–19. [CrossRef]

34. Kahn, P.; Kitchen, L.; Riseman, E.M. Real-Time Feature Extraction: A Fast Line Finder for Vision-Guided Robot Navigation; University
of Massachusetts Amherst: Amherst, MA, USA, 1987.

35. Kahn, P.; Kitchen, L.; Riseman, E.M. A fast line finder for vision-guided robot navigation. IEEE Trans. Pattern Anal. Mach. Intell.
1990, 12, 1098–1102. [CrossRef]

36. Desolneux, A.; Moisan, L.; Morel, J.M. Meaningful alignments. Int. J. Comput. Vis. 2000, 40, 7–23. [CrossRef]
37. Myaskouvskey, A.; Gousseau, Y.; Lindenbaum, M. Beyond independence: An extension of the a contrario decision procedure.

Int. J. Comput. Vis. 2013, 101, 22–44. [CrossRef]
38. Leiserson, C.E.; Rivest, R.L.; Cormen, T.H.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 1994; Volume 3,.
39. Chen, L.; Luo, R.; Xing, J.; Li, Z.; Yuan, Z.; Cai, X. Geospatial transformer is what you need for aircraft detection in SAR Imagery.

IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [CrossRef]
40. Sun, X.; Wang, P.; Yan, Z.; Xu, F.; Wang, R.; Diao, W.; Chen, J.; Li, J.; Feng, Y.; Xu, T.; et al. FAIR1M: A benchmark dataset for

fine-grained object recognition in high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 184, 116–130.
[CrossRef]

41. Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposi-
tion. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [CrossRef]

42. Lin, Y.; Chen, S. A centroid auto-fused hierarchical fuzzy c-means clustering. IEEE Trans. Fuzzy Syst. 2020, 29, 2006–2017.
[CrossRef]

43. Liu, C.; Xiao, Y.; Yang, J.; Yin, J. Harbor detection in polarimetric sar images based on the characteristics of parallel curves. IEEE
Geosci. Remote Sens. Lett. 2016, 13, 1400–1404. [CrossRef]

44. Zhang, Q.; Zhang, L.; Shi, W.; Liu, Y. Airport extraction via complementary saliency analysis and saliency-oriented active contour
model. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1085–1089. [CrossRef]

45. Burns, J.B.; Hanson, A.R.; Riseman, E.M. Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 425–455.
[CrossRef]

http://dx.doi.org/10.1109/TPAMI.2017.2703841
http://www.ncbi.nlm.nih.gov/pubmed/28504933
http://dx.doi.org/10.1109/LGRS.2021.3131615
http://dx.doi.org/10.1109/TNNLS.2020.3028945
http://dx.doi.org/10.1109/TPAMI.2021.3077129
http://dx.doi.org/10.1016/j.patcog.2019.107034
http://dx.doi.org/10.1109/LGRS.2016.2539218
http://dx.doi.org/10.1109/TGRS.2010.2081373
http://dx.doi.org/10.1109/TGRS.2002.808063
http://dx.doi.org/10.1109/TGRS.2002.808066
http://dx.doi.org/10.1109/34.61710
http://dx.doi.org/10.1023/A:1026593302236
http://dx.doi.org/10.1007/s11263-012-0543-6
http://dx.doi.org/10.1109/TGRS.2022.3162235
http://dx.doi.org/10.1016/j.isprsjprs.2021.12.004
http://dx.doi.org/10.1109/TGRS.2005.852084
http://dx.doi.org/10.1109/TFUZZ.2020.2991306
http://dx.doi.org/10.1109/LGRS.2016.2560944
http://dx.doi.org/10.1109/LGRS.2018.2828502
http://dx.doi.org/10.1109/TPAMI.1986.4767808

	Introduction
	Method
	Line Segment Detection for PolSAR (PLSD)
	Edge Detector with Covariance Matrix
	Statistical Region Merging Based on Gradient Strength and Direction
	Line Segment Validation
	The Complete PLSD Algorithm

	PLSD-Based Airport Detection on PolSAR Images

	Result
	Datasets
	Comparison of Line Segment Detection Algorithms
	In-Depth Analysis of the SRMSD
	Comparison of Airport Detection Methods

	Discussion
	Parameter Settings
	Complexity of the PLSD Algorithm

	Conclusions
	References

