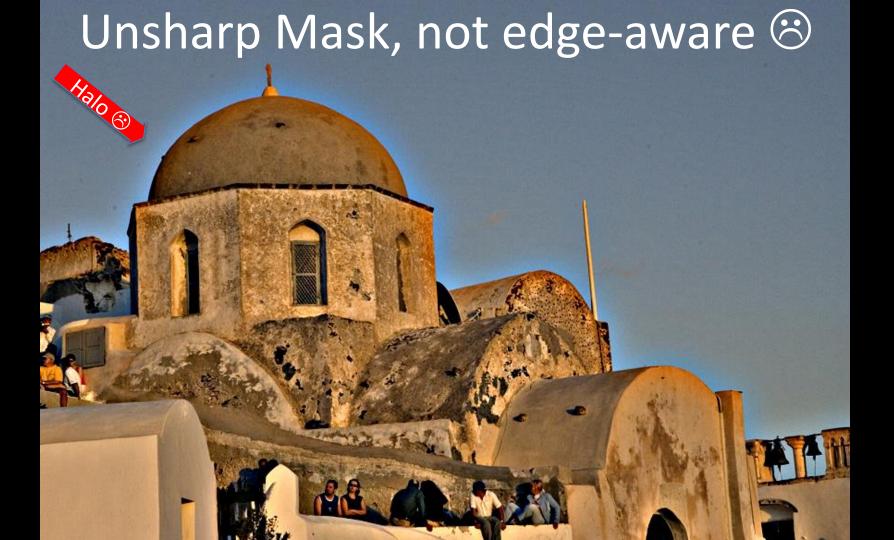
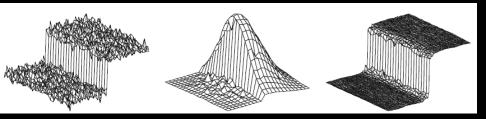
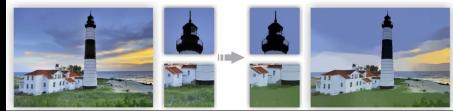
Fast Local Laplacian Filters: Theory and Applications

Mathieu Aubry (INRIA, ENPC), Sylvain Paris (Adobe), Sam Hasinoff (Google), Jan Kautz (UCL), and Frédo Durand (MIT)

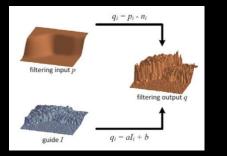


Edge-aware image processing





Bilateral Filter [Tomasi and Manduchi 1998]



Guided Image Filtering [He et al. 2010]

Edge-aware wavelets [Fattal 2009]

Adaptative Manifolds [Gastal and Oliveira 2012]

See also [Fattal et al. 2002], [Farbman et al. 2008], [Subr et al. 2009], [Gastal and Oliveira 2011]...

Local Laplacian Filter, edge-aware [Paris et al. 2011]

0

- No halos or gradient inversion
- Even for extreme edits

Some limitations...

• Too slow for interactive editing: 4s/Mpixel

• Unknown relationship to other filters

• Only detail manipulation and tone mapping

Our contributions

- Too slow for interactive editing: 4s/Mpixel
 > 20x speed up
- Unknown relationship to other filters
 - Formal analysis and relation to Bilateral Filter
- Only detail manipulation and tone mapping
 - General gradient manipulations and style transfer

Background on Gaussian Pyramids

• Resolution halved at each level using Gaussian kernel

level 1

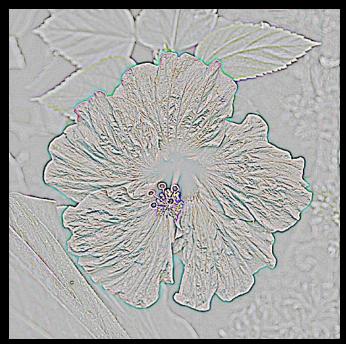
level 2

level 3 (residual)

level 0

Background on Laplacian Pyramids

• Difference between adjacent Gaussian levels



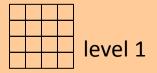


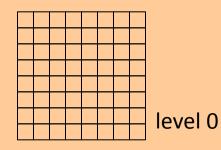
level 3 (residual)

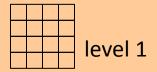
level 1

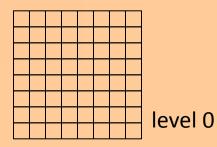
input image

level 2

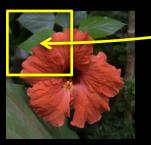






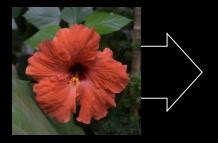


Output Laplacian pyramid



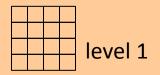
input image

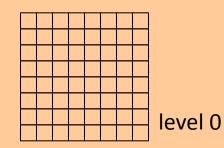
Local contrast manipulation



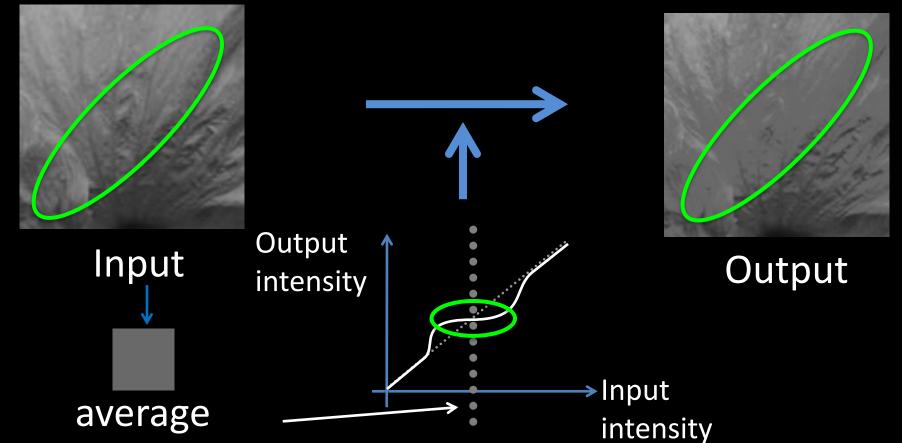
input image

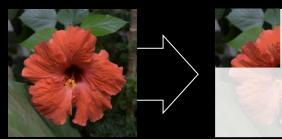
locally processed image





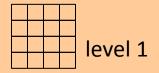
Output Laplacian pyramid

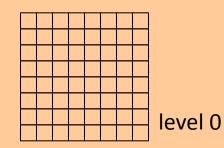




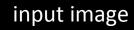
input image

locally processed image







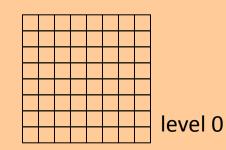


locally processed image

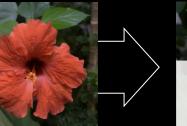
X			0		
2	>	3	7		
5	X	St.	1		
2	11	We a	n. Ter		

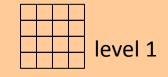
partial pyramid

level 2

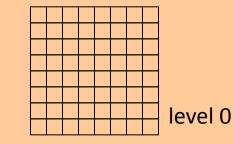


心	4	
N.	N.	





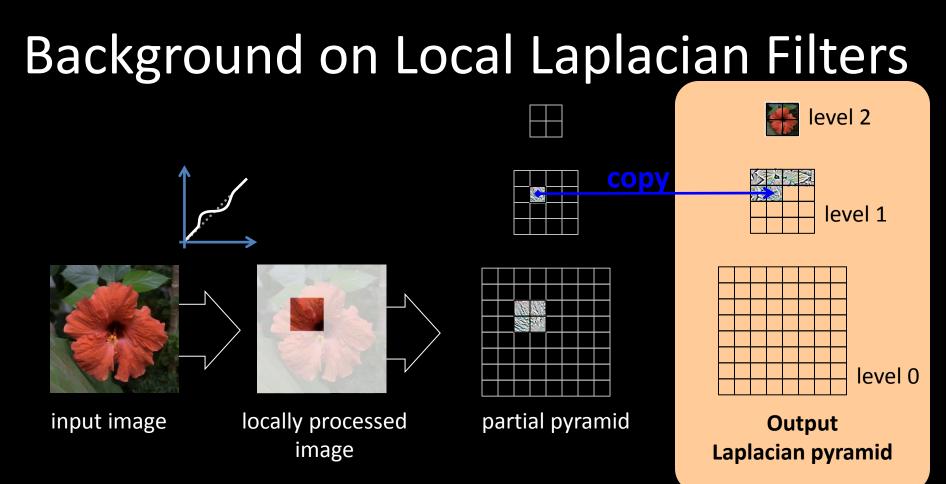
level 2

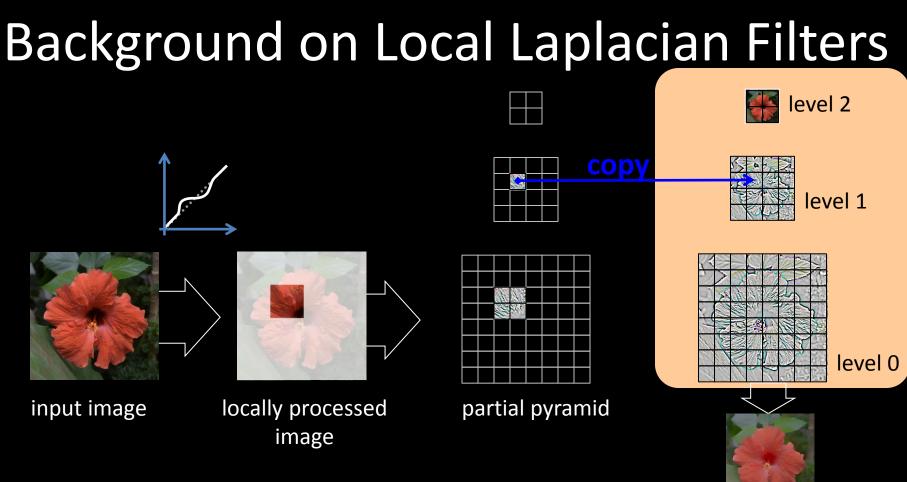


input image

locally processed image

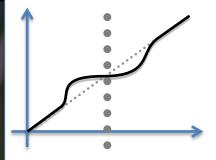
partial pyramid



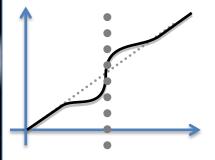


Input

Smoothing

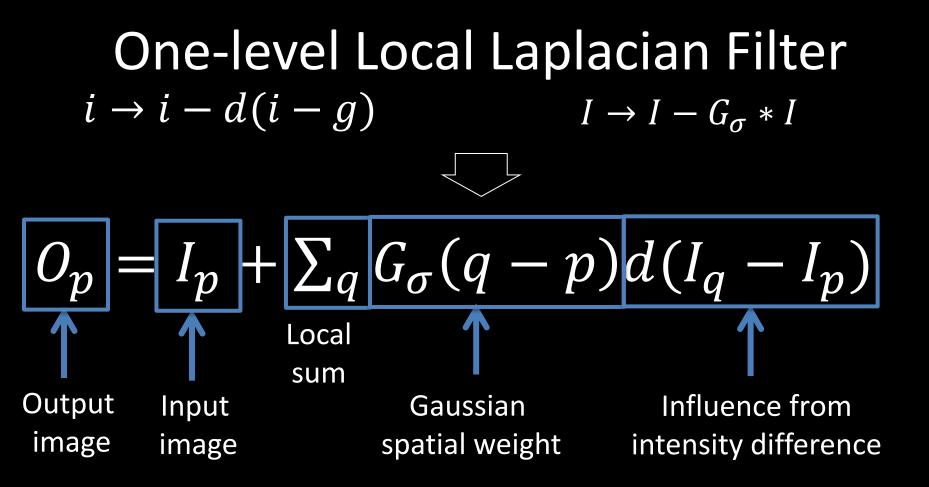


Enhancement



1. Speed up

One-level Local Laplacian Filter $i \rightarrow i - d(i - g)$ $\underline{I} \to \underline{I} - \underline{G_{\sigma} * I}$ level 1 level 0 locally processed partial pyramid input image STEP 1: image **STEP 2: INTENSITY REMAPPING PYRAMID** 23



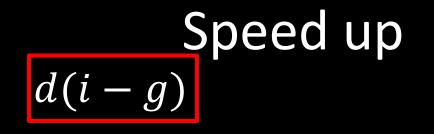
Why is it slow?

$$i \rightarrow i - d(i - g)$$
 $I \rightarrow I - G_{\sigma} * I$

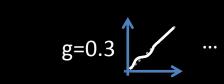
$O_p = I_p + \sum_q G_\sigma(q - p) d(I_q - I_p)$

For each neighborhood For each pixel

Computed #neighborhood X #pixels



Idea: if g were constant, we would need to compute d only once per pixel \triangleright Compute d only for a small set of values of g and interpolate Compute d K x #pixels



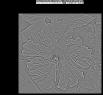
Remapped images

...

Laplacian pyramids

...

output



Performance

	[Paris 2011]	Our method	Speed up
1Mpixel CPU	15 s	350 ms	50x
4Mpixel GPU	1 s	49 ms	20x

Suitable for interactive editing

implemented in Lightroom/Photoshop

Input Image

Ground truth enhancement

Our method with 20 values

Our method with 10 values

Our method with 5 values

2. Relation to Bilateral Filter

Interpretation

Bilateral Filter Spatial weight Weighted intensities $BF_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q}} G_{\sigma_s}(\mathbf{q} - \mathbf{p}) G_{\sigma_r}(I_{\mathbf{q}} - I_{\mathbf{p}}) I_{\mathbf{q}}$ One-level Local Laplacian Filter $O_{\mathbf{p}} = I_{\mathbf{p}} + \sum G_{\sigma}(\mathbf{q} - \mathbf{p}) d(I_{\mathbf{q}} - I_{\mathbf{p}})$ \mathbf{q} Spatial weight Remapping from pyramid function

Interpretation

Bilateral Filter Spatial weight Weighted intensities $BF_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q}} G_{\sigma_s}(\mathbf{q} - \mathbf{p}) G_{\sigma_r}(I_{\mathbf{q}} - I_{\mathbf{p}}) I_{\mathbf{q}}$ One-level Local Laplacian Filter $O_{\mathbf{p}} = I_{\mathbf{p}} + \sum G_{\sigma}(\mathbf{q} - \mathbf{p}) G_{\sigma_r}(I_{\mathbf{q}} - I_{\mathbf{p}})(I_{\mathbf{q}} - I_{\mathbf{p}})$ \mathbf{q} Spatial weight Remapping from pyramid function

Power function

Gaussian

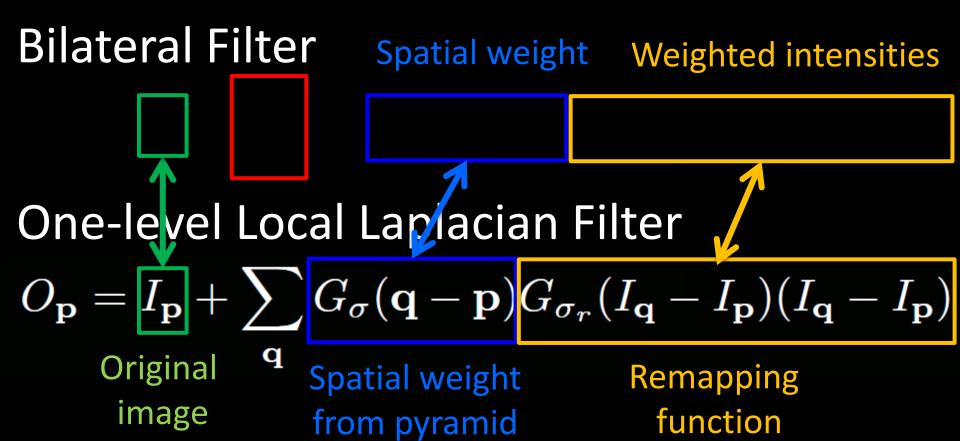
Interpretation

Bilateral Filter Spatial weight Weighted intensities $BF_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q}} G_{\sigma_s}(\mathbf{q} - \mathbf{p}) G_{\sigma_r}(I_{\mathbf{q}} - I_{\mathbf{p}}) I_{\mathbf{q}}$ One-level Local Laplacian Filter $O_{\mathbf{p}} = I_{\mathbf{p}} + \sum G_{\sigma}(\mathbf{q} - \mathbf{p}) G_{\sigma_{r}}(I_{\mathbf{q}} - I_{\mathbf{p}})(I_{\mathbf{q}} - I_{\mathbf{p}})$ \mathbf{q} Spatial weight Remapping function from pyramid

Rewriting the bilateral filter Bilateral Filter Weights sum to 1 $BF_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q}} G_{\sigma_s}(\mathbf{q} - \mathbf{p}) G_{\sigma_r}(I_{\mathbf{q}} - I_{\mathbf{p}}) I_{\mathbf{q}}$

$$BF_{\mathbf{p}} = I_{\mathbf{p}} + \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q}} G_{\sigma_s}(\mathbf{q} - \mathbf{p}) G_{\sigma_r}(I_{\mathbf{q}} - I_{\mathbf{p}})(I_{\mathbf{q}} - I_{\mathbf{p}})$$

Interpretation



Multi-scale effect: input

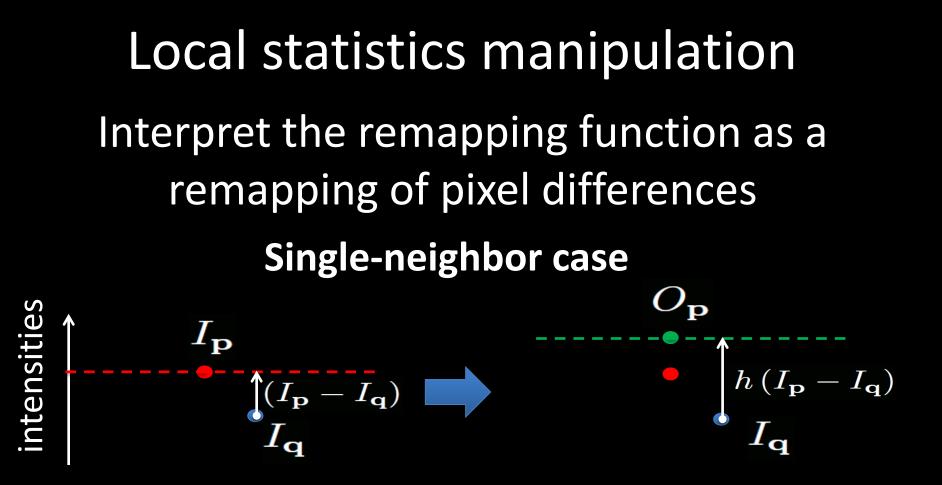
Multi-scale effect: 1 scale

Multizscale effect: 2 scales

Multizscale effect: 4 scales

Multizscale effect: 8 scales

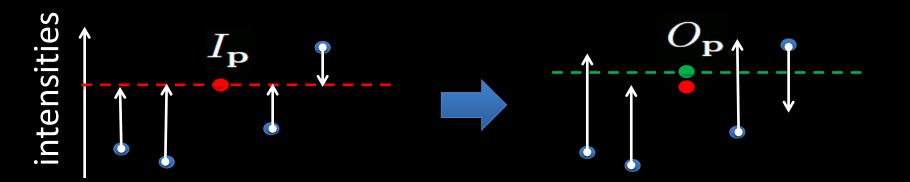
3. Style transfer



Local statistics manipulation

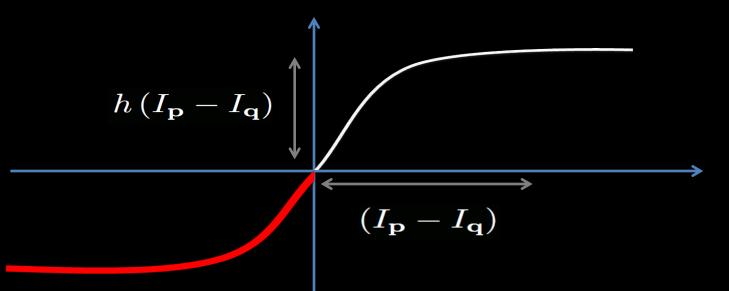
Many neighboors case

Can be interpreted as averaging target differences



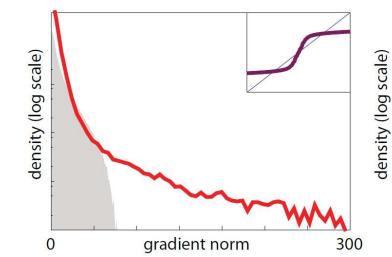
Local statistics manipulation

• *h* controls how the gradients are remapped

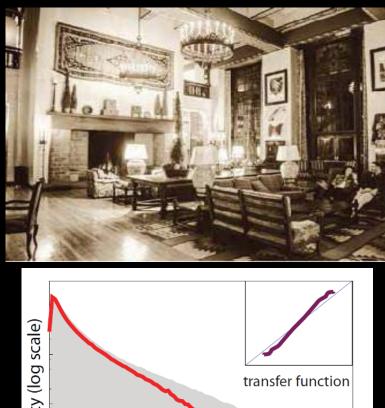


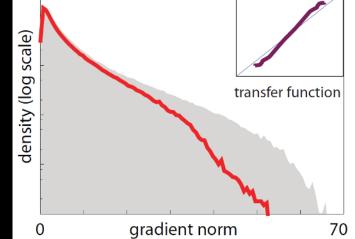
Use histogram transfer function to define h

Example:

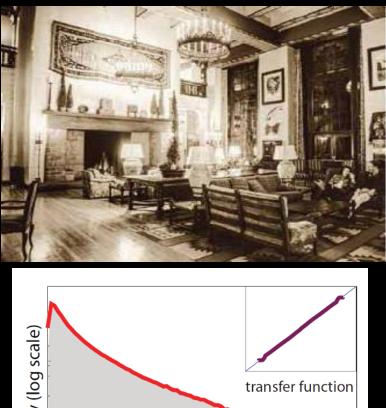


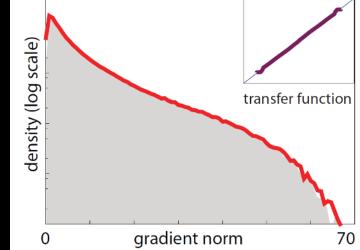
Example: iteration 1





Example: iteration 2





Also in the paper

- Link with PDEs / Anisotropic diffusion
- Introduction of Un-normalized Bilateral Filter
 Discussion of effect on edges
- More results and comparisons

- Quantitative evaluations of transfer

Conclusion

- 20x to 50x speed-up
 - in Lightroom and Photoshop
- Relationship with BF and PDE

Gradient histogram transfer
 Photographic style transfer

Matlab code and more results: http://www.di.ens.fr/~aubry/llf.html

We would like to thank...

- Mark Fairchild for his HDR survey
- The **anonymous reviewers** for their constructive comments
- Adobe for its gifts to Jan Kautz, Sam Hasinoff and Frédo Durand

Conclusion

- Relationship with BF and PDE
- 20x to 50x speed-up
 - in Lightroom and Photoshop
- Gradient histogram transfer
 Photographic style transfer

Matlab code and more results: http://www.di.ens.fr/~aubry/llf.html