
COMMUN. MATH. SCI. c© 2010 International Press

Vol. 8, No. 1, pp. 93–111

FAST LINEARIZED BREGMAN ITERATION FOR COMPRESSIVE
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Abstract. We propose and analyze an extremely fast, efficient, and simple method for solving
the problem:

min{‖u‖1 :Au=f,u∈Rn}.

This method was first described in [J. Darbon and S. Osher, preprint, 2007], with more details in
[W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and
rigorous theory given in [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also
UCLA CAM Report 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008].
The motivation was compressive sensing, which now has a vast and exciting history, which seems to
have started with Candes, et. al. [E. Candes, J. Romberg and T. Tao, 52(2), 489-509, 2006] and
Donoho, [D.L. Donoho, IEEE Trans. Inform. Theory, 52, 1289-1306, 2006]. See [W. Yin, S. Osher,
D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences 1(1), 143-168, 2008] and [J. Cai, S. Osher and
Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report, 08-06] and [J. Cai, S. Osher
and Z. Shen, UCLA CAM Report, 08-52, 2008] for a large set of references. Our method introduces
an improvement called “kicking” of the very efficient method of [J. Darbon and S. Osher, preprint,
2007] and [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168,
2008] and also applies it to the problem of denoising of undersampled signals. The use of Bregman
iteration for denoising of images began in [S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin,
Multiscale Model. Simul, 4(2), 460-489, 2005] and led to improved results for total variation based
methods. Here we apply it to denoise signals, especially essentially sparse signals, which might even
be undersampled.
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1. Introduction
Let A∈Rm×n, with n>m and f ∈Rm, be given. The aim of a basis pursuit

problem is to find u∈Rn by solving the constrained minimization problem

min
u∈Rn

{J(u)|Au=f}, (1.1)

where J(u) is a continuous convex function.
For basis pursuit, we take:

J(u)= |u|1 =
n

∑

j=1

|uj |. (1.2)
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We assume that AAT is invertible. Thus Au=f is underdetermined and has at least
one solution, u=AT (AAT )−1f , which minimizes the ℓ2 norm. We also assume that
J(u) is coercive, i.e., whenever ‖u‖→∞, J(u)→∞. This implies that the set of all
solutions of (1.1) is nonempty and convex. Finally, when J(u) is strictly or strongly
convex, the solution of (1.1) is unique.

Basis pursuit arises from many applications. In particular, there has been a recent
burst of research in compressive sensing, which involves solving (1.1), (1.2). This was
led by Candes et.al. [5], Donoho, [6], and others, see [2, 3] and [4] for extensive
references. Compressive sensing guarantees, under appropriate circumstances, that
the solution to (1.1), (1.2) gives the sparsest solution satisfying Au=f . The problem
then becomes one of solving (1.1), (1.2) quickly. Conventional linear programming
solvers are not tailored for the large scale dense matrices A and the sparse solutions
u that arise here. To overcome this, a linearized Bregman iterative procedure was
proposed in [1] and analyzed in [2, 3] and [4]. In [2], true nonlinear Bregman iteration
was also used quite successfully for this problem.

Bregman iteration applied to (1.1), (1.2) involves solving the constrained op-
timization problem through solving a small number of unconstrained optimization
problems:

min
u

{

µ|u|1 +
1

2
‖Au−f‖2

2

}

(1.3)

for µ>0.
In [2] we used a method called the fast fixed point continuation solver (FPC) [8]

which appears to be efficient. Other solvers of (1.3) could be used in this Bregman
iterative regularization procedure.

Here we will improve and analyze a linearized Bregman iterative regularization
procedure, which in its original incarnation [1, 2] involved only a two line code and
simple operations, and was already extremely fast and accurate.

In addition, we are interested in the denoising properties of Bregman iterative
regularization for signals, not images. The results for images involved the BV norm,
which we may discretize for n×n pixel images as

TV (u)=

n−1
∑

i,j=1

((ui+1,j −uij)
2 +(ui,j+1−uij)

2)
1
2 . (1.4)

We usually regard the success of the ROF TV based model [9]

min
u

{

TV (u)+
λ

2
‖f −u‖2

}

(1.5)

(we now drop the subscript 2 for the L2 norm throughout the paper) as due to the
fact that images have edges and in fact are almost piecewise constant (with texture
added). Therefore, it is not surprising that sparse signals could be denoised using
(1.3). The ROF denoising model was greatly improved in [7] and [10] with the help
of Bregman iterative regularization. We will do the same thing here using Bregman
iteration with (1.3) to denoise sparse signals, with the added touch of undersampling
the noisy signals.

The paper is organized as follows. In section 2 we describe Bregman iterative
algorithms, as well as the linearized version. We motivate these methods and describe
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previously obtained theoretical results. In section 3 we introduce an improvement to
the linearized version, which we call “kicking”, that greatly speeds up the method,
especially for solutions u with a large dynamic range. In section 4 we present numerical
results including sparse recovery for u having large dynamic range and the recovery
of signals in large amounts of noise. In another work in progress [11] we apply these
ideas to denoising very blurry and noisy signals remarkably well including sparse
recovery for u. By blurry we mean situations where A is perhaps a subsampled
discrete convolution matrix whose elements decay to zero with n, e.g. random rows
of a discrete Gaussian.

2. Bregman and linearized Bregman iterative algorithms
The Bregman distance [12], based on the convex function J between points u and

v, is defined by

Dp
J (u,v)=J(u)−J(v)−〈p,u−v〉, (2.1)

where p∈∂J(v) is an element in the subgradient of J at the point v. In general
Dp

J (u,v) 6=Dp
J(v,u) and the triangle inequality is not satisfied, so Dp

J (u,v) is not a
distance in the usual sense. However it does measure the closeness between u and
v in the sense that Dp

J (u,v)≥0 and Dp
J (u,v)≥Dp

J (w,v) for all points w on the line
segment connecting u and v. Moreover, if J is convex, Dp

J (u,v)≥0, if J is strictly
convex, Dp

J (u,v)>0 for u 6=v, and if J is strongly convex, then there exists a constant
a>0 such that

Dp
J(u,v)≥a‖u−v‖2.

To solve (1.1) Bregman iteration was proposed in [2] . Given u0 =p0 =0, we define

uk+1 =arg min
u∈Rn

{

J(u)−J(uk)−〈u−uk,pk〉+
1

2
‖Au−f‖2

}

(2.2)

pk+1 =pk−AT (Auk+1−f).

This can be written as

uk+1 =arg min
u∈R2

{

Dpk

J (u,uk)+
1

2
‖Au−f‖2

}

.

It was proven in [2] that if J(u)∈C2(Ω) and is strictly convex in Ω, then ‖Auk−f‖
decays exponentially whenever uk ∈Ω for all k. Furthermore, when uk converges, its
limit is a solution of (1.1). It was also proven in [2] that when J(u)= |u|1, i.e., for
problem (1.1) and (1.2), or when J is a convex function satisfying some additional
conditions, the iteration (2.2) leads to a solution of (1.1) in finitely many steps.

As shown in [2], see also [7, 10], the Bregman iteration (2.2) can be written as:

fk+1 =fk +f −Auk

uk+1 =arg min
u∈Rn

{

J(u)+
1

2
‖Au−fk+1‖2

}

. (2.3)

This was referred to as “adding back the residual” in [7]. Here f0 =0, u0 =0. Thus
the Bregman iteration uses solutions of the unconstrained problem

min
u∈R

{

J(u)+
1

2
‖Au−f‖2

}

(2.4)
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as a solver in which the Bregman iteration applies this process iteratively.
Since there is generally no explicit expression for the solver of (2.2) or (2.3), we

turn to iterative methods. The linearized Bregman iteration which we will analyze,
improve and use here is generated by

uk+1 =arg min
u∈Rn

{

J(u)−J(uk)−〈u−uk,pk〉+
1

2δ
‖u−(uk−δAT (Auk−f))‖2

}

pk+1 =pk−
1

δ
(uk+1−uk)−AT (Auk−f). (2.5)

In the special case considered here, where J(u)=µ‖u‖1, we have the two line
algorithm

vk+1 =vk−AT (Auk−f) (2.6)

uk+1 = δ ·shrink(vk+1,µ) (2.7)

where vk is an auxiliary variable

vk =pk +
1

δ
uk (2.8)

and

shrink(x,µ) :=











x−µ, if x>µ

0, if −µ≤x≤µ

x+µ, if x<−µ

is the soft thresholding algorithm [13].
This linearized Bregman iterative algorithm was invented in [1] and used and

analyzed in [2, 3] and [4]. In fact it comes from the inner-outer iteration for (2.2).
In [2] it was shown that the linearized Bregman iteration (2.5) is just one step of the
inner iteration for each outer iteration. Here we repeat the arguments also found in
[2], which begin by summing the second equation in (2.5) arriving at (using the fact
that u0 =p0 =0)

pk +
1

δ
uk +

k−1
∑

j=0

AT (Auj −f)=pk +
1

δ
uk−vk =0, for k =1,2,... .

This gives us (2.7), and allows us to rewrite its first equation as:

uk+1 =arg min
u∈Rn

{

J(u)+
1

2δ
‖u−δvk+1‖2

}

(2.9)

i.e., we are adding back the “linearized noise”, where vk+1 is defined in (2.6).
In [2] and [3] some interesting analysis was done for (2.5), (and some for (2.9)).

This was done first for J(u) continuously differentiable in (2.5) and the gradient ∂J(u)
satisfying

‖∂J(u)−∂J(v)‖2≤β〈∂J(u)−∂J(v),u−v〉, (2.10)

∀u,v∈Rn, β >0. In [3] it was shown that if (2.10) is true then both of the sequences
(uk)k∈N and (pk)k∈N defined by (2.5) converge for 0<δ < 2

‖AAT ‖
.
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In [4] the authors recently give a theoretical analysis showing that the iteration
in (2.6) and (2.7) converges to the unique solution of

min
u∈Rn

{

µ‖u‖1 +
1

2δ
‖u‖2 :Au=f

}

. (2.11)

They also show the interesting result: let S be the set of all solutions of the Basis
Pursuit problem (1.1), (1.2) and let

u1 =argmin
u∈S

‖u‖2, (2.12)

which is unique. Denote the solution of (2.11) to be u∗
µ. Then

lim
µ→∞

‖u∗
µ−u1‖=0. (2.13)

In passing they show that

‖u∗
µ‖≤‖u1‖ for all µ>0, (2.14)

which we will use below.
Another theoretical analysis on the Linearized Bregman algorithm is given by Yin

in [14], where he shows that Linearized Bregman iteration is equivalent to gradient
descent applied to the dual of the problem (2.11) and uses this fact to obtain an
elegant convergence proof.

This summarizes the relevant convergence analysis for our Bregman and linearized
Bregman models.

Next we recall some results from [7] regarding noise and Bregman iteration.
For any sequence {uk},{pk} satisfying (2.2) for J continuous and convex, we have,

for any µ̃

Dpk

J (ũ,uk)−DJpk−1(ũ,uk−1)≤〈Aũ−f,Auk−1−f〉−‖Auk−1−f‖2. (2.15)

Besides implying that the Bregman distance between uk and any element ũ sat-
isfying Aũ=f is monotonically decreasing, it also implies that, if ũ is the “noise
free” approximation to the solution of (1.1), the Bregman distance between uk and ũ
diminishes as long as

‖Auk−f‖>‖Aũ−f‖=σ, (2.16)

where σ is some measure of the noise, i.e., until we get too close to the noisy signal in
the sense of (2.16). Note, in [7] we took A to be the identity, but these more general
results are also proven there. This gives us a stopping criterion for our denoising
algorithm.

In [7] we obtained a result for linearized Bregman iteration, following [15], which
states that the Bregman distance between ũ and uk diminish as long as

‖Aũ−f‖< (1−2δ‖AAT ‖) ‖Auk−f‖, (2.17)

so we need 0<2δ‖AAT ‖<1.
In practice, we will use (2.16) as our stopping criterion.
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3. Convergence
We begin with the following simple results for the linearized Bregman iteration

or the equivalent algorithm (2.5).

Theorem 3.1. If uk →u∞, then Au∞ =f .

Proof. Assume Au∞ 6=f . Then AT (Au∞−f) 6=0 since AT has full rank. This
means that for some i, (AT (Auk−f))i converges to a nonzero value, which means
that vk+1

i −vk
i does as well. On the other hand {vk}={uk/δ+pk} is bounded since

{uk} converges and pk ∈ [−µ,µ]. Therefore {vk
i } is bounded, while vk+1

i −vk
i converges

to a nonzero limit, which is impossible.

Theorem 3.2. If uk →u∞ and vk →v∞, then u∞ minimizes {J(u)+ 1
2δ‖u‖

2 :Au=
f}.

Proof. Let J̃(u)=J(u)+ 1
2δ‖u‖

2. then

∂J̃(u)=∂J(u)+
1

δ
u.

Since ∂J(uk)=pk =vk−uk/δ, we have ∂J̃(uk)=vk. Using the non-negativity of the
Bregman distance we obtain

J̃(uk)≤ J̃(uopt)−〈uopt−uk,∂J̃(uk)〉

= J̃(uopt)−〈uopt−uk,vk〉

where uopt minimizes (1.1) with J replaced by J̃ , which is strictly convex.
Let k→∞, we have

J̃(u∞)≤ J̃(uopt)−〈uopt−u∞,v∞〉.

Since vk =AT
∑k−1

j=0 AT (f −Auj), we have v∞∈ range(AT ). Since Auopt =Au∞ =f ,

we have 〈uopt−u∞,v∞〉=0, which implies J̃(u∞)≤ J̃(uopt).

Equation (2.11) (from a result in [3]) implies that u∞ will approach a solution to
(1.1), (1.2), as µ approaches ∞.

The linearized Bregman iteration has the following monotonicity property:

Theorem 3.3. If uk+1 6=uk and 0<δ <2/‖AAT ‖, then

‖Auk+1−f‖<‖Auk−f‖.

Proof. Let

uk+1−uk =∆uk, vk+1−vk =∆vk.

Then the shrinkage operation is such that

∆uk
i = δqk

i ∆vk
i (3.1)

with

qk
i











=1 if uk+1
i uk

i >0

=0 if uk+1
i =uk

i =0

∈ (0,1] otherwise.
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Let Qk =Diag (qk
i ). Then (3.1) can be written as

∆uk = δQk∆vk = δQkAT (f −Auk), (3.2)

which implies that

Auk+1−f =(I−δAQkAT )(Auk−f). (3.3)

From (3.1), Qk is diagonal with 0�Qk � I, so 0�AQkAT �AAT . If we choose
δ >0 such that δAAT ≺2I, then 0� δAQkAT ≺2I or −I ≺ I−δAQkAT � I which im-
plies that ‖Auk−f‖ is not increasing. To get strict decay, we need only show that
AQkAT (Auk−f)=0 is impossible if uk+1 6=uk. Suppose AQkAT (Auk−f)=0 holds;
then from (3.2) we have

〈∆uk,∆vk〉= δ〈AT (f −Auk),QkAT (f −Auk)〉=0.

By (3.1), this only happens if uk+1
i =uk

i for all i, which is a contradiction.

We are still faced with estimating how quickly the residual decays. It turns out
that if consecutive elements of u do not change sign, then ‖Au−f‖ decays exponen-
tially. By ‘exponential’ we mean that the ratio of the residuals of two consecutive
iteration converges to a constant; this type of convergence is sometimes called linear
convergence. Here we define

Su ={x∈Rn : sign(xi)=sign(ui),∀i} (3.4)

(where sign(0)=0 and sign(a)=a/|a| for a 6=0). Then we have the following:

Theorem 3.4. If uk ∈S≡Suk
for k∈ (T1,T2), then uk converges to u∗, where u∗∈

argmin{‖Au−f‖2 :u∈S} and ‖Auk−f‖2 decays to ‖Au∗−f‖2 exponentially.

Proof. Since uk ∈S for k∈ [T1,T2], we can define Q≡Qk for T1≤k≤T2−1. From
(3.1) we see that Qk is a diagonal matrix consisting of zeros or ones, so Q=QT Q.
Moreover, it is easy to see that S ={x|Qx=x}.

Following the argument in Theorem 3.3, we have

uk+1−uk =∆uk = δQ∆vk = δQAT (f −Auk) (3.5)

Auk+1−f =[I−δAQAT ](Auk−f) (3.6)

and

−I ≺ I−δAQAT � I.

Let Rn =V0⊕V1, where V0 is the null space of AQAT and V1 is spanned by
the eigenvectors corresponding to the nonzero eigenvalues of AQAT . Let Auk−f =
wk,0 +wk,1, where wk,j ∈Vj for j =0,1. From (3.6) we have

wk+1,0 =wk,0

wk+1,1 =[I−δAQAT ]wk,1

for T1≤k≤T2−1. Since wk,1 is not in the null space of AQAT , (3.5) and (3.6) imply
that ‖wk,1‖ decays exponentially. Let w0 =wk,0, then AQAT w0 =0 AQQAT w0⇒
QAT w0 =0. Therefore, from (3.5) we have

∆uk = δQT AT (f −Auk)= δQAT (w0 +wk,1)= δQAT wk,1.
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Thus ‖∆uk‖ decays exponentially. This means {uk} forms a Cauchy sequence in S,
so it has a limit u∗∈S. Moreover

Au∗−f =lim
k

(Auk−f)= lim
k

wk,0 +lim
k

wk,1 =w0.

Since V0 and V1 are orthogonal:

‖Auk−f‖2 =‖wk,0‖2 +‖wk,1‖2 =‖Au∗−f‖2 +‖wk,1‖2,

so ‖Auk−f‖2−‖Au∗−f‖2 decays exponentially. The only thing left to show is that

u∗ =argmin(‖Au−f‖2 :u∈S)=argmin{‖Au−f‖2 :Qu=u}.

This is equivalent to way that AT (Au∗−f) is orthogonal with the hyperspace {u :
Qu=u}. It is easy to see that since Q is a projection operator, a vector v is orthogonal
with {u :Qu=u} if and only if Qv =0, thus we need to show QAT (Au∗−f)=0. This
is obvious because we have shown that Au∗−f =w0 and QAT w0 =0. So we find that
u∗ is the desired minimizer.
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Fig. 3.1. The left figure presents a simple signal with 5 non-zero spikes. The right figure shows
how the linearized Bregman iteration converges.

Therefore, instead of decaying exponentially with a global rate, the residual of
the linearized Bregman iteration decays in a rather sophisticated manner. From the
definition of the shrinkage function we can see that the sign of an element of u will
change if and only if the corresponding element of v crosses the boundary of the
interval [−µ,µ]. If µ is relatively large compared with the size of ∆v (which is usually
the case when applying the algorithm to a compressed sensing problem), then at
most iterations the signs of the elements of u will stay unchanged, i.e., u will stay
in the subspace Su defined in (3.4) for a long while. This theorem tells us that in
this scenario u will quickly converge to the point u∗ that minimizes ‖Au−f‖ inside
Su, and the difference between ‖Au−f‖ and ‖Au∗−f‖ decays exponentially. After u
converges to u∗, u will stay there until the sign of some element of u changes. Usually
this means that a new nonzero element of u comes up. After that, u will enter a
different subspace S and a new converging procedure begins.

The phenomenon described above can be observed clearly in Fig 3.1. The final
solution of u contains five non-zero spikes. Each time a new spike appears, it converges
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rapidly to the position that minimizes ‖Au−f‖ in the subspace Su. After that there is
a long stagnation, which means u is just waiting there until the accumulating v brings
out a new non-zero element of u. The larger µ is, the longer the stagnation takes.
Although the convergence of the residual during each phase is fast, the total speed of
the convergence suffers much from the stagnation. The solution of this problem will
be described in the next section.

4. Fast implementation
The iterative formula in Algorithm 1 below gives us the basic linearized Bregman

algorithm designed to solve (1.1),(1.2).

Algorithm 1 Bregman Iterative Regularization

Initialize: u=0, v =0.
while “‖f −Au‖ has not converged” do

vk+1 =vk +A⊤(f −Auk)
uk+1 = δ ·shrink(vk+1,µ)

end while

This is an extremely concise algorithm, simple to program, and involves only
matrix multiplication and shrinkage. When A consists of rows of a matrix of a fast
transform like FFT which is a common case for compressed sensing, it is even faster
because matrix multiplication can be implemented efficiently using the existing fast
code of the transform. Also, storage becomes a less serious issue.

We now consider how we can accelerate the algorithm under the problem of stag-
nation described in the previous section. From that discussion, during a stagnation
u converges to a limit u∗ so we will have uk+1≈uk+2≈···≈uk+m ≈u∗ for some m.
Therefore the increment of v in each step, A⊤(f −Au), is fixed. This implies that
during the stagnation u and v can be calculated explicitly as follows

{

uk+j ≡uk+1

vk+j =vk +j ·A⊤(f −Auk+1)
j =1,... ,m. (4.1)

If we denote the set of indices of the zero elements of u∗ as I0 and let I1 = I0 be
the support of u∗, then vk

i will keep changing only for i∈ I0 and the iteration can be
formulated entry-wise as:











uk+j
i ≡uk+1

i ∀i

vk+j
i =vk

i +j ·(A⊤(f −Auk+1))i i∈ I0

vk+j
i ≡vk+1

i i∈ I1

(4.2)

for j =1,... ,m. The stagnation will end when u begins to change again. This happens
if and only if some element of v in I0 (which keeps changing during the stagnation)
crosses the boundary of the interval [−µ,µ]. When i∈ I0, vk

i ∈ [−µ,µ], so we can
estimate the number of the steps needed for vk

i to cross the boundary ∀i∈ I0 from
(4.2), which is

si =

⌈

µ ·sign((A⊤(f −Auk+1))i)−vk+1
i

(A⊤(f −Auk+1))i

⌉

∀i∈ I0 (4.3)

and

s=min
i∈I0

{si} (4.4)
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is the number of steps needed. Therefore, s is nothing but the length of the stagnation.
Using (4.1), we can predict the end status of the stagnation by

{

uk+s ≡uk+1

vk+s =vk +s ·A⊤(f −Auk+1)
j =1,... ,m. (4.5)

Therefore, we can kick u to the critical point of the stagnation when we detect that
u has stayed unchanged for a while. Specifically, we have the following algorithm:
Algorithm 2. Indeed, this kicking procedure is similar to line search commonly used in

Algorithm 2 Linearized Bregman Iteration with Kicking

Initialize: u=0, v =0.
while “‖f −Au‖ not converge” do

if “uk−1≈uk” then
calculate s from (4.3) and (4.4)
vk+1

i =vk
i +s ·(A⊤(f −Auk))i, ∀i∈ I0

vk+1
i =vk

i , ∀i∈ I1

else
vk+1 =vk +A⊤(f −Auk)

end if
uk+1 = δ ·shrink(vk+1,µ)

end while
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Fig. 4.1. The left figure presents the convergence curve of the original linearized Bregman
iteration using the same signal as Fig 3.1. The right figure shows the convergence curve of the
linearized Bregman iteration with the kicking modification.

optimization problems and modifies the initial algorithm in no way but just accelerates
the speed. More precisely, note that the output sequence {uk,vk} is a subsequence of
the original one, so all the previous theoretical conclusions on convergence still hold
here.

An example of the algorithm is shown in Fig 4.1. It is clear that all the stagnation
in the original convergence collapses to single steps. The total amount of computation
is reduced dramatically.
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5. Numerical results
In this section, we demonstrate the effectiveness of the algorithm (with kicking)

in solving basis pursuit and some related problems.

5.1. Efficiency. Consider the constrained minimization problem

min |u|1 s.t. Au=f,

where the constraints Au=f are under-determined linear equations with A an m×n
matrix, and f generated from a sparse signal ū that has a number of nonzeros κ<m.

Our numerical experiments use two types of A matrices: Gaussian matrices whose
elements were generated from i.i.d. normal distributions N (0,1) (randn(m,n) in
MATLAB), and partial discrete cosine transform (DCT) matrices whose k rows were
chosen randomly from the n×n DCT matrix. These matrices are known to be effi-
cient for compressed sensing. The number of rows m is chosen as m∼κ log(n/κ) for
Gaussian matrices and m∼κ logn for DCT matrices (following [5]).

The tested original sparse signals ū had numbers of nonzeros equal to 0.05n and
0.02n rounded to the nearest integers in two sets of experiments, which were obtained
by round(0.05*n) and round(0.02*n) in MATLAB, respectively. Given a sparsity
‖ū‖0, i.e., the number of nonzeros, an original sparse signal ū∈R

n was generated by
randomly selecting the locations of ‖ū‖0 nonzeros, and sampling each of these nonzero
elements from U(−1,1) (2*(rand-0.5) in MATLAB). Then, f was computed as Aū.
When ‖ū‖0 is small enough, we expect the basis pursuit problem, which we solved
using our fast algorithm, to yield a solution u∗ = ū from the inputs A and f .

Note that partial DCT matrices are implicitly stored fast transforms for which
matrix-vector multiplications in the forms of Ax and A⊤x were computed by the
MATLAB commands dct(x) and idct(x), respectively. Therefore, we were able to
test on partial DCT matrices of much larger sizes than Gaussian matrices. The sizes
m-by-n of these matrices are given in the first two columns of Table 5.1.

Our code was written in MATLAB and was run on a Windows PC with a Intel(R)
Core(TM) 2 Duo 2.0GHz CPU and 2GB memory. The MATLAB version is 7.4.

The set of computational results given in Table 5.1 was obtained by using the
stopping criterion

‖Auk−f‖

‖f‖
<10−5, (5.1)

which was sufficient to give a small error ‖uk− ū‖/‖ū‖. Throughout our experiments
in Table 5.1, we used µ=1 to ensure the correctness of the results.

5.2. Robustness to Noise. In real applications, the measurement f we obtain
is usually contaminated by noise. The measurement we have is:

f̃ =f +n=Aū+n, n∈N (0,σ).

To characterize the noise level, we shall use SNR (signal to noise ratio) instead of σ
itself. The SNR is defined as follows

SNR(u) :=20log10

(

‖ū‖

‖n‖

)

.

In this section we test our algorithm on recovering the true signal ū from A and the
noisy measurement f̃ . As in the last section, the nonzero entries of ū are generated
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Results of linearized Bregman-L1 with kicking

Stopping tolerance. ‖Auk −f‖/‖f‖<10−5

Gaussian matrices

stopping itr. k relative error ‖uk − ū‖/‖ū‖ time (sec.)
mean std. max mean std. max mean std. max

n m ‖ū‖0 =0.05n
1000 300 422 67 546 2.0e-05 4.3e-06 2.7e-05 0.42 0.06 0.51
2000 600 525 57 612 1.8e-05 1.9e-06 2.1e-05 4.02 0.45 4.72
4000 1200 847 91 1058 1.7e-05 1.7e-06 1.9e-05 25.7 2.87 32.1

n m ‖ū‖0 =0.02n
1000 156 452 98 607 2.3e-05 2.6e-06 2.6e-05 0.24 0.06 0.33
2000 312 377 91 602 2.0e-05 4.0e-06 2.9e-05 1.45 0.38 2.37
4000 468 426 30 477 1.6e-05 2.1e-06 2.0e-05 6.96 0.51 7.94

Partial DCT matrices
n m ‖ū‖0 =0.05n

4000 2000 71 6.6 82 9.1e-06 2.5e-06 1.2e-05 0.43 0.06 0.56
20000 10000 158 14.5 186 6.2e-06 2.1e-06 1.1e-05 3.95 0.36 4.73
50000 25000 276 14 296 6.8e-06 2.6e-06 1.0e-05 17.6 0.99 19.2

n m ‖ū‖0 =0.02n
4000 1327 52 7.0 64 8.6e-06 1.3e-06 1.1e-05 0.27 0.04 0.35

20000 7923 91 10.3 115 7.2e-06 2.2e-06 1.1e-05 2.36 0.30 3.02
50000 21640 140 9.7 153 5.9e-06 2.4e-06 1.1e-05 8.53 0.66 9.42

Table 5.1. Experiment results using 10 random instances for each configuration of (m,n,‖ū‖0),
with nonzero elements of ū come from U(−1,1).
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Fig. 5.1. The left figure presents the clean (red dots) and noisy (blue circles) measurements,
with SNR=23.1084; the right figure shows the reconstructed signal (blue circles) vs. original signal
(red dots), where the relative error=0.020764, and number of iterations is 102.

from U(−1,1), and A is either a Gaussian random matrix or a partial DCT matrix.
Our stopping criteria is given by

std
(

Auk− f̃
)

<σ, and Iter<1000,

i.e., we stop whenever the standard deviation of residual Auk− f̃ is less than σ or
the number of iterations exceeds 1000. Table 5.2 shows numerical results for different
noise levels, sizes of A, and sparsity. We also show one typical result for a partial
DCT matrix with size n=4000 and ‖ū‖0 =0.02n=80 in figure 5.1.
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Results of linearized Bregman-L1 with kicking

Stopping criteria. std(Auk −f) < σ.

Gaussian matrices

stopping itr. k relative error ‖uk − ū‖/‖ū‖ time (sec.)
mean std. max mean std. max mean std. max

Avg. SNR (n,m) ‖ū‖0 =0.05n

26.12 (1000,300) 420 95 604 0.0608 0.0138 0.0912 0.33 0.09 0.53
25.44 (2000,600) 206 32 253 0.0636 0.0128 0.0896 1.49 0.22 1.79
26.02 (4000,1200) 114 11 132 0.0622 0.0079 0.0738 3.32 0.31 3.81

Avg. SNR (n,m) ‖ū‖0 =0.02n

27.48 (1000,156) 890 369 1612 0.0456 0.0085 0.0599 0.42 0.17 0.73
25.06 (2000,312) 404 64 510 0.0638 0.0133 0.0843 1.37 0.23 1.74
26.04 (4000,468) 216 35 267 0.0557 0.0068 0.0639 3.29 0.55 4.13

Partial DCT matrices

Avg. SNR (n,m) ‖ū‖0 =0.05n

23.97 (4000, 2000) 151 9.2 170 0.0300 0.0028 0.0332 0.94 0.07 1.03
24.00 (20000,10000) 250 14 270 0.0300 0.0010 0.0318 7.88 0.62 8.86
24.09 (50000,25000) 274 9.9 295 0.0304 0.0082 0.0315 20.4 0.74 20.1

Avg. SNR (n,m) ‖ū‖0 =0.02n

24.29 (4000,1327) 130 11 157 0.0223 0.0023 0.0253 0.79 0.08 1.00
24.37 (20000,7923) 223 14 257 0.0204 0.0025 0.0242 6.89 0.53 8.15
24.16 (50000,21640) 283 19 311 0.0193 0.0012 0.0207 21.5 1.68 24.1

Table 5.2. Experiment results using 10 random instances for each configuration of (m,n,‖ū‖0).
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Fig. 5.2. Upper left: true signal (red dots) vs. recovered signal (blue circle); upper right: one

zoom-in to the lower magnitudes; lower left: decay of residual log10
‖Auk−f‖

‖f‖
; lower right: decay of

error to true solution log10
‖uk−ū‖

‖ū‖
.

5.3. Recovery of signal with high dynamical range. In this section
we test our algorithm on signals with high dynamical ranges. Precisely speaking, let
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Fig. 5.3. Noisy case. Left figure: true signal (red dots) vs. recovered signal (blue circle); right

figure: one zoom-in to the magnitude≈105. The error is measured by
‖uk−ū‖

‖ū‖
.
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Fig. 5.4. Noisy case. Left figure: true signal (red dots) vs. recovered signal (blue circle); right

figure: one zoom-in to the magnitude≈106. The error is measured by
‖uk−ū‖

‖ū‖
.

MAX=max{|ūi| : i=1,... ,n} and MIN=min{|ui| :ui 6=0,i=1,... ,n}. The signals we

shall consider here satisfy MAX
MIN ≈1010. Our ū is generated by multiplying a random

number in [0,1] with another one randomly picked from {1,10,... ,1010}. Here we
adopt the stopping criteria

‖Auk−f‖

‖f‖
<10−11
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Fig. 5.5. Noisy case. Left figure: true signal (red dots) vs. recovered signal (blue circle); right

figure: one zoom-in to the magnitude≈108. The error is measured by
‖uk−ū‖

‖ū‖
.
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Fig. 5.6. Reconstruction using 20% random samples of ũ with SNR=2.6185. The upper left
figure shows the original (red) and noisy (blue) signals; the upper right shows the reconstruction
(blue circle) vs. original signal (red dots) in Fourier domain in terms of their magnitudes (i.e., |bu∗|
vs. |b̄u|); bottom left shows the reconstructed (blue) vs. original (red) signal in physical domain; and
bottom right shows one close-up of the figure at bottom left.
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Fig. 5.7. Reconstruction using 40% random samples of ũ with SNR=−4.7836. The upper left
figure shows the original (red) and noisy (blue) signals; the upper right shows the reconstruction
(blue circle) vs. original signal (red dots) in Fourier domain in terms of their magnitudes (i.e., |bu∗|
vs. |b̄u|); bottom left shows the reconstructed (blue) vs. original (red) signal in physical domain; and
bottom right shows one close-up of the figure at bottom left.

for the case without noise (figure 5.2) and the same stopping criteria as in the previous
section for the noisy cases (figures 5.3–5.5). In the experiments, we take the dimension
n=4000, the number of nonzeros of ū to be 0.02n, and µ=1010. Here µ is chosen
to be much larger than before because the dynamical range of ū is large. Figure 5.2
shows results for the noise free case, where the algorithm converges to a 10−11 residual
in less than 300 iterations. Figures 5.3–5.5 show the cases with noise (the noise is
added the same way as in previous section). As one can see, if the measurements
are contaminated with less noise, signals with smaller magnitudes will be recovered
well. For example in figure 5.3, the SNR≈118, and the entries of magnitudes 104 are
well recovered; in figure 5.4, the SNR≈97, and the entries of magnitudes 105 are well
recovered; and in figure 5.5, the SNR≈49, and the entries of magnitudes 107 are well
recovered.

5.4. Recovery of sinusoidal waves in huge noise. In this section we
consider

ū(t)=asin(αt)+bcos(βt),

where a,b,α and β are unknown. The observed signal ũ is noisy and has the form
ũ= ū+n with n∼N (0,σ). In practice, the noise in ũ could be huge, i.e., possibly
have a negative SNR, and we may only be able to observe partial information of ũ,
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Fig. 5.8. Reconstruction using 60% random samples of ũ with SNR=−6.7908. The upper left
figure shows the original (red) and noisy (blue) signals; the upper right shows the reconstruction
(blue circle) vs. original signal (red dots) in Fourier domain in terms of their magnitudes (i.e., |bu∗|
vs. |b̄u|); bottom left shows the reconstructed (blue) vs. original (red) signal in physical domain; and
bottom right shows one close-up of the figure at bottom left.

i.e., only a subset of values of ũ is known. Notice that the signal is sparse (only four
spikes) in the frequency domain. Therefore, this is essentially a compressed sensing
problem and ℓ1-minimization should work well here. Now the problem can be stated
as reconstructing the original signal ū from random samples of the observed signal ũ
using our fast ℓ1-minimization algorithm. In our experiments, the magnitudes a and
b are generated from U(−1,1); frequencies α and β are random multiples of 2π

n , i.e.,
α=k1

2π
n and α=k2

2π
n , with ki randomly taken from {0,1,... ,n−1} and n denotes the

dimension. We let I be a random subset of {1,2,... ,n} and f = ũ(I), and take A and
A⊤ to be the partial matrix of inverse Fourier matrix and Fourier matrix respectively.
Now we perform our algorithm adopting the same stopping criteria as in section 5.2
and obtain a reconstructed signal denoted as x. Notice that reconstructed signal
x is in the Fourier domain, not in the physical domain. Thus we take an inverse
Fourier transform to get the reconstructed signal in the physical domain, denoted
as u∗. Since we know a priori that our solution should have four spikes in Fourier
domain, before we take the inverse Fourier transform, we pick the four spikes with
largest magnitudes and set the rest of the entries to be zero. Some numerical results
are given in figures 5.6–5.9. Our experiments show that the larger the noise level is,
the more random samples we need for a reliable reconstruction, where reliable means
that with high probability (>80%) of getting the frequency back exactly. As for the
magnitudes a and b, our algorithm cannot guarantee to recover them exactly (as one
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Fig. 5.9. Reconstruction using 80% random samples of ũ with SNR=−11.0016. The upper left
figure shows the original (red) and noisy (blue) signals; the upper right shows the reconstruction
(blue circle) vs. original signal (red dots) in Fourier domain in terms of their magnitudes (i.e., |bu∗|
vs. |b̄u|); bottom left shows the reconstructed (blue) vs. original (red) signal in physical domain; and
bottom right shows one close-up of the figure at bottom left.

can see in figures 5.6–5.9). However, frequency information is much more important
than magnitudes in the sense that the reconstructed signal is less sensitive to errors
in magnitudes than errors in frequencies (see figures 5.6–5.9). On the other hand,
once we recover the right frequencies, one can use hardware to estimate magnitudes
accurately.

6. Conclusion
We have proposed the linearized Bregman iterative algorithms as a competitive

method for solving the compressed sensing problem. Besides the simplicity of the
algorithm, the special structure of the iteration enables the kicking scheme to accel-
erate the algorithm even when µ is extremely large. As a result, a sparse solution can
always be approached efficiently.

It also turns out that our process has remarkable denoising properties for under-
sampled sparse signals. We will pursue this in further work.

Our results suggest there is a big category of problems that can be solved by
linearized Bregman iterative algorithms. We hope that our method and its extensions
could produce even more applications for problems under different scenarios, including
very underdetermined inverse problems in partial differential equations.
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