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The linear canonical transform provides a mathematical model of paraxial propagation though quadratic
phase systems. We review the literature on numerical approximation of this transform, including discretiza-
tion, sampling, and fast algorithms, and identify key results. We then propose a frequency-division fast linear
canonical transform algorithm comparable to the Sande–Tukey fast Fourier transform. Results calculated with
an implementation of this algorithm are presented and compared with the corresponding analytic functions.
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. INTRODUCTION
he Fresnel transform provides a well-known mathemati-
al model of paraxial free space propagation [1]. Discrete
pproximations to it are used for reconstruction of digital
olograms [2]. The linear canonical transform (LCT) can
e used to model systems composed of lenses and free
pace and other quadratic phase systems, e.g., graded-
ndex media [3,4]. Named for its area-preserving, linear
oordinate transforming effect on the phase space descrip-
ion of a wave field (e.g., its Wigner–Ville distribution
unction (WDF) [5,6]), the LCT is a parameterized linear
ntegral transform. The parameters of the transform are
elated to the ABCD or Collins matrix characterization of
he system used in ray-tracing calculations [1]. The LCT’s
rigins are in quantum mechanics; a brief overview may
e found in [7]. Although it was considered for such use
uch earlier, e.g., [8], the LCT’s application in scalar dif-

raction theory has gained further recognition since the
ractional Fourier transform (FRT) was first introduced in
ptics. The LCT has also been discussed as a generaliza-
ion of the FRT [3,9]. A review of the history of the LCT in
ptics is presented in [4], which also discusses the trans-
orm’s properties.

There are a number of attractive facets to an LCT-
ased discussion of optics: (i) it provides links to geomet-
ic optics via the ray-tracing matrix that characterizes
he optical systems in both; (ii) it has the potential to
raw mathematical tools from the vast literature on Fou-
ier analysis; and (iii) it allows simple relationships to be
rawn between phase space optics and time–frequency
epresentations. Aside from the Fresnel transform and
he FRT, the LCT’s special cases also include the Fourier
ransform (FT), the effect of a thin lens (chirp multiplica-
1084-7529/10/010021-10/$15.00 © 2
ion), and magnification (scaling). We restrict our discus-
ion here to lossless systems and therefore to LCTs with
eal parameters. However, LCTs with complex param-
ters are also of interest, e.g., the Laplace transform and
he Gauss–Weierstrass transform [7].

The continuous LCT has been used in a number of ap-
lications, e.g., in optical systems to measure tilt and
ranslation [10–12], to provide additional keys in double-
andom phase encoding optical encryption schemes
13,14], in analysis of speckle size [15], and in noninter-
erometric phase extraction schemes [16,17]. However,
here are many situations where it is desirable to numeri-
ally approximate the transform. A comparison may be
ade with the utility of the ubiquitous fast Fourier trans-

orm (FFT) algorithms for numerically approximating the
T. Fast, accurate, and simple numerical tools for ap-
roximating the LCT are particularly useful in situations
here discrete data from a digital camera must be pro-

essed, e.g., in digital holography. Such a discretization of
he transform appears to have been first undertaken by
ei and Ding [18], and while their formulation remains

he accepted one in praxis [19], it presents certain practi-
al inconveniences for users [20], particularly in relation
o sampling issues [21]. A new definition of the discrete
CT (DLCT) has recently been proposed [22,23], along
ith a sampling methodology that appears to address the

ssues raised in [20,21]. We will review this methodology
n a subsequent section. We have chosen to use the older
efinition of the DLCT [18] in this paper, but as we will
how in Section 2, there is little practical difference be-
ween it and that of [22,23] other than the reconstruction
lter used.
The focus of this paper is efficient, fast algorithms for
010 Optical Society of America
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valuating the DLCT. These are to the DLCT what the
FT is to the discrete FT (DFT). Numerical approxima-
ion of the transformation is desirable for the develop-
ent of simulation tools. Considering the ubiquitous use

f the FFT [the generic term for numerical algorithms for
alculating the DFT with O�N log N� complexity], analo-
ous fast algorithms for the LCT may prove to be valuable
utside of their obvious application in simulating optical
ystems. The discrete calculation can be thought of as a
atrix multiplication, fM=LMf, where f is a 1�N vector

onsisting of the samples of the input wave field, fM is the
ector of samples of the output field, and LM is the N
N discrete transform matrix for ABCD matrix M. The

irect evaluation of this multiplication is of O�N2� com-
lexity. Fast algorithms exploit redundancies in the ma-
rix to iteratively break the multiplication into multiple
maller calculations, reducing the overall complexity. The
rst direct fast LCT (FLCT), a radix-4 mixed time- and
requency-division algorithm, was proposed in [19]. It it-
ratively decomposed the matrix multiplication into four
maller ones. A second, alternative approach to numerical
pproximation of the LCT is based on decomposing the
ransform or, equivalently, the discrete transform matrix,
nto a series of special cases for which fast algorithms are
nown, e.g., the DFT and the discrete FRT. This avenue of
esearch has thus far culminated in [24]. It is not yet
lear which of these two types of algorithm, if either, is
ost useful. However, decompositions that use the FT do

enefit from the availability of highly optimized FFT
mplementations.

In overview, this paper is organized as follows. In Sec-
ion 2, we define the LCT and DLCT and review relevant
roperties of the transform and sampling theory. We com-
are Pei and Ding’s DLCT [18] and the associated sam-
ling methodology [21,25] with those presented in [22,23].
n Section 3, we review algorithms for calculating the
LCT, including direct and decomposition-based. In Sec-

ion 4, we derive a decimation-in-frequency FLCT algo-
ithm, comparable to the Sande–Tukey frequency-division
FT algorithm. In Section 5, we present the results of
ome calculations performed using this algorithm, includ-
ng comparisons with corresponding analytical results.
inally, we present our conclusions in Section 6.
w
t
t
d
t

. LCT: DEFINITION, PROPERTIES,
AMPLING, AND DISCRETIZATION

iven a system of lenses and free space, we may charac-
erize the system in the paraxial approximation using an
BCD matrix, or ray-transfer matrix [1]. In ray tracing,

his matrix relates the position and angle of rays at the
nput and output of a system. The matrix is symplectic.
he ABCD matrix for free space (and hence the Fresnel

ransform) is M= � A B
C D �= � 1 �z

0 1 �, where � is the wavelength of
he propagating quasi-monochromatic light and z is the
ropagation distance. The ABCD matrix for a thin lens of
ocal length f is � 1 0

−1/�f 1 �. If a system consists of several se-
uential sections for which the ABCD matrices are
nown, the total system matrix is given by the product of
he ABCD matrices of the subsections. The inverse prob-
em, i.e., decomposition of a system’s ABCD matrix, is
elevent for algorithm analysis and design [24,25] and
ystem design [26]. While the two matrices above are of
articular physical significance for optical system design,
esigners of numerical algorithms may prefer to employ
ifferent “building blocks.” Thus while chirp multiplica-
ion remains an important numerical operation, the FT,
caling, and even the FRT are more important for algo-
ithm design than free space propagation, because ma-
ure numerical algorithms for calculating them make de-
ompositions using those transforms faster than the
lternatives.
We will now define the 1D LCT for a given optical sys-

em. Generalization to the 2D case is usually straightfor-
ard since the transform is separable for orthogonal sys-

ems. A different definition must be used for
onorthogonal systems, which lack symmetry about the
ptical axis e.g., because they contain pyramidal mirrors
r cylindrical lenses (except where the axes of the lens
ine up with our coordinate system) [27,28]. However, we
ill not consider such systems in this paper, and we note

hat all the existing algorithms for calculating the LCT
re unsuitable for performing simulations of such sys-
ems. Consider a system characterized by some ABCD
atrix, M. Let the wave field at the input plane be de-

cribed by f�x� and at the output plane by fM�y�. These two
unctions are related as follows:
fM�y� = LM�f�x���y� = ��
1

2�B
exp�− j�

4 �	
−�

�

f�x�exp
 j

2B
�Ax2 − 2xy + Dy2��dx, B � 0

1

�A
exp� j

2

C

A
y2�f� y

A� B = 0� , �1�
here fM�y� is the LCT of f�x�. The transform is affine, ad-
itive, unitary, and invertible. The inverse is simply the
CT with parameters found by inverting the original
BCD matrix of the forward transform. Throughout the
emainder of this paper, we will consider only systems
ith B�0 except where specifically noted. When B=0,
he transform is simply a chirp and a scaling. This is
rivial to implement numerically as the corresponding
iscrete transform matrix is diagonal, and the operation
herefore has O�N� complexity.
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. Sampling
ey to a successful numerical approximation of the LCT

s a clear picture of the consequences of sampling a signal
nd any LCT of that signal. The literature on this subject
emains active. However, an overview of its development
o date is enlightening. Analyses based on the WDF-based
hase space diagrams (PSDs) popularized by Lohmann
re especially illuminating. Most of these make assump-
ions about the signal and its bandwidth, but as Onural
as pointed out [29], it is important to bear in mind that
ssumptions about bandwidth may not necessarily be the
ost efficient or convenient assumptions to make about

calar wave fields. While a theorem analogous to the clas-
ic Shannon sampling theorem has been known to be ap-
licable to the LCT for almost a decade, its relevance to
he numerical approximation of the LCT has only recently
ecome clear.
Shannon sampling assumes that a signal’s FT is non-

ero only over a finite range of frequencies. The width of
his support is then directly related to a sampling rate for
he signal, and a reconstruction filter is specified that al-
ows recovery of the continuous signal from its samples
aken at not less than that rate, which is known as the
yquist rate. As the FT is a special case of the LCT, one
ay consider what the analogous sampling rate and re-

onstruction process are for a signal that has compact
upport in some LCT domain. Gori established this result
or the Fresnel transform in 1981 [30]. We will not discuss
his theorem or its proof except to note that it involved re-
riting the transform in terms of a FT and applying Sh-
nnon’s theorem. In the same paper, Gori also proved that
signal with finite bandwidth could not have finite sup-

ort in any Fresnel domain. The equivalent of this latter
esult for the LCT is more complex [31], depending on the
pecific ABCD parameter values. Various authors have
stablished the sampling theorem for signals that are
ompact in some fractional Fourier domain, of which Xia
eems to have been first [32]. To the authors’ knowledge,
ing [33] was first to propose the equivalent sampling

heorem for the LCT. While no specific name is estab-
ished for this theorem, we will refer to it as Ding’s theo-
em throughout the remainder of this paper. Ding shows
hat if a particular LCT of a signal is zero outside some
ange −L /2�x�L /2, then the signal may be sampled at
egular intervals of T�2�B /L. His proof is similar to
ori’s proof for the Fresnel case, though he does not ref-
rence [30]. Both Gori’s and Xia’s theorems are special
ases of Ding’s. This LCT sampling theorem was later in-
ependently derived by Stern [34], whose proof differs
rom Ding’s. Stern uses the Poisson formula for the comb
unction to derive the LCT of a sampled signal, which he
hows consists of modulated, periodic copies of the LCT of
he original, continuous signal, a property referred to as
chirp periodicity.” If the LCT of the continuous signal has
ompact support at least approximately over a finite
ange, and if the sampling rate used is sufficient to pre-
ent the replicas from overlapping, it is possible to extract
ne copy from among the replicas using an appropriate
lter. Deng et al. [35] published a derivation of the same
heorem almost simultaneously with that of Stern (the
wo papers being submitted less than three weeks apart).
heir approach was to derive the convolution and multi-
lication theorems for the LCT and then calculate the
CT of the product of an arbitrary function and a train of
elta functions. Like Stern, they showed that the LCT of a
ampled signal consists of modulated, periodic copies of
he LCT of the original, continuous signal, thus arriving
t the same conclusion. While Stern approached recon-
truction as simply multiplying by a rect function in the
ppropriate domain, Deng et al. explicitly derived the
ime-domain reconstruction formula. Recently, Li et al.
36] published a proof of Ding’s theorem similar to that in
33].

The reconstruction formula, as defined by Stern, is
iven by

f�x� = TLM−1
rect� y

L�LM�f�nT���y���x�, �2�

here

rect�x� = �
1 x � 0.5

0.5 x = 0.5

0 x � 0.5
� . �3�

e note that Zhao et al. recently considered rate conver-
ion of a signal sampled using this theorem [37].

We will shortly discuss a proposal for practical use of
ing’s LCT sampling theorem. First, however, we con-

ider another proposed solution to the following impor-
ant, practical question: Given a particular wave field
hat is to propagate through a system characterized by
ome ABCD matrix, how should we sample that wave
eld and the field appearing at the system’s output? This
uestion was addressed in detail in [25] by examining the
CT’s effect on the PSD of a signal. If a signal, f�x�, has a
DF, W�f�x���x ,kx�, and an LCT, fM�y�=LM�f�x���y�, then

he WDF of fM�y� is [4]

W�fM�y���y,ky� = W�f�x���Dx − Bkx,− Cx + Akx�. �4�

his interpretation of the LCT has led to proposals for the
ransform’s use in numerical filter design [38] and proves
seful in the discussion of sampling processes. In [25], it
as assumed that f�x� had some known spatial extent and
andwidth, where these were defined as the widths in the
patial and frequency domains within which all but an ar-
itrarily small portion of the total signal power was con-
ained. This defined what Lohmann called the “space–
andwidth product shape” [39], or what more recent
iterature refers to as the signal’s PSD. This appears as a
ectangle in phase space subtending a portion of the WDF
n which most of the signal’s power is localized. Total lo-
alization can be shown to be impossible mathematically
31]. Equation (4) describes the effect an LCT has on a
ignal’s WDF, transforming the initially assumed rect-
ngle into a parallelogram. Lohmann used this to deter-
ine the effect of LCTs on a PSD. In [25], the resulting
SD parallelogram is used to define an extent and band-
idth for the transformed signal, and it is also applied to

racking the evolution of the PSD as the signal passes
hrough an optical system or as it is processed in an algo-
ithm based on decomposition of the LCT into simpler
ransforms. However, the sampling criterion established
n [25] is not sufficient. A second criterion was recently
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dded to allow for the effect of discretization of both the
nput and the output domains [21].

We now consider a recently proposed sampling method-
logy [22,23] that makes use of Ding’s LCT sampling
heorem rather than Shannon sampling. There are ben-
fits to this approach in terms of the number of samples
ypically used to describe the signal. The only drawback
o the approach is that the reconstruction filter is more
omplex than for the methodology considered in the pre-
eding paragraph. As before, it is assumed that a wave
eld has some known spatial extent, but the second as-
umption here is not finite bandwidth but finite support
n the LCT domain in question. The LCT of a signal so
ampled consists of modulated replicas of the LCT of the
ontinuous signal. This signal is then sampled, once again
sing Ding’s theorem. The sampling rate for the first sam-
ling operation depends on the extent of the LCT of the
ignal, while the sampling rate for the second depends on
he extent of the signal itself. This greatly simplifies the
ampling requirements, as the input signal’s extent is
sually well known, leaving just one parameter, the out-
ut width, to adjust. Unlike the methodology of [25], no
dditional calculations are required to establish addi-
ional parameters. We will discuss this in greater detail in
ubsection 2.B, where we discuss the DLCT.

. Defining the DLCT
n this section, we first introduce the definition of the
LCT used in this paper. We also review the DLCT pro-
osed in [22,23], contrasting and comparing it with the
ne used here. It should be noted that regardless of the
dvantages of the two different DLCT definitions, the di-
ect algorithms developed here and in [19] are compatible
ith both.
In this paper, we use the same definition for the DLCT

s was used in [19], which is equivalent to the DLCT de-
ned by Pei and Ding in [18]. For a discrete function f,
onsisting of N samples, at a sampling rate T in the input
omain and Ty=�T in the output domain, the DLCT is as
ollows,

D	
��
T,N�g�nT���mTy� =� �

2�
exp�− j�

4 � �
n=−N/2

�N/2�−1

g�nT�WN
n,m,

�5a�

here

WN
n,m = exp�j��
�nT�2 − 2nm/N + ��m/NT��2��. �5b�

n this equation, we have taken the range of the input
eld to be zero centred in accordance with the convention
or optical systems with a principal axis. However, we will
odify this using the appropriate shift theorem so that

he range of n is from 0 to N−1 in order to simplify the
erivation of the algorithm. This convention is typical for
FT algorithms, as the signal processing community most
ommonly deals with temporally varying signals. This
efinition of the DLCT uses the parameters 
, �, and �
nstead of the ABCD parameters, but these are trivially
quivalent [4]. In [20], it is described how to set the vari-
us output parameters (range, bandwidth, etc.) by alter-
ng the sampling rate and/or zero padding at the input.
As noted, an alternative definition of the DLCT was
rst proposed in [22] and then independently in [23]. In
23], the merits of this alternative definition are dis-
ussed. We now contrast and compare this new DLCT
ith that previously defined by Pei and Ding [18], the lat-

er definition being the definition of choice thus far for di-
ect FLCT algorithms. The literature to date on
ecomposition-based algorithms, e.g., [24], has not explic-
tly used a DLCT, but we believe the formulas implicit in
hose algorithms are essentially of the form of the DLCT
f [18]. Accordingly, this discussion may also have rel-
vance for those algorithms. One consequence of the sam-
ling methodology of [22,23] is that the output samples
ust be recovered in a fashion consistent with the sam-

ling theorem used. If the signal is be interpolated, LCT-
pecific rate conversion methods [37] should be used.
owever, we note that it is also possible to make such

ampling assumptions for the DLCT of Pei and Ding. We
laim that this sampling methodology [22,23] uses far
ewer parameters, i.e., variables that must be chosen by
he user, than that of [21,25] and furthermore should
ypically result in a significantly lower number of
amples. For these reasons, we believe it may become the
tandard method used in this field. We now justify both of
hese claims.

As we briefly mentioned in the section on sampling
Subsection 2.A), the most important features of both
LCT definitions are illustrated by the PSD analysis

hown in Fig. 1 and Fig. 2. Figure 1 illustrates the sam-
ling process of [25], where we begin with the assumption
hat the signal approximately has some finite bandwidth.
ogether with the width of the input, this defines the in-
ut rectangle in Fig. 1(a). By way of contrast, Fig. 2,

ig. 1. Sampling according to [25]. (a) The signal is assumed to
e bounded in space, x, and in the Fourier domain, k. (b) The sig-
al is sampled at a rate not less than the Nyquist rate, making it
eriodic (but not overlapping) along the frequency axis (dashed
ines indicate replicas). For convenience, only the two closest rep-
icas are shown. (c) An LCT operation is performed on the dis-
rete signal. (d) The transformed signal is sampled (gray lines in-
icate replicas created by this process). Note the irregularity of
he replicas, which may complicate recovery of the continuous
ignal from the samples or even introduce aliasing effects for
ome choices of sampling rates as described in [21]. In this case,
t is clear that if we include more replica terms from the first
ampling operation, there will be some overlap with the zeroth-
rder term.
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hich illustrates the process of [22,23], begins with an as-
umption of finite width of the LCT, resulting in the par-
llelogram of Fig. 2(a). In both processes, the signal is
ampled [parts (b)], the LCT of this sampled signal is ob-
ained [parts (c)], and the resulting transformed signal is
ampled [parts (d)]. We note that the process described in
ig. 2 does not occur in the same order as described in

23]. In that paper, it is assumed that the signal to be
ampled is chirp periodic, while our discussion, somewhat
ike that of [22], considers all periodicity to arise from the
wo sampling operations. However, we note that the de-
criptions are completely equivalent. The sampling pro-
ess of [22,23] and Fig. 2 is defined in such a way that the
pattern” of replicas is automatically orderly; i.e., if both
he sampling operations are performed at exactly the gen-
ralized Nyquist rates given by Ding’s theorem, the repli-
as will completely cover the phase space plane without
ny overlap. This reduces the number of samples used to
epresent the signal, resulting in consequent benefits in
erms of computation time.

The area of the parallelogram chosen using the Stern
ethodology [22,23], like that of the rectangle chosen us-

ng [25], i.e., the space–canonical width product and the
pace–bandwidth product (SBP), both indicate the infor-
ation content of the signal. These areas may be similar

or a given signal or vary considerably, depending on the
tructure of the signal’s WDF. Without making further as-
umptions about the structure of the WDF, we must con-
lude that whichever measure is greater is random. If the
utput SBP is greater than that of the input (and it must
e not less than it if we assume a rectangular input PSD),
he larger number of samples must be used to perform the
omputation. In that case, the methodology of [25] will
ypically use more samples than that of [22,23]. We note
hat while there may be signals for which this is not the

ig. 2. Sampling according to [22,23]. (a) The signal is assumed
o be bounded in space and in the output linear canonical do-
ain. (b) The signal is sampled at a rate not less than that given

y Ding’s LCT sampling theorem, making it periodic along the
requency axis (dashed lines indicate replicas). For convenience,
nly the two closest replicas are shown. (c) An LCT operation is
erformed on the discrete signal. (d) The transformed signal is
ampled (gray lines indicate replicas created by this process).
ote the regularity of the replicas—a consequence of the bounds

hosen for the original signal. These diagrams have been scaled
o provide clearer illustration, but this does not alter the
rgument.
ase, the additional burden imposed by [21] means that
22] is likely to remain more efficient than [25] even in
hese special cases.

There is also an important practical advantage to
22,23] in terms of ease of use. Given a wave field that is
o be sampled and then transformed according to [21,25],
e must first estimate that signal’s width and bandwidth.
hese are multiplied to determine the number of samples
eeded to represent the signal, i.e., the input signal’s SBP.
e must then perform a pair of matrix multiplications to

etermine the corresponding parameters for the output
ave field. The larger of the two numbers of samples de-

ermines the number of samples used in the calculation.
areful consideration must then be made of how to best
hoose parameters such as the output extent [20]. In con-
rast, given a wave field that is to be sampled and trans-
ormed according to [22,23], we need only estimate its in-
ut width and the width of the output wave field. All
ther considerations are then automatically taken care of.
his is similar to the operation of the DFT, where the
idth of the input signal defines the sampling rate of the
utput and vice versa. The simplicity of [22,23] and its
onsistency with the operation of the DFT offers a clear
dvantage over [21,25].
The elements of the DLCT matrix in [23] are indepen-

ent of the sampling rates in the input and output planes
f the optical system, i.e., the LCT domains. They depend
n the product of these sampling rates, which product is
roportional to the number of samples used. We note that
his is achieved by scaling the signal such that it has the
ame width as its transform. It is interesting to compare
his procedure with the prescaling operation used in Koç
t al.’s decomposition-based LCT algorithms [24] and the
ohmann–Rhodes light tube model for Fresnel trans-

orms [40], both of which similarly scale the input. In the
articular case of the FT, the fact that the matrix does not
epend on the sampling rates is significant in one regard:
t facilitates optimization of FFT algorithms. This is be-
ause we may optimize code or hardware for a particular
umber of samples, e.g., 2048 [41]. These algorithms typi-
ally contain many multiplications of the data by con-
tants, which can be hard coded (or wired). In the case of
he LCT, the elements of the transform matrix depend on
he transform parameters and so cannot be similarly hard
oded/wired. Therefore, removing the dependence of the
iscrete transform matrix on the sampling rates, as is
one in [23], is of significant practical value only if one
ishes to calculate very many transforms for the same
ptical system parameters and sampling rates.

In conclusion, the sampling methodology proposed in
22] is significantly simpler and more efficient than meth-
dologies previously described in the literature. [23] modi-
es this DLCT definition [22] to allow the elements of the
iscrete transform matrix to be independent of the sam-
ling rates at the input and output. While this definition
s more consistent with the DFT, it is not in general as ad-
antageous as in that special case.

. FLCT ALGORITHMS
he first direct fast algorithm for the DLCT was pre-
ented in 2005 [19]. It involved a mixture of frequency
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nd time division. As far as we are aware, the special case
f this algorithm for the FT has not appeared elsewhere
nd may itself be of interest. Another paper, [25], pub-
ished simultaneously, reviewed many of the existing al-
orithms for calculating the FRT, the Fresnel transform,
nd the LCT and showed that they consist of a variety of
ecompositions of the ABCD matrix. It was also demon-
trated that tracking the signal PSD, and therefore the
ampling requirements, as the signal passed through the
ransform modules (corresponding to the decomposed ma-
rices) explained why many of these algorithms were pre-
iously thought to be nonunitary or even useful only over
ertain ranges of their parameters. Applying such a de-
omposition technique, an implementation [42] based on
he decomposition of the LCT into an FRT, magnification,
nd chirp multiplication has been proposed. The fast FRT
lgorithm used was one of two presented in [43], one of
hich is itself based on a decomposition of the FRT into a

hirp multiplication followed by a chirp convolution fol-
owed by another chirp multiplication. The other FRT al-
orithm in [43] uses an FFT-based convolution and a
hirpmodulation. Most recently, Koç et al. [24] exhaus-
ively analyzed decomposition-based algorithms and pro-
osed that only two be used, with the decision between
hem depending on the ABCD parameter values. As
oted, that paper also proposed the use of a prescaling
ethod that permitted a determination of the sampling

ates for these algorithms.

. FREQUENCY DIVISION FLCT
LGORITHM

n this section, we present a fast algorithm with more
exibility in the number of samples with which it can op-
rate than that discussed in [19]. We derive a general ra-
ix decimation-in-frequency fast algorithm to calculate
he DLCT in the style of the Sande–Tukey FFT algorithm
44]. Later, in Section 5, we present results produced by
n implementation of this algorithm for radix 2, which al-
ows vector lengths of size 2n to be transformed, where n
s any integer. As the radix-2 algorithm, this implementa-
ion is no more flexible than that presented in [19], but
ecause the algorithm is derived for an arbitrary radix, it
s possible to implement it for any prime radix p, i.e., pn

amples. Concatenations of such algorithms are then suf-
cient to calculate the DLCT of almost any vector length

though we note that in practice, some nonprime blocks
re also used in FFT implementations, as discussed in
45]). For example, additional implementations of radix 3
nd radix 5 would allow the decomposition of any DLCT
f a vector whose length, N, had prime factors 2, 3, and 5.
hus, for example, 1440 samples could be implemented as
ne radix-5 decimation, followed by two uses of a radix-3
mplementation and five stages using the radix-2 algo-
ithm. Using just a handful of different radices permits
ignificantly more flexibility in choosing the number of
amples than is the case when using a single-radix algo-
ithm. This can provide considerable computational sav-
ngs.

It is more difficult to deal with a prime number of
amples. For the case of the FT, several O�N log N� algo-
ithms are known for N prime, the earliest of which is due
o Rader [46]. However, as yet, no prime-radix algorithm
s known for the LCT. This remains a subject of interest,
t least from the theoretical perspective of computer sci-
nce.

We begin by defining the DLCT, in Eq. (6). This differs
rom the definition in Eq. (5a) and (5b) only in the range
f the sum (which we now take from 0 to N−1) and in that
e have, for brevity, replaced the operator notation and

he sampled input by discrete input and output se-
uences. The former change simplifies the analysis some-
hat, and both produce forms closer to the conventional
otation used in signal processing for the FFT. Further-
ore, the LCT-shifting theorems allow us to efficiently

onvert the result in Eq. (6) to a zero centered one, in an
�N� calculation:

L�m� =� �

2�
exp�− j�

4 ��
n=0

N−1

f�n�WN
n,m. �6�

For simplicity, we neglect the �� /2�exp�−j� /4� term in
he derivation below, as it does not affect the derivation.
e assume that the number of samples, N, is nonprime;

.e., there exist integers r and s such that N=rs. We refer
o r as the radix of the algorithm. We define sequences
0, f1 . . . fi . . . fr−1 of index 0�n�N /r such that

fi�n� = f�n + iN/r�. �7�

his allows us to rewrite the expression for L�m� in terms
f r smaller sums

L�m� = �
n=0

�N/r�−1

�
i=1

r

fi�n�WN
n+iN/r,m. �8�

e note that

WN
n+iN/r,m/WN

n,m = �1�2,

here

�1 = exp�− j2�im/r�,

nd

�2 = exp�j�
�N/r�iT2�2n + iN/r��. �9�

ubstituting back into Eq. (8), we get

L�m� = �
n=0

�N/r�−1

�
i=0

r−1

�1�2fi�n�WN
n,m. �10�

e note that �1 is a function of m. We define the se-
uences L0 ,L1 ,L2 . . . Lc . . . Lr−1, of index 0�m�N /r
uch that

Lc�m� = L�rm + c�. �11�

e also note the identity,

WN
n,m = WpN

n,pm, �12�

hich holds true for any constant p. This identity is used
n many FFT algorithms, as is the equivalent scaling of n
nd N. However, the latter scaling is not true for the
LCT kernel, unless we also scale T, the input sampling
eriod. This has implications for a decimation-in-time
LCT algorithm, which therefore can be implemented
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nly by altering the LCT parameters at each stage to
ounteract the magnification implicit in scaling T. This
ccurs because, unlike the FT, the shape of an LCT varies
ith magnification of the input. Using Eq. (12), we obtain

L�m� = �
n=0

�N/r�−1

�
i=0

r−1

�1�2fi�n�WN/r
n,m/r. �13�

o proceed, we first define

k = �m − c�/r, �14�

nd we note that

�3�4 = WN
n,k+c/r/WN

n,k, �15�

here �3 and �4 are defined as follows:

�3 = exp�− j2�nc/rN�,

�4 = exp�j��c�2kr + c�/�NT�r�2�. �16�

quation (13) is rewritten as

Lc�k� = �4 �
n=0

�N/r�−1

�
i=0

r−1

�1�2�3fi�n�WN/r
n,k . �17�

hile �1 is a function of m, and therefore of k, we note
hat for a given c, it is constant. Specifically, it can be
ritten as

�1 = exp�− j2�c/r�. �18�

or the purposes of clarity, we define a new sequence as
ollows:

fc��n� = �
i=0

r−1

fi�n��1�2�3. �19�

ubstituting into Eq. (18), we get

Lc�m� = �4 �
n=0

�N/r�−1

fc��n�WN/r
n,k . �20�

Thus, we can calculate the DLCT of a length N series of
amples as the weighted sum of r-size N /r sequences.
erforming this recursively allows us to calculate the
verall DLCT in O�N log N� time.

We believe, in agreement with [22], that it is possible to
valuate Stern’s DLCT using this algorithm with only mi-
or modification.

. NUMERICAL RESULTS
n this section, we present some illustrative results calcu-
ated using an implementation in C [47] of the radix-2
ase of the algorithm considered in Section 4. We compare
he output of this program with a MATLAB [48] imple-
entation of the naïve O�N2� implementation of the
LCT to determine whether any effects are introduced by

he fast algorithm. We also compare the numerical results
o the corresponding analytic expression to confirm that
he algorithm satisfactorily approximates the continuous
ransform.

First, we derive an analytical result with which to com-
are the output of the algorithm. An on-axis plane wave
mpinges upon a rectangular aperture of arbitrarily cho-
en width 9.96 cm (chosen to give around 102 samples at
024 samples/m) before propagating through a lens sys-
em with an ABCD matrix, which yields LCT parameters
=636.619249, �=636.620034, and �=636.619249. This
an be implemented using a single lens, but implementa-
ions are outside the scope of this paper. We also assume
=1 (the effect of the wavelength is simply to alter the pa-
ameters, so this is not particularly significant). Math-
matica [49] produces the following analytic solution:

LM�y� = k exp�− jly2��erfi��1 + j��m − ny��

+ erfi��1 + j��m + ny���, �21�

here the constants are k=1.05839�1− j��10−4, l
4.34991�108, m=219.922, and n=16102.6. The magni-

ude and phase of Eq. (21) are illustrated in Figs. 3(a) and
(b), respectively. Figure 3(b) shows only the central tenth
f the phase. This is to facilitate direct comparison with
he discrete approximations only in the unwrapped seg-
ent of the phase, as use of phase unwrapping software
ould introduce errors that are not of interest in this pa-
er.
In Fig. 4, we compare Eq. (21) with the numerical ap-

roximation of the equation performed using a DLCT in
ATLAB, using 2048 samples. Figure 4(a) shows the

hase error over the same range as before. The phase er-

ig. 3. (a) Amplitude and (b) wrapped phase of the LCT for pa-
ameters 
=636.619249, �=636.620034, and �=636.619249 of a
D rectangular aperture of width w=9.96 cm, determined ana-
ytically. �=1.
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or is of the order of 10−4 rad. We note that increasing the
ampling rate used or zero padding the input reduced this
rror. Figure 4(b) shows the magnitude error as a percent-
ge of the y=0 term of the DLCT result. In the central re-
ion, where most of the power is concentrated, the error is
f the order of 0.1%. This grows toward the edges to about
.75%. Displaying the discrete and analytic results on the
ame graph, we see that the discrete result is tending to
ero faster than the analytic function. If we were to cal-
ulate the LCT over a wider window, we would expect to
ee the error saturate as the discrete function approached
ero and eventually decrease as the analytic function also
pproached zero. Adjusting the input slightly presents
ases where the period of the sidelobes differs between
he discrete and analytic cases, resulting in a less struc-
ured error. However, there is consistently some error to-
ard the edges of the result. If we compare the analytic
ourier transform of the input rect function with the out-
ut of MATLAB’s FFT function, we see similar results,
nd we conclude that the discrepancies are due to alias-
ng. We conclude that if the DFT satisfactorally approxi-

ates the FT, then the DLCT satisfactorily approximates
he LCT.

In order to ascertain whether the algorithm produces
nacceptable errors, Fig. 5 compares the corresponding
olutions resulting from the O�N2� DLCT algorithm with
he radix-2 FLCT implementation derived in Section 4.
igure 4(a) shows the phase error. We note that the peak

ig. 4. (Color online) Comparison between the analytic result of
ig. 4 and the same calculation approximated using the discrete
CT. (a) Magnitude error, expressed as a percentage of the value
t zero of the discrete output. (b) Phase error.
rrors are of the order of 10−3 rad. Figure 4(b) shows the
agnitude error as a percentage of the dc value of the

utput. We note that the peak errors are of the order of
.1%. We conclude that the fast algorithm evaluates the
LCT with acceptably small deviations. It is unclear to
hat extent these errors are intrinsic to the algorithm
nd to what extent they depend on the implementation,
ut that discussion is beyond the scope of this paper.

. CONCLUSION
e have reviewed in detail the literature pertaining to

umerical approximation of the linear canonical trans-
orm (LCT) for simulation of quadratic phase systems. We
ave derived an O�N log N� algorithm of arbitrary radix
or evaluating the discrete LCT (DLCT). We have pre-
ented the results of a radix-2 implementation of this fast
CT (FLCT) algorithm, confirming that it adequately
valuates the DLCT and also adequately approximates
he continuous LCT.

Based on the current state of the literature, we believe
hat the theory of numerically approximating the LCT
as reached a point comparable to that of the FT in 1965,
hen Cooley and Tukey published their celebrated paper

50]. The DLCT is now well defined, a reasonably mature
heory exists for sampling and for the discrete form of the
ransformation, and early fast algorithms exist. To date,
owever, no prime-length algorithm is known. The field is

ig. 5. (Color online) Comparison between the result of Fig. 4
erformed using O�N2� and O�N log N� algorithms �N=2048�. (a)
hase error. (b) Magnitude error, expressed as a percentage of
he value at zero of the discrete output.
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ow well placed for computer scientists to tune the algo-
ithms and develop specific implementations comparable
o the extremes modern FFT implementations have
eached, e.g., the eccentrically named “Fastest FFT in the
est” (FFTW) [45]. The FLCT should be of immediate in-

erest in optical-system-design software, where ray trac-
ng dominates because of its flexibility and relative ease of
omputation. The improved speed of, and reduced compu-
ational requirements for, such scalar diffraction algo-
ithms will further lower the barrier to more frequent use
f such models. Furthermore, we note also that the exist-
ng theory may be modified to handle lossy systems (non-
ymplectic ABCD matrices). As 40 years of research in
igital signal processing and computer science has not ex-
austed the potential for further refinement of FFT algo-
ithms, e.g., [51–53], it appears to be simply a matter of
hether the FLCT can now attract the attention the FFT

ontinues to receive.
As noted in the text, in relation to optical systems, one

venue of research that appears to have been neglected to
ate is the simulation of systems that are nonorthogonal,
.e., that are not separable in the two spatial dimensions
nd so cannot be modeled using the known 1D algo-
ithms. It would be useful either to find a means of adapt-
ng the 1D algorithms to perform such operations or to de-
ive a specifically 2D algorithm, starting with a 2D LCT
hat does not assume orthogonality. Another area of inter-
st is the search for a fast algorithm for calculating the
CT using polar coordinates. The special case of this for
he FT remains an area of active research [54].
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