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Abstract

Methods which make use of the differential equation x(t) =

— J(x)~'f(x), where J(x) is the Jacobian of f(x), have recently been
proposed for solving the system of nonlinear equations /(x) = 0. These
methods are important because of their improved convergence characteris-
tics. Under general conditions the solution trajectory of the differential
equation converges to a root of / and the problem becomes one of solving a
differential equation. In this paper we note that the special form of the
differential equation can be Used to derive single and multistep methods
which give improved rates of local convergence to a root.

1. Introduction

Recently some interest has been shown in methods for the solution of a
system of nonlinear equations f(x) = 0, where / : D C R " - > R " , when only a
poor initial estimate of a zero, x *, of / is known. One approach is to define a
differential equation whose solution x(t)—*x* as /—»°°, where t is an
independent variable. x(t) then defines a trajectory which converges to the
required solution and one can consider any method for solving the differential
equation as a means of following the trajectory to that solution. One such
differential equation, originally suggested by Davidenko [9], is

x ( 0 = - / ( x ) - Y ( x ) , x(0)=xo, (1-1)

where J(x), the Jacobian of f(x), is assumed to be nonsingular at x *. One can
look at this differential equation in various ways, see for example Ortega and
Rheinboldt [24, §7.5] or Branin [5], but perhaps the-simplest is as a
continuous Newton's method as described by Gavurin [12], and the solution
x(t) of (1.1) can be considered as the continuous Newton trajectory.
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174 James P. Abbott and Richard P. Brent [2]

An alternative, but related, approach which has been investigated by
several authors (see, for example, [6], [18], [19], [24]) is to integrate the
differential equation

x(0=- / (* ) -7 (xo) , x(0)=xo, (1.2)

over the interval [0,1]. However, in an extensive treatment of the subject by
Boggs [4], it has been noted that integrating (1.2) to find a good estimate of
x(l) demands a greater concern for accuracy than is necessary when
integrating (1.1). This fact is confirmed in Section 5 and we find that certain
methods which make use of (1.1) are more reliable and, excepting simple
cases, are generally more efficient than those which use (1.2).

When the solution x(r) of (1.1) converges to x* any method which,
because of small steps or high accuracy, follows the trajectory sufficiently
closely will surely converge to x * also. However this convergence will be slow
since x(f) converges to x* only linearly. Thus, for an algorithm to be efficient
there must be a change of emphasis at some stage from accurate representa-
tion of x(t) to rapid convergence to x *. In this paper we consider methods for
the solution of the differential equation (1.1) which can, by suitable step
length control, be induced to give rapid final convergence to x*.

In Section 2 we discuss the differential equation with regard to regions of
convergence of the trajectory x(t) to x*. In Section 3 we present some
general results on the convergence of one step methods with variable step size
and use these results to derive methods for the solution of (1.1) which can give
rapid final convergence to x*. Also we discuss briefly a conjecture of Boggs
[4] that the most suitable methods for the solution of (1.1) are the A-stable
methods of Dahlquist [8]. In Section 4 we present general results on the
convergence of multistep methods and use the results to generate methods
which can give rapid final convergence to x*. We also discuss the stability
problems involved with such methods if the step size is varied. In Section 5 we
apply the methods suggested by the theory to a number of problems and draw
conclusions about their relative merits.

2. The differential equation

We consider the differential equation (1.1), where /(x) is continuously
differentiable for all x £ D. There are a great many theorems on the existence
and uniqueness of solutions of (1.1) (see for example [1], [3], [22], [24], [27],
[29] and the references therein) but most are local in nature. Since the
differential equation approach is concerned with wider convergence we
present a theorem which is not local. The theorem is not new, having been
proved with marginally-greater assumptions on / by Gavurin [12], Deuflhard

https://doi.org/10.1017/S0334270000001077 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001077


[3] Nonlinear equations 175

[11] and Ortega and Rheinboldt [24], but is given for clarity and as motivation

for the overall approach. First we give some definitions.

DEFINITION 2.1. P CD is a region of stability of (1.1) if, for any x0E P,

the solution x(t) of (1.1) is defined and unique for all t S 0, x(t)E P for all

t ^ 0 and ]im,_»x(t) = x* G P, where x* is a zero of /.

For any nonsingular n x n matrix A define <f>A : D CRn —» R by

and, for any a >0 , define Pa(A) by

Pa(A) is a level set of <M*)> (see [11], [24]). Let L = {x\xGD,

Det (/(*)) = 0}. Then, for some a > 0 and P*(A ), a path connected compo-

nent of Pa(A), condition sd will be

$l:P*a(A)nL and PS(A)n5D are empty, Pt{A) is bounded.

Under these conditions Pt(A) is compact and contains one and only one

zero of /.

THEOREM 2.1. Assume f: D CR" -» R" is continuously differentiable on

D and a >0 is such that condition sd holds. If in addition J(x)~'f(x) is

Lipschitz continuous on Int (P*(A)) then Int(PJ(A)) is a region of stability of

(1.1).

PROOF. Standard theorems on ordinary differential equations (e.g. [16,

Chapter 1]) show that, for any x0 £ Int (Pt(A)), there exists a T > 0 such that

(1.1) has a solution which is unique in Int(P*(A)) for each t G [0,T). If the

maximal such T is not °° and {x(t)\0^t<r} has limit point *„ then

When the solution x(t) of (1.1) exists it satisfies

f(x(t)) = e-f(xo)=e-fo, (2.1)

say, because (1.1) is equivalent to the initial value problem df/dt= - f

/(0) = /„. Thus

and so </>A(x(f)) is a decreasing function of t. Thus

Now suppose, if possible, that xr G dPt(A). Since P,(A) is closed and

Pt(A)ndD is empty there exists an £ > 0 such that S(Xr,e)CD and

5(xT, e)n{Pa(A)\Pt(A)} is empty, where S(x, ejis the open ball with centre x
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and radius e. Let e, = e/i, then because xT G dPZ(A), for each i > 0 there
exists a y, G S(xT, e,) such that <f>A(y,)>a. Now Iim1-_»y,=x1 and, by
continuity of <f>A(x), lim,_«< )̂A(y1) = <t>A(x.,)^ a, which is a contradiction.
Thus JCT £ Int(P*(A)) and it follows that T =°°, so x(f) is defined and
x (0 G Int (F*(A )) for all t s 0. Also, from (2.1), if x. is a limit point of {x(f)},
then /(x») = 0. Since a zero of / is unique in Pt(A) it follows that
x»= x* = Iim,^,»x(f). This completes the proof.

We note that a sufficient condition for /(x)~'/(x) to be Lipschitz
continuous on Int(P*(A)) is that, in addition to condition si, J(x) be
Lipschitz continuous on lnt(PZ(A)). This follows from the fact that ||/(x)~l||
and ||/(x)|| are bounded on P%(A) and /(x) is continuously differentiable (and
hence Lipschitz continuous) on P*(A).

Whilst Theorem 2.1 is not practically useful it shows that around each
zero at which /(x) is nonsingular there is a region of stability of (1.1). Also
this region will generally be larger than that predicted by the local existence
theorems. We note that if x0 is not in such a region then convergence to a root
is unpredictable and the reader is referred to [5] and [7] for progress in this
case.

For the remainder of this paper we assume that x0 is contained in a region
of stability and that the solution trajectory converges to a zero x *. If this is the
case then, by following the trajectory closely enough, we can guarantee
convergence to x*. For this purpose any stable method of solving an initial
value problem may be employed and, for sufficiently small steps, convergence
to x* is certain. In practice, however, we would like to take large steps. Far
from the zero this entails using a sophisticated step size estimator which will
adapt the step according to the function behaviour and choose it to be as large
as possible consistent with sufficient accuracy. Obviously the lower the
accuracy the less work will be involved but the higher the probability of
leaving the correct trajectory and diverging or finding the wrong solution.

Close to the solution, however, we can make use of the special
characteristics of the problem to give rapid final convergence, using methods
which are also suitable for following the trajectory far from the solution. In
the following two sections we consider single and multistep methods, tradi-
tionally used for the standard initial value problem, which are adapted to give
rapid convergence close to the zero x*.

3. Single step methods

3.1. General theory

In this section we give some general results on iterative processes of the
form
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[5] Nonlinear equations 177

x,+l = G(xh h,), i = 0,1, • • • (3.1)

where G : D x Dh CR" x R -» R", and in the following sections we apply

these results to particular iterations. We use the results of Ostrowski [26] and

Ortega and Rockoff [25] on processes of the form xl+1 = G(x,),

G : D CR" —* R", and generalize the existing theory to include the extra

variable. We quote the following definitions which can be found in [24],

except that here suitable modification has been made to allow for the slight

generalization.

Let C($,x*) denote the set of all sequences generated by an iterative

process $ with limit point x*. Let {xk}CRn be any sequence that converges

to x*. Then the R-convergence factors of the sequence are the numbers

rlirnsup||xk-x*|rk, if p = \

RP{xk}=\

[limsupH^-x*!!1"1*, if p>\.p

The R-convergence factor of $ at x* is defined by

and the quantity

f°° if Rp(J>,x*) = 0 for all pG[l,°°),

OR{#,x*)=\

I ^,x*) = 1} otherwise

is called the R-order of 3> at x*. We say that the convergence of $ at x* is

superlinear if Ri($, x *) = 0.

Let G : D x Dh CR" x R -^ R", then x* is a point of attraction of the

iterative process (3.1) if there exists an open neighbourhood S of x * and a set

/, called the h-domain of £, such that S CD, lCDh and for any x0E. S and

any {h,}Cl the iterates {x,} remain in D and converge to x*. Also we say that

x* is a fixed point of the iteration (3.1) if x* = G(x*, h) for all h G Dh.

We can now give conditions on G(x, h) which are sufficient fora point x*

to be a point of attraction of (3.1).

THEOREM 3.1. Suppose that G : D x Dh C R" x R -> R" has a fixed point

x* and dxG(x, h) exists and is continuous in a neighbourhood of (x*, h) for

each h G Dh. Let Ia C Dh be such that, for some norm, || d,G(x *, h )|| ̂  a < 1 for

each h G /„. / / /„ is non empty then x* is a point of attraction of iteration (3.1)

with h-domain Ia.
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(Note that here and subsequently dxG(x, h) denotes the Frechet partial

derivative of G with respect to x.)

PROOF. Using the continuity of dxG(x*, h)it follows from [24, Theorem

5.2.3] that, given e > 0 , for any h G Ia there exists a S > 0 such that

\\G(x,h)- G(x*,h)- dxG(x*,h)(x - x*)\\Se\\x - x*\\

for all x eS(x*,5). Now

\\xl+,-x*\\ = \\G(x,,hi)-G(x*,hi)\\

= \\G(xi,h,)-G(x*,hi)-d,G(x*,h,)(x,-x*)

+ dxG(x*,h,)(x,-x*)\\

^\\G(x,,h,)-G{x*,hi)-dxG(x*,ht)(xl-x*)\\

+ \\dxG(x*,h,)\\ ||x,-x*||.

Thus, if h, G /„ for each i,

Since a < 1 we may assume that e was chosen so that e + a < 1 and the result

follows.

The following example shows that the condition \\dxG(x*,h)\\^a < 1

cannot in general be replaced by r}(dxG(x*, h))^ a < 1, where TJ( - ) denotes

the spectral radius. If G(x, h) is defined by

and a < 1 then r)(dxG(x,h)) = a for all h, but the iteration (3.1) does not
converge, even locally, if h, converges to 1 sufficiently fast. However, a
corollary to Theorem 3.1 will be useful and gives a case when TJ(<?XG(X*, h))

can replace | |3 ,G(X*, /J ) | | in the theorem.

COROLLARY 3.1. Suppose G satisfies the conditions of Theorem 3.1.

Suppose also that there is a set I C Dh such that dxG(x *,h) can be expressed as

dxG(x*,h)=(t>(h)A

for each h G /, where A is a fixed matrix and <f> : Dh C R -» R. If Ia =

{h G /117(d,G(x*, f i ) ) S o : < l } is non empty then x* is point of attraction of

(3.1) with h-domain /„.

Theorem 3.1 gives sufficient conditions for local convergence of the
iterative process (3.1) but gives no information on the rate of convergence.
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For this we require conditions on {hi}. We begin by deriving a result on the
assumption that lim.-^h, exists.

THEOREM 3.2. Suppose G : D x Dh CR" xR-*R" has a fixed point

x * E Int (D) and is continuous in an open neighbourhood S of (x *, h *), where

lim,_»/t, = h*. Suppose also that dxG(x,h) exists in S and is continuous at

(x*,h*). If the spectral radius of dxG(x,h) satisfies

V = r)(dxG(x*,h*))<l

then x* isa point of attraction of the iterative process $ given by (3.1). Moreover

and if 17 >0 then OR (J,x*)=l.

PROOF. The proof is omitted since it follows closely those given by
Ortega and Rheinboldt [24, Theorems 10.1.3, 10.1.4 and 10.1,7] except for
modifications to allow for the extra variable h.

To complete the theoretical background we consider the possibility of
faster convergence in the case when ri(dxG(x*, h*)) = 0. For this case we
require further knowledge of the sequence {h,}.

THEOREM 3.3. Suppose G : D x Dh CR" x R -> R" satisfies the condi-

tions of Theorem 3.2 and that 17 (dxG(x *, h *)) = 0. Suppose also that dxxG(x, h)

exists and is continuous and bounded in a neighbourhood S of (x *, h *) and that.

dXh G(x, h) exists and is bounded on S. Then x* is a point of attraction of the

iterative process $ given by (3.1) and Ri(£,x*) = 0. If, in addition, {hi}

converges to h* with R-order q^\ then OR(£, x*)g min(2"m, q), where

dxG(x*,h*)m =0, dxG(x*,h*)m~l/0.

PROOF. Theorem 3.2 shows that x* is a point of attraction of S and that
R,(^,x*) = 0.

Define u{x,h) by

G(x,h)=G(x*,h.)+9xG(x*,h)(x-x*)+u(x,h).

Then, using the existence and boundedness of dxxG(x,h), it follows from[24,
Theorem 3.3.6] that there exist positive constants 81, 82 and Kt such that

for all xES(x*,8,), h E(h* - S2,h* + 82) = I2, say. Similarly, from [24,
Theorem 3.2.3], with D(h) defined by

D(h)= dxG(x*;h)- dxG(x*,h*),
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then, if Si, S2 are sufficiently small, there exists a K2>0 such that

\\D(h)\\^K2\h-h*\

for all x G S(x*, 5,). h G h. Finally let A = dxG(x*, h*). Then T,(A) = 0 and
there is an integer m ^ n such that A " " V 0 , Am =0.

Now

= D(/j)(x-x*)+,3J[G(x*,>i*)(x-x*)+u(x,h).

Thus, if D, = D(h,), u, = u(x,, h,) and e, = x, - x * , we have

ei+, = Aet + Did + Mi

a n d , b y i n d u c t i o n , f o r / g o

e, = A'e,-, +A'-xDl-,e,-l + • • • + AD,- 2 e , -2+ Di-Xe,-X

+ A'~1u,-I + ••• + Au,_2+ «,-,.

With / = m, since A m = 0, we can derive

||e, || ̂  /C1(y"-1||e,_m f + • • • + y \\e,-2\\
2
+ \\e,-tf)

where e, =\h, - h*\ and y = \\A \\.

Since {x,} converges to x *, it follows from (3.2) that there exists an i0 > 0
and constants Bu B2 such that, for each i g i0,

\\e4*Bt\\e,-mf+B2\\e,-m\\e.-m.

Replacing i by mi and writing a, = Bi||emi|| and /3, = B2em, we have

a1-ga?., + a1-1/31-,,

for all sufficiently large ;'.
Rather than give uninstructive details of the remainder of the proof, we

state that, if 0 < p < min(2, qm), then there exists a c > 0 and/ >0such that

for all i § /, where e is the base of the natural logarithm. It follows from this
that the R-order of the sequence {a,} is at least p. Since a, = ||e,m || and p is
arbitrarily close to min(2, qm), it follows that OR(£, x*)g min(2I/m,q).

3.2. Runge-Kutta methods

Consider the general class of explicit Runge-Kutta methods for solving
the differential equation
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[9] Nonlinear equations 181

x(t) = q(x), x(0)=xo, (3.3)
given by

r

x m + l = x m + fcm2 a,ki(xm), m = 0 , 1 , •••, (3.4a)
i - l

where xm is an approximation to x(ho + /ii + • • • + hm-t),

k,(x) = q(x + hm'fl P.M*)), « = 1, • • •, r, (3.4b)

and hm is the step length. A discussion of stability for this method is usually

based upon consideration of the linear differential equations

x(t) = Ax, x(0) = jco, (3.5)

where A is a fixed matrix whose eigenvalues have negative real part. The true

solution of (3.5) is

x(t + hm) = exp(hmA)x(t)

whereas the solution given by (3.4) is

xm+l = p(hmA)xm, (3.6)

where p(z) is a polynomial of degree r whose coefficients depend upon choice

of the a's and /3 's in (3.4), The usual practice is to choose these parameters so

that p(z) is a good approximation to exp(z). We note that, since the true

solution of (3.5) is decreasing, a requirement on the step length hm is that the

condition

V(p(hmA))<l, m = 0 , l , - - - (3.7)

be satisfied so that the iterates in (3.6) also decrease. However, in the

nonlinear case, (3.7) is of little practical use in controlling the step size.

In this section we consider (3.4) not only as a means of approximating the

solution of (1.1) but also as a one-step method for finding a zero of /. For the

former the theory is well known [17] and for the latter we use the results of

Section 4.1. In this case we have

x m + t = G(xm,hm), m = 0 , l , - - ,

where

G(x,h) = x + h1Z a,k,(x,h)
i = l

and, as in (3.4b),
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We apply this process to the case when q(x) is given by

q(x)=-/ (x)- / (x) . (3.8)

Then, if / represents the unit matrix,

dxG(x, h) = I + h^Z a,dxk, (x, h).

If x* is a zero of f(x) then x* is a fixed point of (3.4) and also, from (3.8), we

have

q'(x*)=-I,

where the prime denotes differentiation with respect to x. It then follows by

some simple algebra that

where p(z) is the same polynomial as appeared in (3.6). Thus, from Corollary

3.1, a sufficient condition for x * to be a point of attraction of (3.4) is that, for

some a < 1,

r j(p(- hm)I) = |p(— hm)\ S a, m = l , 2 , ••-, (3.9)

which, unlike (3.7), provides an explicit bound on each /im for ultimate

convergence to x*. It also follows from Theorem 3.2 that, if lim.^Jt, = h*,

the iterative process can give superlinear convergence to x * only if h *

satisfies

p(-fc*) = 0. (3.10)

In the case when f(x) is three times continuously differentiable it follows from

Theorem 3.3 that if h, converges to h* with R -order g 2, then the iterative

process (3.4) has R -order at least 2.

In the application of (3.4) it is of benefit to choose the parameters so that

the resulting method will follow the solution of (1.1) well enough to inhibit

divergence but will also provide a fast rate of final convergence. This means

choosing a method which allows h * to be chosen so that (3.10) is satisfied. We

note here that for the well-known 4th-order Runge-Kutta process p(z) is

defined by

zl zl z^
p{z) 1 + 2 + 2! 3! 4!

•

and p(— z) has no real root. Thus no choice of h* can furnish second order

convergence. Also Heun's predictor-corrector method [17, p. 67] may be

written
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xm+1 = xm + ^(q(xm) + q(xm + hmq(xm))). (3.11)

This is of the class (3.4) and has p(z) defined by

This is simply a Runge-Kutta method of order 2 and again p( - z) has no real

root, so no choice of h* can give second order convergence to x*.1 In

attempting to solve (1.1), Boggs [4] used this method as an explicit approxima-

tion to the trapezoidal rule.

We note that for these two methods we can use Theorem 3.2 to show that

and

So, assuming (3.9) is satisfied, convergence is at best linear and the fastest

convergence is achieved by choosing h* to minimise \p(- h*)\. For the order

two method this is h* = 1.0. If the sequence {hm} does not satisfy (3.9), then

the method will not generally converge.

Boggs [4] in his paper suggested there is a difficulty of stiffness involved

in integrating (1.1). However, close to the solution at least, this is not the case,

since the Jacobian matrix of the right hand side of (1.1) is close to - /. The

symptoms of instability which Boggs ascribes to stiffness appear identical to

the behaviour observed if the sequence {hm} contravenes (3.9). If we attempt

to solve the differential equation (1.1), the standard methods tend to allow hm

to increase as the zero is approached, since the rate of change in direction of

the solution trajectory is decreasing. If this happens then oscillations may

occur if hm becomes too large, as would be the case, for example, when using

Newton's method with a step length greater than 2. When the step is suitably

controlled no problems of instability occur and, indeed, as long as hm satisfies

(3.9) for each m, close to the zero the problem is extremely stable, simply

because any zero of / is an asymptotically stable node of the autonomous

differential equation (1.1) [20].

The foregoing theory shows that any method giving a polynomial p(z)

such that p(— h) has a positive real root will be effective for producing rapid

final convergence if {hm} is suitably chosen. For example, we consider briefly

Runge-Kutta methods of orders one, three and five.

1 Note that "order" is a term related to the accuracy of single and multistep methods in

following the trajectory i(f) (see [17]), while the terms "I?-order" and "second order" are

related to the speed of convergence of a sequence to its limit (see §3.2 and [24]).
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The simplest first-order method is Euler's method. In this case p(z) is

given by

p ( z ) = l + z

and from (3.9) we see that x* is a point of attraction with h-domain [8,2-5],

for 8 arbitrarily small, i.e. local convergence is guaranteed if 0 < 8 ^ hm S

2—8 for each m. Also, from (3.10), convergence to x* can be second order

only if hm converges to 1 with R -order at least 2. This is essentially Newton's

method.

There is a class of third-order Runge-Kutta methods and, for each, p(z)

is defined by

Again, from (3.9), these methods converge locally with h-domain [5, h — 8],

for arbitrarily small 8,where/T= 2.5127- •• .Also convergence to x*can be

second order only if hm converges sufficiently quickly to hR = 1.596 • • • (hR is

the real root of p(— z)).

Finally, there exists a class of six stage fifth-order methods described by

Lawson [21]. For one which he recommends, p(z) is defined by

In this case x * is a point of attraction with h -domain [5, h — 8] for arbitrarily

small 8, where h = 5.6039' • -, and again convergence to x * is second order if

hm converges sufficiently quickly to h = 2.6299- • -, where h is a real root of

The conclusion of this section is that there exist single-step methods

which can follow the solution trajectory of (1.1) sufficiently accurately and

which, by suitable control of the step length, can furnish rapid convergence to

x*. In Section 5 numerical details are given for a third-order method which

adapts the step length until it reaches a maximum of hR = 1.596- • -, after

which it is not allowed to increase further.

4. Multistep methods

4.1. Implicit multistep methods

In this section we consider the solution of the differential equation (3.3)

by means of a linear multistep method of the form

p(E)xm-ha(E)q(xm) = 0,. m = 0 , l , - - , - (4.1)
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where E is the displacement operator defined by

E"(v(x))=v(x

and p(A) and or (A) are polynomials given by

185

P(A)=S«,A',
l-o

and

2
y-o

(4.2)

(4.3)

The process (4.1) can be considered as a (possibly implicit) multistep method
of the form

-,xm) = m=0, (4.4)

and we can use the following theorem, due to Voigt [28], to give conditions on
the method which will guarantee local convergence to a zero of / when q(x) is
given by (3.8). In the following d,G(xx, • • -,xm) denotes the Frechet partial
derivative of G with respect to x,.

THEOREM 4.1. Suppose that G : D'+1 C(i?")'+1-> R" is continuously dif-

ferentiable on an open neighbourhood D'0
+1CD'+i. Assume that there is an

x*ED0 such that G(x*, • • -,x*) = 0, dxG{x*, • • -,x*) is nonsingular and

17 = r}(H)< 1, where H is given by

H =

0

/

D

0

(4.5)

and

= -d,G(x*,---,x*)-ld.G{x*,--;x*), (4.6)

Then there is an open neighbourhood S of x * such that the sequence {xk}

defined by the iterative process & given by (4.4) is well defined for any

(x0, Xi, • • •, xr_i)G S' and converges to x* with
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PROOF. See Voigt [28].

In our application, from (4.1)-(4.3), we have

r r

G(y,, • • •, yr+1) = X <*,yr-i*i ~ h 2 A<?r-,+i, (4.7)
1-0 i-0

where qk = q(yk).

The first condition that Theorem 4.1 imposes is that

G(x*,--,x*) = 0 (4.8)

which, since q(x*) = 0, gives

j>, =0 (4.9)
i-o

and this, in the usual notation, can be expressed as

p(l) = 0. (4.10)

Also

d,G(yu • • •, y ,+ i ) = a,-,+iI - h f $ r - i + i q ' ( y , ) , i = 1, • • -,r+ 1

and since (7'(x*) = ~ h it follows that

5,G(JC *,••- , x *) = (ar_,+l+ hp,-,+l)l, i = 1, • • •, r + 1.

For application of Theorem 4.1 we require that diG(x*, • • -, x*) be nonsingu-

lar, i.e. that

a ,+ /i/3 r/0 (4.11)

and subsequently we assume this to be the case. In Section 4.3 we assume (4.1)

to be an explicit method, in which case a, ̂ 0 and /3r = 0, so (4.11) is

automatically satisfied.

Define

a:,_,+1 + hpr-,+l
6 a, + hPr ' ' ' '

so

H, = - £ / , i = 2 , - - - , r + l.

To guarantee that the sequence {xk} generated by (4.4) converges to x*, we

look at i)(H) with H given by (4.5) and (4.6). Simple algebra shows that A is

an eigenvalue of H if and only if A satisfies

p(A)+hcr(A) = 0. (4.12)
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Thus, from Theorem 4.1, a sufficient condition for local convergence to x* is
that each root of (4.12) is less than 1 in magnitude. As in (3.9), this gives an
explicit bound on h to ensure ultimate convergence.

We now consider the possibility of superlinear convergence of the
sequence {xk} to x*. Theorem 4.1 shows that this is possible only if

r,(G(x*, •••,**)) = (),

i.e. if all the roots of (4.12) are zero. This is equivalent to the condition

p(A)+/ur(A)=yA'

for some -y/0. From (4.2) and (4.3) this is equivalent to

a, + hpr = y,

and

aj + hp,=0, y = 0 , - v . r - l .

We have therefore proved the following theorem.

THEOREM 4.2. For superlinear convergence of a linear multistep method

applied to (1.1) the general iterative process

2 a,xm+i + h2 A/(JC+J)-y(*-.+l) = 0
j-0 ,~0

must be of the form

where

and

a,xm+, - 'f alJ(xm+ir
l
f(xm+l)+hpJ(xr)-

l
f(xr) = 0,

1-0

2>,=o
,-0

In the explicit case, when ft, = 0, this can be considered as a weighted
Newton method where, at each step, x,+m is taken to be a weighted sum of
Newton steps, i.e.

where a, = - a, I a, and 2,'ijd, = 1.
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4.2. Explicit methods

Since an implicit method requires, at each iteration, the solution of a
system of nonlinear equations and since finding such a solution is our original
problem, we regard implicit methods as inappropriate and do not consider
them further. In this section we consider explicit multistep methods for
solving (1.1) which have satisfactory stability and order properties. The results
of the previous section show that, given h0, any method for which p(A)
satisfies (4.10) and

p(A) = A'-*otr(A), (4.13)

(where <x(A) is a polynomial of degree r -1), is explicit and gives local
superlinear convergence to x * when h = h0. Consider now the order, in the
sense of Henrici [17], attainable by this method.

THEOREM 4.3. Given any h0 in (4.13) there exists a unique polynomial

cr(A) of degree r — 1 such that the resulting method has order r — 1. For any r

there exist at most r values of h0 such that the method has order r.

PROOF. The proof is an application of Lemma 5.3 of Henrici [17] which
states that a method has exact order p if and only if the function

•«>-££-»«>
has a zero of exact order p at £ - 1. In this case, from (4.13), <£(£) is given by

Thus, a method defined by (4.13) has order p if and only if there exists a
function i/^f) such that t/fi(l)/O and

Letting 1 + y = C, this is equivalent to the existence of a function *pi{y) such
that ip2(0) / 0 and

i.e.

*o+log(l
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Expanding both terms on the right hand side in powers of y, the condition

that the method has order p is that there exist constants iru ir2,---, such that

TTI ^ 0 and

<-•••) (4.14)

where, for each /, a, (h0) is a polynomial of degree / — 1 in h0.

For p = r - l the coefficients 777, 7 = 1,2, • • •, can be chosen so that

1T. +a,{ho)lh'0 = 1 and

,̂-Hr-i 7 + -̂  = 0, 7 ^ 2 , (4.15)

in which case the right hand side of (4.14) represents a polynomial of degree r
with coefficient of y' equal to 1 as required. The derived method is obviously
unique and has order r — 1.

If p = r, h0 is such that

a,(ho)lh'0 = 1,

and v,, j > r, are chosen to satisfy (4.15), then the method has order r. This can
only be the case when h0 is a root of the polynomial a,(h0)- hi,, which is of
degree r. Thus there are at most r values of h0 for which a method satisfying
(4.13) can be of order r. This completes the proof.

Next we use Theorem 3.3 to give a lower bound on the local R-

convergence rate of methods satisfying (4.10) and (4.13).

THEOREM 4.4. Suppose that q(x)= — J(x)~if(x) is continuous and there
exists a 8>0 such that q"(x) .exists and is bounded in S(x*,S). Then any
iterative process $ defined by (4.1)-(4.3) for which p(A) satisfies (4.10) and
(4.13) when applied to (1.1) converges locally to x* and

PROOF. Rewrite (4.1)-(4.3) in the explicit form

xm+, = G(x m + , _ , , - - ,x m )

and set zk = (xk, • • •, xk-,+i), for k = m + r - 1, m + r, • • •, and z* =

(x*, ••• ,**). Define G : D'C(Rn)r ^>(Rn)r by

• • •, ym), y,, • • •, ym_,).

Then zk+i = G(zk). Since G is differentiate at x*, G is differentiable at z*

and G'(z*) = H, where H is given by (4.5). However it follows from (4.13)
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that in (4.5), H, = 0, i = 2, • • •, r + 1, and so 17 (G'(z*)) = 0. Also, from the

form of (4.5), G'(z*)' =0 and G'(z*)'~V0.

G(z) therefore satisfies the conditions of Theorem 3.3, z* is a point of

attraction of the iteration &2:zk+1= G(zk), and OR(J2, z ' ) g 2 " ' .

Now there exists a norm such that || x, - x * || § || z, - z * || for each i (see

[28]) and so OR(J?,x*)g OR(J*2, z*)g 2"'. This completes the proof.

We can now look at methods suggested by Theorem 4.3 for various

values of r. The relevant polynomials are

f o r r = 2, (4.16a)

/ > x > 3 ( 6 h g - 5 / i o + 2 ) t 2 , ( 3 / i g - 4 / i o + 2 K (2fcg-3/io
P ( A ) " A 2fcS A + /»„ A 2/iS (4.16b)

for r = 3,

and

. . . . , ( 1 2 ^ g 1 3 ^ g + 9 h o 3 ) t 3 , (12/to-19/ii+16/io-6) l 2
P ( A ) = A ~ 3hl X + 2h\ k

2
 s , (6/>o-ll/ig+12/io-6) , ,

A •+• , , 3 l o r r — 4 ,
O l

, 3

no

and similar formulae, of increasing complexity, can be derived for larger

values of r. The two-step method in (4.16a) is order 1, but if h0 = 1 the method

deflates to a one-step method, also of order 1. This is, of course, Newton's

method, and is the one-step method of order 1 suggested by Theorem 4.3.

Similarly if h0 in (4.16b) is chosen so that the constant term is zero then

the resulting method would be two-step and of order 2. That the polynomial

2hl~3ho + 2 has no real root shows that there is no such method. However

there exists one value of h0 for which a three-step method of order 3 exists.

This is the method obtained by setting the constant coefficient of p(A) in

(4.16c) equal to zero. The equation

6/1S-H/10+12/io-6 = 0 (4.17)

has only one real solution, which is approximately 0.8599, and on setting h0 to

this value (4.16c) deflates to a three-step method.

Theorem 4.4 gives information on the R -order of convergence of

iterative processes specified by (4.16). For (4.16a) the R -order is g 2m and for

(4.16b) is s 2I/3. We note howeyer that the inequality is not necessarily strict,

for example, if h0 = 1 in (4.16a) the method becomes Newton's which has

R -order 2. However, Theorem 4.4 does suggest that increasing r will reduce

the efficiency of final convergence to x*.
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Two further requirements on any practical method, for small h at least,
are those of consistency and stability (see Henrici [17]). Consistency is
equivalent to having order at least 1, which is the case for the methods under
discussion, and stability demands that no root of p(A) exceeds 1 in modulus
and that the roots of modulus 1 be simple. In this case the stability condition
depends upon h0 and for r = 2,3,4 the methods are stable if

h0 g 1/2 for r = 2,

/ios2/3 for r = 3,

2/3 S h0 S 2.5147 • • • for r = 4.

(4.18)

So, for each r considered, if h0 is chosen to satisfy (4.18) the methods will be
stable for small h. That this condition need not be strictly fulfilled is shown in
the next section for the methods will not be used with small h but only with
h = h0.

4.3. Variable steps

The methods discussed in the previous section were derived with the idea
of initially using a small step size which, as the zero x * is approached, could
be increased and finally fixed at h0 to give superlinear convergence to x*.

However the foregoing theory assumes h to be fixed throughout and so is not
directly applicable to variable step size. We may generate methods based
upon those described in section 4.2 with varying step size, in the style of Gear
[13]. These can be either of the Nordsieck type [23], where instead of using
approximations to x(ih) and x(ih), i = m, m + 1, • • •, m + r — 1, we use
approximations to the derivatives x(k)(mh), k = 0,1, • • -,2r - 1, or of the
variable step type where we start with r unequally spaced points tm+,-,,

r > i =£ 0, and compute the coefficients of the explicit multistep formula

Vm+r = / j m + r_l / 3 r - , , m V m + , - , + • • • + hmPo,m Vm

so that the order is r - 1, where h, = tm+l+,-tm+l. This is the formula for
variable steps (based upon (4.13)) which, if h, = h0 for / = m, • • •, m + r, gives
the formulae listed in (4.16).

Unfortunately these variable step methods are unstable with respect to
changes in step size. When programmed the methods work well for fixed step
but display obvious instability when step sizes are increased. This behaviour is
explained in detail by the theory developed by Gear and Tu [14] and
precludes the use of the methods with varying step. However, it is shown in
[14] that the variable step methods based upon the Adams-Bashforth
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formulae are stable and so the methods of section 4.3 can be combined with
these to give the required characteristics. If an Adams-Bashforth variable-
step method with r steps is applied to (1.1) then, as x * is approached, the step
size can be increased. Because the Adams method cannot give superlinear
convergence to x * we finally hold the step fixed at some value h0 and when
enough steps of fixed size have been taken we can switch to a method which
gives fast ultimate convergence. Should a premature change to the fixed step
be made then it will be necessary to reduce h and revert again to the variable
step Adams method. These composite methods are thus variable formula and
possibly variable order and an application of the comprehensive theory of
Gear and Watanabe [15], on stability of variable order multistep methods,
shows that the derived methods are stable.

In the following section we describe some numerical experience with
variable formula methods of this type. A third-order Adams method is
coupled with methods of order 3 as given by (4.16c).

5. Numerical results

We begin by making some general comments on the effectiveness of
solving (1.1) as a means of finding a zero of /. Although it has been necessary
to assume that x0 is in a stability region of a zero x*, for if this is not so then
convergence is not guaranteed, there are applications where the approach will
be effective. For example, where the usual methods continually converge to a
zero which is known but where the user requires to find a different zero, which
he knows to exist, and has a suitable starting point. However, one should
realize that, whilst the number of evaluations required to follow the trajectory
sufficiently accurately may seem reasonable to one used to solving ordinary
differential equations, it may seem prohibitively large to one used to solving
nonlinear equations.

Following the trajectory x(t) is usually a simple matter if h can be chosen
sufficiently small, but in practice the crucial part of solving (1.1) is in the step
length control. Far from a zero of / all of the usual problems of step control
occur and great care is required to maintain accuracy. Close to a zero of / this
is not the case so long as h is controlled in a way which will guarantee
convergence (see for example (3.8) or the bound on the roots of (4.12)). As x*

is approached we are less interested in accuracy in following the trajectory
than in convergence to x* and indeed, if we are to achieve fast ultimate
convergence to x *, we must relax our preoccupation with accurate represen-
tation of x(t) which converges to A:* only linearly (see (2.1)). In the examples
that follow we are interested only in demonstrating ways of achieving faster
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final convergence and so we look only at cases when x0 is fairly close to x *. In

this case the criterion for varying h can be simpler than would be necessary in

the general case.

The basic technique depends upon the fact that the solution of (1.1)

satisfies

f(x(t))=e"f(x0).

Let f, = f(x,) and Z, be given by

Zl
 ' r.f:

Then any point x, on x(t), satisfies

Zof(x) = 0.

Suppose x, is our current approximation to x*, then the solution of

x(t)=-J(x)-lf(x), x(0) = x,

converges to x* (under the conditions of Theorem 2.1) and ||Zj/+i|| gives a

measure of the deviation of x,+l from this trajectory. On this basis a suitable

step change criterion was found to be h,+, = min (h *, ah,) where a is given by

2 if 0<SSe,

« = \ 1 if e , < 8 ^ e 2 (5.1)

0.5 if e2<SSe3

and where 5 = ||Z,/1+i||. In addition, the point x,+i was rejected and the step

repeated with half the step length if either S > e3 or JC1+, crossed a region of

singularity of the Jacobian J(x). Finally, for each method, h, was not allowed

to increase beyond h *, the step size required to furnish the fastest con-

vergence for that method.

Various methods were tested on a variety of problems and the results of

some of these tests are tabulated below. The methods described are a

third-order Runge-Kutta method (RK3) with h* = hR = 1.596- •• and an

Adams-Bashforth variable-step method of order 3, coupled with a multistep

method of order 3, as described in section 4 (AB3). This method was tested

for various values of h0 and the results for /t0 = 0.8598 •••, which is a

three-step method, and for h0 = 0.7, which is a four-step method, are given

below. For comparison we looked also at the basic algorithm described by

Boggs (PECE) given in (3.11).

Since we are advocating the use of (1.1) as opposed to (1.2), we also
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looked at a third-order Runge-Kutta method (K3) for solving equation (1.2)
to find an estimate of the solution at t = 1. In this method a major iteration
consists of integrating

x(0= - / ( x ) - / ( * ) . x(0) = x,, (5.2)

giving a sequence {yi,,}, / = 1, ••.•,Nf, such that y,,, is an approximation to
x(O> where tul = Sf-'i h,k and f,,Nl = 1. Then xl+l = y^, = y,+,,,. It is proved by
Kleinmichel [19] that, under general conditions, if the method uses step size
h* = 1 then the sequence {x,} converges to x* with R -order 4. Despite this
high rate of convergence, the greater demand on accuracy required in
following the solution trajectory of (5.2) causes the algorithm to be less
effective than those described in this paper.

For a fair comparison of methods we consider a simila/ step control to
that described above. Since the solution of

does not generally converge to x* and may, in practice, cross a region of
singularity of J(x), it is necessary that each yi; be close to the solution
trajectory of (5.2). In this case, therefore, the most suitable criterion is that
hiJ+i = min (ah,j, 1 - f,,,+1) where a is given by (5.1) and 8 = ||Zi/(y,.;+i)||. Also
we took h,+,., = min(l,2max(/i,,Ni, h,.Nt_,)). The conditions for rejecting a step
were the same as before.

In each algorithm e3 = 0.5, e2 = 0.25 and ei = 0.05 were found to be
suitable, except-that ei=0.01 was used in AB3 since, with e, = 0.05, that
method occasionally made a premature change to step size h * when close to
the solution x*. The initial step, in each case, was taken as h*/8.

Each algorithm was applied to a variety of functions and the following
eight problems gave results which were typical. In each case the solution given
is the limit of the trajectory defined by (1.1) with the given value of x0.

1. A function found in Boggs [4];

f, = x2
1-x2+l,

/2 = x , -cosf Y*2 )>

with initial guess xo= (1,0). The correct solution is x* = (0,1).

2. Problem 1 with initial guess (— 1, - 1). The correct solution is (0,1)
and the solution trajectory passes close to a region where J(x) is singular.

3. A function found in Broyden [6];
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ft = \ sin (x,x2) - x2/(4v) - xJ2,

U = (1 - 1/(47T))(C2"- - e) + exjv - 2ex,,

with initial guess (0.6, 3.0). The correct solution is (1/2, TT).

4. The gradient of Rosenbrock's function;

/1 = 400x,(x2-x2) + 2(x1- l) ,

U= -200(x?-x2),

with initial guess (-1.2, 1.0). The correct solution is (1,1) and this problem
can be considered fairly difficult since the solution trajectory is always close to
the region were /(x) is singular (see [5]).

5. A function found in Branin [5];

/ , = 2 sin (2TTXI/5) sin (2TTX3/5) - x2,

f2 = 2 .5 - x3 + 0.1x2sin(27rx3)- xu

/3 = l + 0.1x2sin(277-Xi)-x3,

with initial guess (0,0,0). The correct solution is (1.5, 1.809- • •, 1.0).

6. A function found in Deist and Sefor [10];

6

/, = 2 cot/3,x, , i = l , - - , 6 ,
/-i

where 100/3, = 2.249, 2.166, 2.083, 2.0, 1.918, 1.835, for. i = 1, • • •, 6 respec-
tively. With initial guess x, = 75.0, i = 1, • • •, 6 the correct solution is approxi-
mately (121.9, 114.2, 93.6, 62.3, 41.3, 30.5).

7. A discretisation of

3yy + y2 = 0

with boundary conditions y(0) = 0, y(l) = 20, gives rise to the equations

/, = 3x,(x2-2xI) + xl74,

/, = 3x,(x1+1 - 2x, + x,_,) + (x1+, - Xi_,)74, i = 2, • • •, n - 1,

/„ = 3xn(20 - 2xn + xn.,) + (20 - xn-,)
2/4.

The true solution of the boundary value problem is y = 20f 3/\ As initial guess
we chose x, = 10, i = 1, • • •, n and set n = 10.

8. Same as problem 7 with n = 20.
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Both of these problems have solution trajectories which pass close to a region
of singularity.

Table 1 gives results on the effort required by the methods to reduce each
component of / to less than 1(T6. For each method the first line gives the
number of Jacobian evaluations, the second gives the number of function
evaluations and the third the number of equivalent function evaluations
counting a Jacobian evaluation as n function evaluations, except for problems
7 and 8 where the Jacobian is tridiagonal and its evaluation is counted as
being equivalent to 3 function evaluations. Note that, because of the way
steps were either accepted or rejected, the number of Jacobian and function
evaluations are not necessarily the same.

Algorithm

TABLE 1

Problem

RK3

AB3

h0 = .859-

/In = . 7

21

22

64

23

25

71

26

28

80

18

7

43

44

45

133

29

31

89

31

33

95

35

38

108

39

13

91

52

53

157

18

19

55

14

15

43

16

17

49

15

6

36

38

39

115

110

114

334

99

101

299

95

98

288

*

109

119

337

28

29

113

27

28

109

33

34

133

26

10

88

46

47

185

24

25

169

18

19

127

21

22

148

29

11

185

44

45

309

69

73

280

54

59

221

55

59

224

*

86

89

347

69

73

280

56

61

229

58

63

237

**

88

91

355

K3

PECE

* - h reduced to minimum allowed, viz. 2~"h*.

** - terminated after 200 function evaluations.

We can draw a number of conclusions from the numerical results. The
first is that the PECE algorithm, which has only linear convergence to x *,
requires significantly more evaluations than the other methods. This is as we
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would expect. Of the algorithms described in the previous two sections, the
multistep methods generally seem to be the most efficient. This is more
obviously the case when many evaluations are required for then these
methods gain by requiring only one evaluation per iteration. They are most
efficient when h0 is close to 0.75. For values larger than 1 the stability
decreases since the methods have some difficulty with large steps. For this
reason the Runge-Kutta methods appear more efficient when x0 is close to
x*. Also for values of h0 smaller than 0.6 multistep methods suffer from
instability, presumably because the steps are sufficiently small for the
instability predicted by (4.18) to have an effect. In general, the three-step
version seemed superior since it could change to give high order convergence
one iteration sooner.

Because of the high rate of ultimate convergence, the K3 algorithm is
generally superior when the problem is simple, i.e. when the solution
trajectory is smooth and does not approach close to regions where the
Jacobian is singular. However, where this is not the case RK3 and AB3 are
more efficient and in particular we note that they are more reliable in that
they always succeeded in finding the desired solution in a reasonable time.

We note here that any comparison of routines is necessarily a comparison
also of the step change criteria and that the criteria chosen were not
necessarily the best for each routine. However we have deliberately adopted
simple criteria for step size in the hope of demonstrating that the methods
which use (1.1) are more robust than those which use (1.2).

6. Conclusion

Single and multistep methods, normally applied to the solution of
ordinary differential equations have proved useful as a means of solving
nonlinear equations. These methods work well so long as the step lengths
used are strictly controlled. Although far from a solution of the equations any
accurate and efficient method is satisfactory, close to a solution greater
efficiency can be achieved by choosing a method which will give fast ultimate
convergence to the required solution.
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