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Abstract

The Baire metric induces an ultrametric on a dataset and is of linear
computational complexity, contrasted with the standard quadratic time
agglomerative hierarchical clustering algorithm. In this work we evaluate
empirically this new approach to hierarchical clustering. We compare
hierarchical clustering based on the Baire metric with (i) agglomerative
hierarchical clustering, in terms of algorithm properties; (ii) generalized
ultrametrics, in terms of definition; and (iii) fast clustering through k-
means partititioning, in terms of quality of results. For the latter, we
carry out an in depth astronomical study. We apply the Baire distance
to spectrometric and photometric redshifts from the Sloan Digital Sky
Survey using, in this work, about half a million astronomical objects.
We want to know how well the (more costly to determine) spectrometric
redshifts can predict the (more easily obtained) photometric redshifts, i.e.
we seek to regress the spectrometric on the photometric redshifts, and we
use clusterwise regression for this.

1 Introduction

Our work has quite a range of vantage points, including the following. Firstly,
there is a particular distance between observables, which happens to be also a
“strong” or ultrametric distance. Section [2]defines this. This same section notes
how the encoding of data is quite closely associated with the determining of the
distance.

Next, in section [3.1] we take the vantage point of clusters, and of sets of
clusters.

Finally, in section[d] we wrap up on the hierarchy that is linked to the distance
used, and to the set of clusters.



So we have the following aspects and vantage points: distance, ultrametric,
data encoding, cluster or set (and membership), sets of clusters (and their in-
terrelationships), and hierarchical clustering. Those aspects and vantage points
are discussed in the first part of this article. They are followed by case studies
and applications in subsequent sections. We have not, in fact, exhausted the
properties and aspects of our new approach. For example, among issues that
we will leave for further in depth exploration are: p-adic number representation
spaces; and hashing, data retrieval and information obfuscation.

The following presents a general scene-setting where we introduce metric
and ultrametric, we describe some relevant discrete mathematical structures,
and we note some computational properties.

1.1 Agglomerative Hierarchical Clustering Algorithms

A metric space (X, d) consists of a set X on which is defined a distance function
d which assigns to each pair of points of X a distance between them, and satisfies
the following four axioms for any triplet of points x,y, z:

Al: Vz,y € X,d(z,y) > 0 (positiveness)
A2: Va,y € X, d(z,y) =0 iff © = y (reflexivity)

A3: Yo,y € X,d(z,y) = d(y,x) (symmetry)

Ad: Vr,y, 2z € X, d(z,2) <d(z,y) + d(y, z) (triangle inequality)

When considering an ultrametric space we need to consider the strong tri-
angular inequality or ultrametric inequality defined as:

A5: d(z,z) < maz {d(z,y), d(y,2)} (ultrametric inequality)

and this in addition to the positivity, reflexivity and symmetry properties (prop-
erties Al, A2, A3) for any triple of point z,y, 2z € X.

If X is endowed with a metric, then this metric can be mapped onto an
ultrametric. In practice, endowing X with a metric can be relaxed to a dissim-
ilarity. An often used mapping from metric to ultrametric is by means of an
agglomerative hierarchical clustering algorithm. A succession of n — 1 pairwise
merge steps takes place by making use of the closest pair of singletons and/or
clusters at each step. Here n is the number of observations, i.e. the cardinality
of set X. Closeness between singletons is furnished by whatever distance or
dissimilarity is in use. For closeness between singleton or non-singleton clusters,
we need to define an inter-cluster distance or dissimilarity. This can be defined
with reference to the cluster compactness or other property that we wish to op-
timize at each step of the algorithm. In terms of advising a user or client, such



a cluster criterion, motivating the inter-cluster dissimilarity, is best motivated
in turn by the data analysis application or domain.

Since agglomerative hierarchical clustering requires consideration of pairwise
dissimilarities at each stage it can be shown that even in the case of the most
efficient algorithms, e.g. those based on reciprocal nearest neighbors and nearest
neighbor chains [20], O(n?) or quadratic computational time is required. The
innovation in the work we present here is that we carry out hierarchical cluster-
ing in a different way such that O(n) or linear computational time is needed.
As always in computational theory, these are worst case times.

A hierarchy, H, is defined as a binary, rooted, node-ranked tree, also termed
a dendrogram [2], [17, 18, [20]. A hierarchy defines a set of embedded subsets of a
given set of objects X, indexed by the set I. These subsets are totally ordered
by an index function v, which is a stronger condition than the partial order
required by the subset relation. A bijection exists between a hierarchy and an
ultrametric space.

Let us show these equivalences between embedded subsets, hierarchy, and
binary tree, through the constructive approach of inducing H on a set I.

Hierarchical agglomeration on n observation vectors with indices ¢ € I in-
volves a series of 1,2,...,n — 1 pairwise agglomerations of observations or clus-
ters, with properties that follow.

In order to simplify notation, let us use the index i to represent also the
observation, and also the observation vector. Hence for i = 3 and the third — in
some sequence — observation vector, x; = x3, we will use ¢ to also represent x;
in such a case.

A hierarchy H = {q|q € 2} such that (i) I € H, (ii) i € H Vi, and (iii) for
eachq € Hq € H:qNqg # 0 = q C ¢ or ¢ Cq. Here we have denoted
the power set of set I by 2/. An indexed hierarchy is the pair (H,v) where the
positive function defined on H, i.e., v : H — R™, satisfies: v(i) =0 if i € H is
a singleton; and (ii) ¢ C ¢ = v(q) < v(¢’). Here we have denoted the positive
reals, including 0, by R*. Function v is the agglomeration level. Take q C ¢
and ¢’ C ¢”, and let ¢’ be the lowest level cluster for which this is true. Then
if we define D(q,q') = v(¢"”), D is an ultrametric.

In practice, we start with a Euclidean or alternative dissimilarity, use some
criterion such as minimizing the change in variance resulting from the agglom-
erations, and then define v(q) as the dissimilarity associated with the agglom-
eration carried out.

2 Baire or Longest Common Prefix Distance

Agglomerative hierarchical clustering algorithms are constructive hierarchy-constructing
algorithms. Such algorithms have the aim of mapping data into an ultrametric
space, or searching for an ultrametric embedding, or ultrametrization [30].

Now, inherent ultrametricity leads to an identical result with most commonly
used agglomerative criteria [20]. Furthermore, data coding can help greatly
finding how inherently ultrametric data is [2I]. In certain respects the hierarchy



determined by the Baire distance can be viewed as a particular coding of the
data because it seeks longest common prefixes in pairs of (possibly numerical)
strings. We could claim that determining the longest common prefix is a form
of data compression because we can partially express one string in terms of
another.

2.1 Ultrametric Baire Space

A Baire space consists of countably infinite sequences with a metric defined in
terms of the longest common prefix: the longer the common prefix, the closer a
pair of sequences. What is of interest to us here is this longest common prefix
metric, which we call the Baire distance [26], [6].

Consider real-valued or floating point data (expressed as a string of digits
rather than some other form, e.g. using exponent notation). The longest com-
mon prefixes at issue are those of precision of any value. For example, let us
consider two such values, z; and y;, with ¢ and j ranging over numeric digits.
When the context easily allows it, we will call these x and y.

Without loss of generality we take z and y to be real-valued and bounded
by 0 and 1.

Thus we consider ordered sets xj and yi, for £ € K. In line with our notation,
we can write zp and y for these numbers, with the set K now ordered. So,
k =1 is the first decimal place of precision; k = 2 is the second decimal place;
. . . ; k=|K] is the |K|th decimal place. The cardinality of the set K is the
precision with which a number, xj, is measured.

Take as examples x = 0.478; and y; = 0.472. In these cases, |[K| = 3. Start
from the first decimal position. For k = 1, we find =y = yx = 4. For k = 2,
T = yr - But for k = 3, xx # yk-

We now introduce the following distance (case of vectors x and y, with 1
attribute, hence unidimensional):

1 if I 7é Y1
ds (w1, yxc) = { inf 27F o=y, 1<k<I|K| (1)
We call this dg value Baire distance, which is seen to be an ultrametric [21], 22]
23, 241, 26] distance.
Note that the base 2 is given for convenience. When dealing with binary
data x,y, then 2 is the chosen base. When working with real numbers the base
can be redefined to 10 if needed.

2.2 Constructive Hierarchical Clustering Algorithm ver-
sus Hierarchical Encoding of Data

The Baire distance was introduced and described by Bradley [4] in the context of
inducing a hierarchy on strings over finite alphabets. This work further pursued
the goal of embedding a dendrogram in a p-adic Bruhat-Tits tree, informally
characterized as a “universal dendrogram?”.



By convention we denote a prime by p, and a more general, prime or non-
prime, positive integer by m.

A geometric foundation for ultrametric structures is presented in Bradley
[3]. Starting from the point of view that a dendrogram, or ranked or unranked,
binary or more general m-way, tree, is an object in a p-adic geometry, it is
noted that: “The consequence of using p-adic methods is the shift of focus
from imposing a hierarchic structure on data to finding a p-adic encoding which
reveals the inherent hierarchies.”

This summarizes well our aim in this work. We seek hierarchy and rather
than using an agglomerative hierarchical clustering algorithm which is of quadratic
computational time (i.e., for n individuals or observation vectors, O(n?) com-
putational time is required) we instead seek to read off a p-adic or m-adic tree.
In terms of a tree, p-adic or m-adic mean p-way or m-way, respectively, or that
each node in the tree has at most p or m, respectively, sub-nodes.

Furthermore, by “reading off” we are targeting a linear time, or O(n) al-
gorithm involving one scan over the dataset, and we are imposing thereby an
encoding of the data. (We recall that n is the number of observations, or cardi-
nality of the observation set X.)

In practice we will be more interested in this work in the hierarchy, and
the encoding algorithm used is a means towards this end. For a focus on the
encoding task, see [25].

3 The Set of Clusters Perspective

3.1 The Baire Ultrametric as a Generalized Ultrametric

While the Baire distance is also an ultrametric, it is interesting to note some links
with other closely related data analysis and computational methods. We can,
for example, show a relationship between the Baire distance and the generalized
ultrametric, which maps the cross-product of a set with itself into the power
set of that set’s attributes. A (standard) ultrametric instead maps the cross-
product of a set with itself into the non-negative reals. We pursue this link with
the generalized ultrametric in section

We also discuss the data analysis method known as Formal Concept Analysis
as a special case of generalized ultrametrics. This is an innovative vantage point
on Formal Concept Analysis because it is usually motivated and described in
terms of lattices, which structure the data to be analyzed. We pursue this link
with Formal Concept Analysis in section [3.1.2

We note that agglomerative hierarchical clustering, expressed as a 2-way (or
“binary”) tree, has been related to lattices by, e.g., Lerman [I8], Janowitz [16],
and others.

3.1.1 Generalized Ultrametrics

In this section, our focus is on the clusters determined, and on the relationships
between them. What we pursue is exemplified as follows. Take x = 0.4578,y =



0.4538. Consider the Baire distance between x and y as (base 10) 1072. Let
us look at the cluster where they share membership — it is the cluster defined
by common first digit precision and common second digit precision. We are
interested in a set of such clusters in this section.

The usual ultrametric is an ultrametric distance, i.e. foraset I, d: I x I —
R*. Thus, the ultrametetric distance is a positive real.

The generalized ultrametric is also consistent with this definition, where the
range is a subset of the power set: d: [ x I — I, where I is a partially ordered
set with least element. See [14]. The least element is a generalized way of seeing
zero distance. Some areas of application of generalized ultrametrics will now be
discussed.

Among other fields, generalized ultrametrics are used in reasoning. In the
theory of reasoning, a monotonic operator is rigorous application of a succession
of conditionals (sometimes called consequence relations). However negation
or multiple valued logic (i.e. encompassing intermediate truth and falsehood)
requires support for non-monotonic reasoning, where fixed points are modeled
as tree structures. See [14].

A direct application of generalized ultrametrics to data mining is the fol-
lowing. The potentially huge advantage of the generalized ultrametric is that
it allows a hierarchy to be read directly off the I x J input data, and bypasses
the O(n?) consideration of all pairwise distances in agglomerative hierarchical
clustering. Let us assume that the hierarchy is induced on the observation set,
I, which are typically given by the rows of the input data matrix. In [26] we
study application to chemoinformatics. Proximity and best match finding is
an essential operation in this field. Typically we have one million chemicals
upwards, characterised by an approximate 1000-valued attribute encoding. The
set of attributes is J, and the number of attributes is the cardinality of this set,
[J].

Consider first our need to normalize the data. We divide each boolean
(presence/absence) attribute value by its corresponding column sum.

We can consider the hierarchical cluster analysis from abstract posets as
based on a distance or even dissimilarity d : I x I — RI’I. The |.J|-dimensional
reals are the domain here.

As noted in section [I} we can consider embedded clusters corresponding to
the minimal Baire distance (in definition this is seen to be 271 = 0.5).
The Baire distance induces the hierarchical clustering, and this hierarchical
clustering is determined from the Baire disances. So it is seen how the Baire
distance maps onto real valued numbers (cf. definition ) and as such is a
metric. But the Baire distance also maps onto a hierarchical clustering, i.e. a
partially ordered set of clusters, and so, in carrying out this mapping, the Baire
distance gives rise to a generalized ultrametric.

Our Baire-based distance and simultaneously ultrametric is a particular case
of the generalized ultrametric.

Figures[5]and [} to be studied below in section [6.1} show how a set of results,
related to the range set, R!7I, which are — in practice — further processed in order
to provide the cluster memberships.



3.1.2 Link with Formal Concept Analysis

We pursue the case of an ultrametric defined on the power set or join semilattice.
Comprehensive background on ordered sets and lattices can be found in [10]. A
review of generalized distances and ultrametrics can be found in [29].

Typically hierarchical clustering is based on a distance (which can be relaxed
often to a dissimilarity, not respecting the triangular inequality, and mutatis
mutandis to a similarity), defined on all pairs of the object set: d : X x X — R*.
Le., a distance is a positive real value. Usually we require that a distance cannot
be 0-valued unless the objects are identical. That is the traditional approach.

A different form of ultrametrisation is achieved from a dissimilarity defined
on the power set of attributes characterising the observations (objects, individ-
uals, etc.) X. Here we have: d : X x X — 27, where J indexes the attribute
(variables, characteristics, properties, etc.) set.

This gives rise to a different notion of distance, that maps pairs of objects
onto elements of a join semilattice. The latter can represent all subsets of the
attribute set, J. That is to say, it can represent the power set, commonly
denoted 27, of J.

As an example, consider, say, n = 5 objects characterised by 3 boolean
(presence/absence) attributes, shown in Figure [1| (top). Define dissimilarity
between a pair of objects in this table as a set of 3 components, corresponding
to the 3 attributes, such that if both components are 0, we have 1; if either
component is 1 and the other 0, we have 1; and if both components are 1 we
get 0. This is the simple matching coefficient. We could use, e.g., Euclidean
distance for each of the values sought; but here instead we treat 0 values in
both components as signalling a 1 contribution (hence, 0 is a data encoding of
a property rather than its absence). We get then d(a,b) = 1,1,0 which we will
call d1,d2. Then, d(a,c) = 0,1,0 which we will call d2. Etc. With the latter,
d1,d2 here, d2, and so on, we create lattice nodes as shown in the middle part
of Figure[I] So, note in this figure, how the order relation holds between d1,d2
at level 2 and d2 at level 1.

In Formal Concept Analysis [10, [12], it is the lattice itself which is of primary
interest. In [16] there is discussion of, and a range of examples on, the close
relationship between the traditional hierarchical cluster analysis based on d :
I x I — RT, and hierarchical cluster analysis “based on abstract posets” (a
poset is a partially ordered set), based on d : I x I — 27. The latter, leading to
clustering based on dissimilarities, was developed initially in [15].

Thus, in Figure [l we have d(a,b) — d1,d2, (a,f) — d1,d2, d(a,e) —
d2,d3, and so on. We note how the d1,d2 etc. are sets that are subsets of the
power set of attributes, 2.
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Figure 1: Top: example data set consisting of 5 objects, characterized by 3
boolean attributes. Then: lattice corresponding to this data and its interpreta-
tion.



4 A Baire-Based Hierarchical Clustering Algo-
rithm

We have discussed Formal Concept Analysis as a particular case of the use
of generalized ultrametrics. We noted that a nice feature of the generalized
ultrametric is that it may allow us to directly “read off” a hierarchy. That in
turn, depending of course on the preprocessing steps needed or other properties
of the algorithm, may be computationally very efficient.

Furthermore, returning further back to section [2.1] we note that the ultra-
metric Baire space can be viewed in a generalized ultrametric way. We can view
the output mapping as being a restricted subset of the power set of the set K of
digits of precision. Alternatively expressed, the output mapping is a restricted
subset of the power set, 2. Why restricted? — because we are only interested
in a longest common prefix sequence of identical digits, and not in the sharing
of any arbitrary precision digits.

A straightforward algorithm for hierarchical clustering based on the Baire
distance, as described in section [2.1]is as follows. Because of working with real
numbers in our case study below, we define the base in relation as 10 rather
than 2.

For the first digit of precision, & = 1, consider 10 “bins” corresponding
to the digits 0,1,...,9. For each of the nodes corresponding to these bins,
consider 10 subnode bins corresponding to the second digit of precision, k = 2,
associated with 0,1,...,9 at this second level. We can continue for a third and
further levels. In practice we will neither permit nor wish for a very deep (i.e.,
with many levels) storage tree. For the base 10 case, it is convenient for level
one (corresponding to k = 1) to give rise to up to 10 clusters. For level two
(corresponding to k = 2) we have up to 100 clusters. We see that in practice
a small number of levels will suffice. In one pass over the data we map each
observation (recall that it is univariate but we are using its ordered set of digits,
i.e. ordered set K) to its bin or cluster at each level. For £ levels, the computation
required is n - ¢ operations. For a given value of ¢ we therefore have O(n)
computation — and furthermore with a very small constant of proportionality
since we are just reading off the relevant digit and, presumably, updating a node
or cluster membership list and cardinality.

5 Astronomical Case Study

5.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) [28] is systematically mapping the sky
producing a detailed image of it and determining the positions and absolute
brightnesses of more than 100 million celestial objects. It is also measuring the
distance to a million of the nearest galaxies and to a hundred thousand quasars.
The acquired data has been openly given to the scientific community.

Figure [2] depicts the SDSS Data Release 5 for imaging and spectral data.



For every object a large number of attributes and measurements are acquired.
See [I] for a description of the data available in this catalog.

Imaging

Figure 2: Distribution in the sky of the SDSS Data Release 5 [1]].

In particular we use the data that has been studied by Longo group [I9] and
used intensively by Longo and D’Abrusco [7, 8 [9].

5.2 Doppler Effect and Redshift

Light from moving objects will appear to have different wavelengths depending
on the relative motion of the source and the observer. On the one hand we
have that if an object is moving towards an observer, the light waves will be
compressed from the observer viewpoint, then the light will be shifted to a
shorter wavelength or it will appear to be blue shifted. On the other hand if the
object is moving away from the observer, the light wavelength will be expanding,
thus red shifted. This is also called Doppler effect (or Doppler shift) named after
the Austrian physicist Christian Doppler, who first described this phenomenon
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in 1845. A very important piece of information obtained in cosmology from the
Doppler shift is to know if an object is moving towards or away from us, and
the speed at which this is happening.

Spectrometric measurement of redshift: under certain conditions all
atoms can be made to emit light, doing so at particular wavelengths, which
can be measured accurately. Chemical compounds are a combination of dif-
ferent atoms working together. Thus, when measuring the precise wavelength
at which a particular chemical radiates we are effectively obtaining a signature
of this chemical. These emissions are seen as lines (emission or absorption) in
the electromagnetic spectrum. For example, hydrogen is the simplest chemical
element with atomic number 1, and also is the most abundant chemical in the
universe. Hydrogen has emission lines at 6562.8 A, 4861.3 A, 4340 A, 4102.8
A, 4102.8 A, 3888.7 A, 3834.7 A and 3798.6 A (where A is an Angstrom equal
to 1071%m). If the spectrum of a celestial body has emission lines in these
wavelengths we can conclude that hydrogen is present there.

Photometric measurement of redshift: sometimes obtaining spectro-
metric measurements can be very difficult due to the large number of objects
to observe or because the signal is too weak for the current spectrometric tech-
niques. A redshift estimate can be obtained using large/medium band photom-
etry instrumentation instead of spectrometric. This technique is based on the
identification of strong spectral features. This is much faster than spectrometric
measurement but also of lesser quality and precision [I1].

Hence the context of our clustering work is to see how well the more easily
obtained photometric redshifts can be used as estimates for the spectrometric
redshifts that are obtained with greater cost. We limit our work here to the fast
finding of clusters of associated photometric and spectrometric redshifts. In
doing so, we find some interesting new ways of finding good quality mappings
from photometric to spectrometric redshifts with high confidence.

6 Inducing a Hierarchy on the SDSS Data using
the Baire Ultrametric

The aim here is to build a mapping from zspec —> Zphot to help calibrating
the redshifts, based on the zg,c. observed values. Traditionally we could map
f i Zphot —> Zspec based on trained data. That is to say, having set up the
calibration, we determine the higher quality information from the more read-
ily available less high quality information. The mapping f could be linear
(e.g. linear regression) or non-linear (e.g. multilayer perceptron) as used by
D’Abrusco [9]. These techniques are global. Here our interest is to develop
a locally adaptive approach based on numerical precision. That is the direct
benefit of the (very fast, hierarchical) clustering based on the Baire distance.

We look specifically into four parameters: right ascension (RA), declination
(DEC), spectrometric (zspec) and photometric (zprot) redshift. Table[I] shows a
small subset of the data used for experimentation and analysis.
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As already noted the spectrometric technique uses the spectrum of electro-
magnetic radiation (including visible light) which radiates from stars and other
celestial objects. The photometric technique uses a faster and economical way
of measuring the redshifts.

’ RA { DEC { Spec { Phot ‘
145.4339 0.56416792 | 0.14611299 | 0.15175095
145.42139 | 0.53370196 | 0.145909 0.17476539
145.6607 | 0.63385916 | 0.46691701 | 0.41157582
145.64568 | 0.50961215 | 0.15610801 | 0.18679948

Table 1: Data format for right ascension, declination, zgpec and zppot.

6.1 Clustering SDSS Data

We use clustering to support a nearest neighbor regression. Hence we are inter-
ested in the matching up to some level of precision between pairs of zspe. and
Zphot Values that are assigned to the same cluster.

In order to perform the clustering process introduced in section and fur-
ther described in {4} we compare every zspe. and zphot data point searching for
common prefixes based on the longest common prefix (see section . There-
after, the data points that have digit coincidences are grouped together to form
clusters.

Data characterisation is presented in Figure [3] The left panel shows the
Zspee and zZphot sky coordinates of the data currently used by us to cluster
redshifts. This section of the sky presents approximately 0.5 million object
coordinate points with the current data. As can be observed, various sections of
the sky are represented in the data. We find this useful since preliminary data
exploration has shown that correlation between zspec and zppor is consistent in
different parts of the sky. For example, when taking correspondences between
Zspec aNd Zphot as shown in Figures [5| and @ and plotting them in RA and DEC
space (i.e. astronomical coordinate space) we have the same shape as presented
in Figure

This leads us to conclude that digit coincidences of the redshift measures
are distributed approximately uniformly in the sky and are not concentrated
spatially. The same occurs for all the other clusters. We will concentrate on
the very near astronomical objects, represented by redshifts between 0 and 0.6.
When we plot zgpe. versus zpnor we obtain a highly correlated signal as shown
in Figure [3] right panel. The number of observations that we therefore analyse
is 443,014.
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a) RA vs, DEC b) Spectrometric vs. Photomatric
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Figure 3: Left: right ascension (RA) versus declination (DEC); Right: Zspec
Versus Zphot- SDSS data selection used for redshift analysis.
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Figure 4: Heat plot and histogram for zgpec versus zpnot. Histogram at the top
shows the zspe. frequencies, histogram at the right shows zphot frequencies.
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Looking at Figure {| it can be seen clearly that most data points fall in
the range between 0 and 0.2. Here the histogram on the top shows the zppot
data points distribution, and the histogram on the right the z,,.. data points
distribution. The heat plot also highlights the area where data points are con-
centrated, where the yellow colour (white region in monochrome print) shows
the major density.

Consequently, now we know that most cluster data points will fall within
this range (0 and 0.2) if common prefixes of digits in the redshift values, taken
as strings, are found.

Figures 5| and |§| show graphically how zgpe. and zppo: correspondences look
at different levels of decimal precision. On one hand we find that values of
Zspee and zppor that have equal precision up to the 3rd decimal digit are highly
correlated. On the other hand when zgpe. and z,no+ have only the first digit
in common, correlation is weak. For example, let us consider the following
situations for plots [f] and [6}

o Figure [5| left: let us take the values of zgpec = 0.437 and zppor = 0.437.
We have that they share the first digit, the first decimal digit, the second
decimal digit, and the third decimal digit. Thus, we have a highly cor-
related signal of the data points that share only up to the third decimal
digit.

o Figure [5| right: let us take the values of zgpec = 0.437 and zppor = 0.439.
We have that they share the first digit, the first decimal digit, and the

second decimal digit. Therefore, the plot shows data points that share
only up to the second decimal digit.

e Figure |§| left: let us take the values of zgpee = 0.437 and zppor = 0.474.
We have that they share the first digit, and the first decimal digit. Thus,
the plot shows data points that share only up to the first decimal digit.

e Figure |§| right: let us take the values of zgpec = 0.437 and zppor = 0.571.
We have that they share only the integer part of the value, and that
alone. Furthermore, this implies redshifts that do not match in succession
of decimal digits. For example, if we take the values 0.437 and 0.577, the
fact that the third digit is 7 in each case is not of use.
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Figure 5: Prefix-wise clustering frequencies depicting 3rd decimal digit coinci-
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Table [2| (see also Figure[7)) shows the clusters found for all different levels of
precision. In other words this table allows us to define empirically the confidence
levels for mapping of zppe and zgpec. For example, we can expect that 82.8%
of values for zspec and zphor have at least two common prefix digits. This
percentage of confidence is derived as follows: the data points that share six,
five, four, three, two, and one decimal digit (i.e., 4+90+912+ 8,982+ 85,999 +
270,920 = 366,907 data points. Therefore 82.8% of the data). Additionally we
observe that around a fifth of the observations share at least 3 digits in common.
Namely, 4+90+912+ 8,982+ 85,999 = 95,987 data points, which equals 21.7%
of the data.

‘ Digit ‘ No. ‘ % ‘

\ 1 | 76,187 [ 17.19 |

[ Decimal digit [ No. [ % |
1 270,920 [ 61.14
2 85,999 | 19.40
3 8,982 [ 2.07
4 912 | 0.20
5 90 | 0.02
6 4] —

[ [ 443,094 [ 100 |

Table 2: Data points based on the longest common prefiz for different levels
of precision. This includes the integer part of a data point (first digit) and the
decimal digits of a data point (first to sizth digit).

08
|

0.4 0.5

03
|

Frequency %

0.2

0.1

0.0
|

Digit

Figure 7: Frequency distribution for Table @ The abscissa shows the digit
positions, where 1 is the first digit, 2 the first decimal digit, 3 the second decimal
digit and so on.
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7 Comparative Evaluation with k-Means

In this section we compare the Baire-based clustering to results obtained with
the widely-used k-means clustering algorithm.

7.1 Baire-Based Clustering and k-Means Cluster Compar-
ison

In order to establish how “good” the Baire clusters are we can compare them
with clusters resulting from the k-means algorithm. Let us recall that our data
values are in the interval [0,0.6] (i.e. including zero values but excluding 0.6).
Additionally, we have seen that the Baire distance is an ultrametric that is
strictly defined in a tree. Thus, when building the Baire based clusters we will
have a root node “0” that includes all the observations (every single data point
analysed starts with 0). For the Baire distance with exponent —2 we have six
nodes (or clusters) with indices “00, 01, 02, 03, 04, 05”. For the Baire distance
of exponent —3 we have 60 clusters with indices “000, 001, 002, 003, 004,...,059”
(i.e. ten children for each node 00,..,05). (Cf. how this adapts the discussion in
section 4] in a natural way to our data.)

We carried out a number of comparisons for the Baire distance of two and
three. For example, by design we have that for dz = 1072 there are six clusters.
Thus we took our data set and applied k-means with six centroids based on an
implementation from the Hartigan and Wong [13] algorithm. Euclidean distance
is used, as usual, here. The results can be seen in Table |3] where the columns
are the k-means clusters and the rows are the Baire clusters. From the Baire
perspective we see that the node 00 has 97084 data points contained within the
first k-means cluster and 64950 observations in the fifth. Looking at node 04,
all members belong to the third cluster of k-means. We can see that the Baire
clusters are closely related to the clusters produced by k-means at a given level
of resolution.

L[+ 1 5 [ 4 [ 6 [ 2 | 3 |
00 [ 97084 | 64950 | 0 0 0 0
01 | 0 | 28382 | 101433 | 14878 | 0 0
02 | 0 0 0 | 18184 | 4459 | 0O
03 | 0 0 0 0| 25309 | 1132
04 | 0 0 0 0 0 | 11116
05 | 0 0 0 0 0 | 21

Table 3: Cluster comparison based on dg = 1072. Columns show the k-means
clusters, and the rows show the Baire clusters. The cells present the number of
data points for a given cluster.

We can take this procedure further and compare the clusters for dz defined
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from 3 digits of precision, and k-means with k& = 60 centroids as observed in
Figure

Looking at the results from the Baire perspective we find that 27 clusters
are overlapping, 9 clusters are empty, and 24 Baire clusters are completely
within the boundaries of the ones produced by k-means as presented in Table [6]
This last result is better seen in Table |4} which is the subset of Table @ (see
Appendix where complete matches are shown. These tables have been row
and column permuted in order to clearly appreciate the correspondences.

It is seen that the match is consistent even if there are differences due to the
different clustering criteria at issue. We have presented results in such a way as
to show both consistency and difference.
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Table 4: Subset of cluster comparison based on dz = 1073; columns show the
k-means clusters (k = 60); rows show Baire nodes.
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Figure 8: K-means clustering for k = 60 after 38 iterations. Note that non-
contiguous groups may be colored the same.

7.2 Baire and k-Means Clustering Time Comparison

In order to compare the time performances of the Baire and k-means algorithms
we took dz = 1072 as a basis for the test. Let us remember that for dg = 1073
we have potentially 60 clusters for the data in the range [0,0.6]. Looking at
the classification from the hierarchical tree viewpoint we have: one cluster for
first level (i.e., the root node or first digit); six clusters for the second level (i.e.,
first decimal digit or 0, 1, 2, 3, 4, and 5); and ten clusters for the third level or
second decimal digit. To obtain the potential number of clusters we multiply
the potential nodes for the first, second and third levels of the tree. That is
1-6-10 = 60 clusters.

Therefore for the time comparison we have dz = 10~3 of 60 clusters, which
is the parameter given to k-means as initial number of centroids. The other
parameter needed is the number of iterations. For k-means we are interested in
the average time over many runs. Thus, we use average time over 50 executions
for each iteration of 1, 5, 10, 15, 20, 28, 30, 35, and 38.

The results can be observed in Figure[J] It is clear that the time in k-means
is linear with respect to the number of iterations (this is well understood in the
k-means literature). In this particular case the algorithm converges around the
iteration number 38. Note that these executions are based on different random
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initialisations. The times for the k-means algorithm were obtained with the R
statistical software. These times were faster than the times obtained by the

algorithm implemented with Java.

’ Iteration \ Average time

1 6.81
) 12.44
10 22.35
15 32.30
20 42.07
25 51.90
30 61.94
35 71.85
38 77.53

Table 5: Time average for k-means algorithm over 50 executions for each total

iteration count.
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o
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40

Figure 9: K-means average processing time in seconds for k = 60. Averages

are obtained for 9 examples with 50 executions each.

The Baire method only needs one pass over the data to produce the clus-
ters. Regarding the time needed, we tested a Java implementation of the Baire
algorithm. We ran 50 experiments over the SDSS data. It took on average 2.9

seconds. Compare this to Table

We recall that this happens because of the large number of iterations involved
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in the case of k-means. Even in the case when just one iteration is considered
for k-means (note that the algorithm does not converge in that case) the time
taken is more than double when compared with the Baire (6.8 seconds versus
2.9 seconds).

8 Spectrometric and Photometric Digit Distri-
bution

We have seen that the Baire ultrametric produces a strict hierarchical classi-
fication. In the case of zgpee and zppoe this can be seen as follows. Let us
take any observed measurement of either case of zspee = Zphot. Let us say
Zspee = Zphot = 0.1257. Here we have that for |K| = 4, zspec = 2phot- Hierar-
chically speaking we have that the root node is 0, for the first level where there
potentially exist 6 nodes (i.e. 0,1,...,5); for the second level potentially there
are 60 nodes; and so on until k = |K| = 4, and zspec = Zphot, Where potentially
there are 6 - 10 - 10 - 10 = 6,000 nodes.

Of course not all nodes will be populated. In fact we can expect that a large
number of these potential nodes will be empty if the number of observations
n is lower than the potential number of nodes for a certain precision |K| (i.e.
n < 1O|K|). Note that this points to a big storage cost, but in practice the tree
is very sparsely populated and |K| small.

A particular interpretation can be given in the case of an observed data
point. Following up the above example if we take zgpec = Zpnot = 0.1257, a tree
can be produced to store all observed data that falls within this node. Doing
this has many advantages from the viewpoint of storing. Access and retrieval,
for example, is very fast and it is easy to retrieve all the observations that fall
within a given node and its children.

With this tree it is a trivial task to build bins for data distribution. Figure[I0]
depicts the frequency distribution for a given digit and precision. There are 100
data points that have been convolved with a Gaussian kernel to produce surface
planes in order to assemble three-dimensional plots.

This helps to build a cluster-wise mapping of the data. Following the Fig-
ure top panel we observe that for the first decimal digit most data obser-
vations are concentrated in the digits 0, 1, 2, and 3. Then the rest of decimal
precision data is uniformly distributed, gradually going towards zero when the
level of precision increases. There is the exception of two peaks, for precision
equal to 8. This turns out to be useful because when comparing the zspe. and
Zphot digit distribution we do not find the same peaks in zppor. This is very
useful because now we can discriminate which observations are more reliable in
Zphot through different characteristics of the data associated with the peaks.
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Figure 10: Digit distribution for zspec and zppor; Top: Spectrometric digit dis-
tribution; Bottom: Photometric digit distribution. Note that digit distribution
for Zspec has three peaks, but zphot has only one.
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9 Concluding Remarks on the Astronomical Case
Study and Other Applications

In the astronomy case clusters generated with the Baire distance can be useful
when calibrating redshifts. In general, applying the Baire method to cases where
digit precision is important can be of relevance, specifically to highlight data
“bins” and some of their properties.

Note that when two numbers share 3 prefix digits, and base 10 is used, we
have a Baire distance of dz = 1073. We may not need to define the actual (ul-
tra)metric values. It may be, in fact, more convenient to work on the hierarchy,
with its different levels.

In section we showed how we could derive that 82.8% of values for zspe.
and zppot have at least two common prefix digits. This is a powerful result in
practice when we recall that we can find very efficiently where these 82.8% of
the astronomical objects are.

Using the Baire distance we showed in section |§| that zgpee and zppor signals
can be stored in a tree like structure. This is advantageous when measuring the
digit distribution for each signal. When comparing these distributions, it can
easily be seen where the differences arise.

The Baire distance has proved very useful in a number of cases, for instance
in [26] this distance is used in conjunction with random projection [31] as the
basis for clustering a large dataset of chemical compounds achieving results com-
parable to k-means but with better performance due to the lower computational
complexity of the Baire-based clustering method.

Other application areas include text mining and semantic preservation [27].
For more details refer to [5] where a number of examples are discussed.

10 Conclusions

The Euclidean distance is appropriate for real-valued data. In this work we have
instead focused on an m-adic (m a non-negative integer) number representation.

In this work the distance called the Baire distance is presented. This dis-
tance has been very recently introduced into data analysis. We show how this
distance can be used to generate clusters in a way that is computationally in-
expensive when compared with more traditional techniques. As an ultrametric,
the distance directly induces a hierarchy. Hence the Baire distance lends itself
very well to the new hierarchical clustering method that we have introduced
here.

We presented a case study in this article to motivate the approach, more
particularly to show how it achieved comparable performance with respect to
k-means, and finally to demonstrate how it greatly outperforms k-means (and
a fortiori any traditional hierarchical clustering algorithm) computationally.
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