
Fast Local Search for the Maximum

Independent Set Problem�

Diogo V. Andrade1, Mauricio G.C. Resende2, and Renato F. Werneck3

1 Google Inc., 76 Ninth Avenue, New York, NY 10011, USA
diogo@google.com

2 AT&T Labs Research, 180 Park Ave, Florham Park, NJ 07932, USA
mgcr@research.att.com

3 Microsoft Research Silicon Valley, 1065 La Avenida, Mtn. View, CA 94043, USA
renatow@microsoft.com

Abstract. Given a graph G = (V, E), the independent set problem is
that of finding a maximum-cardinality subset S of V such that no two
vertices in S are adjacent. We present a fast local search routine for this
problem. Our algorithm can determine in linear time whether a maximal
solution can be improved by replacing a single vertex with two others.
We also show that an incremental version of this method can be useful
within more elaborate heuristics. We test our algorithms on instances
from the literature as well as on new ones proposed in this paper.

1 Introduction

The maximum independent set problem (MIS) takes a connected, undirected
graph G = (V, E) as input, and tries to find the largest subset S of V such that
no two vertices in S have an edge between them. Besides having several direct
applications [2], MIS is closely related to two other well-known optimization
problems. To find the maximum clique (the largest complete subgraph) of a
graph G, it suffices to find the maximum independent set of the complement
of G. Similarly, to find the minimum vertex cover of G = (V, E) (the smallest
subset of vertices that contains at least one endpoint of each edge in the graph),
one can find the maximum independent set S of V and return V \ S. Because
these problems are NP-hard [11], for most instances one must resort to heuristics
to obtain good solutions within reasonable time.

Most successful heuristics [1,7,8,9,12,14,15] maintain a single current solution
that is slowly modified by very simple operations, such as individual insertions
or deletions and swaps (replacing a vertex by one of its neighbors). In particular,
many algorithms use the notion of plateau search, which consists in performing
a randomized sequence of swaps. A swap does not improve the solution value by
itself, but with luck it may cause a non-solution vertex to become free, at which
point a simple insertion can be performed. Grosso et al. [8] have recently obtained
� Part of this work was done while the first author was at Rutgers University and the

third author at Princeton University.

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 220–234, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fast Local Search for the Maximum Independent Set Problem 221

exceptional results in practice by performing plateau search almost exclusively.
Their method (as well as several others) occasionally applies a more elaborate
operation for diversification purposes, but spends most of its time performing
basic operations (insertions, deletions, and swaps), often chosen at random.

This paper expands the set of tools that can be used effectively within meta-
heuristics. We present a fast (in theory and practice) implementation of a natural
local search algorithm. It is based on (1,2)-swaps, in which a single vertex is re-
moved from the solution and replaced by two others. We show that one can find
such a move (or prove that none exists) in linear time. In practice, an incremen-
tal version runs in sublinear time. The local search is more powerful than simple
swaps, but still cheap enough for effective use within more elaborate heuristics.
We also briefly discuss a generalization of this method to deal with (2,3)-swaps,
i.e., two removals followed by three insertions.

Another contribution is a more elaborate heuristic that illustrates the effec-
tiveness of our local search. Although the algorithm is particularly well-suited
for large, sparse instances, it is competitive with previous algorithms on a wide
range of instances from the literature. As an added contribution, we augmented
the standard set of instances from the literature with new (and fundamentally
different) instances, never previously studied in the context of the MIS problem.

This paper is organized as follows. Section 2 establishes the notation and
terminology we use. Our local search algorithm is described in Section 3. Sec-
tion 4 illustrates how it can be applied within a more elaborate heuristic. Ex-
perimental results are presented in Section 5, and final remarks are made in
Section 6.

2 Basics

The input to the MIS problem is a graph G = (V, E), with |V | = n and |E| = m.
We assume that vertices are labeled from 1 to n. We use the adjacency list
representation: each vertex keeps a list of all adjacent vertices, sorted by label.
One can enforce the ordering in linear time by applying radix sort to all edges.

A solution S is simply a subset of V in which no two vertices are adjacent.
The tightness of a vertex v �∈ S, denoted by τ(v), is the number of neighbors
of v that belong to S. We say that a vertex is k-tight if it has tightness k. The
tightnesses of all vertices can be computed in O(m) time: initialize all values to
zero, then traverse the adjacency list of each solution vertex v and increment
τ(w) for every arc (v, w). Vertices that are 0-tight are called free. A solution is
maximal if it has no free vertices.

Our algorithms represent a solution S as a permutation of all vertices, par-
titioned into three blocks: first the |S| vertices in the solution, then the free
vertices, and finally the nonfree vertices. The order among vertices within a
block is irrelevant. The sizes of the first two blocks are stored explicitly. In ad-
dition, the data structure maintains, for each vertex, its tightness (which allows
us to determine if the vertex is free) and its position in the permutation (which
allows the vertex to be moved between blocks in constant time).

222 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

This structure must be updated whenever a vertex v is inserted into or re-
moved from S. The only vertices that change are v itself and its neighbors,
so each such operation takes time proportional to the degree of v, denoted by
deg(v). This is more expensive than in simpler solution representations (such as
lists or incidence vectors), but the following operations can be easily performed
in constant time: (1) check if the solution is maximal (i.e., if the second block
is empty); (2) check if a vertex is in the solution (i.e., if it belongs to the first
block); (3) determine the tightness of a non-solution vertex; and (4) pick a vertex
within any of the three blocks uniformly at random.

3 Local Search

A (j, k)-swap consists of removing j vertices from a solution and inserting k
vertices into it. For simplicity, we refer to a (k, k)-swap as a k-swap (or simply
a swap when k = 1), and to a (k − 1, k)-swap as a k-improvement. We use the
term move to refer to a generic (j, k)-swap.

Our main local search algorithm is based on 2-improvements. These natural
operations have been studied before (see e.g. [6]); our contribution is a faster
implementation. Given a maximal solution S, we would like to replace some
vertex x ∈ S with two vertices, v and w (both originally outside the solution),
thus increasing the total number of vertices in the solution by one. We test
each solution vertex x ∈ S in turn. In any 2-improvement that removes x, both
vertices inserted must be neighbors of x (by maximality) that are 1-tight (or the
new solution would not be valid) and not adjacent to each other.

To process x efficiently, we first build a list L(x) consisting of the 1-tight
neighbors of x, sorted by vertex identifier. If L(x) has fewer than two elements,
we are done with x: it is not involved in any 2-improvement. Otherwise, we
must find, among all candidates in L(x), a pair {v, w} such that there is no
edge between v and w. We do this by processing each element v ∈ L(x) in turn.
For a fixed candidate v, we check if there is a vertex w ∈ L(x) (besides v) that
does not belong to A(v), the adjacency list of v. Since both L(x) and A(v) are
sorted by vertex identifier, this can be done by traversing both lists in tandem.
All elements of L(x) should appear in the same order within A(v); if there is a
mismatch, the missing element is the vertex w we are looking for.

We claim that this algorithm finds a valid 2-improvement (or determines that
none exists) in O(m) time. This is clearly a valid bound on the time spent
scanning all vertices (i.e., traversing their adjacency lists), since each vertex is
scanned at most once. Each solution vertex x is scanned to build L(x) (the list
of 1-tight neighbors), and each 1-tight non-solution vertex v is scanned when its
only solution neighbor is processed. (Non-solution vertices that are not 1-tight
are not scanned at all.) We still need to bound the time spent traversing the
L(x) lists. Each list L(x) may be traversed several times, but each occurs in tan-
dem with the traversal of the adjacency list A(v) of a distinct 1-tight neighbor
v of x. Unless the traversal finds a valid swap (which occurs only once), traversing

Fast Local Search for the Maximum Independent Set Problem 223

L(x) costs no more than O(deg(v)), since each element of L(x) (except v) also
occurs in A(v). This bounds the total cost of such traversals to O(m).

An alternative linear-time implementation is as follows. As before, process
each solution vertex x in turn. First, temporarily remove x from S. Then, for
each newly-free neighbor v of x, insert v into S and check if the solution becomes
maximal. If it does, simply remove v and process the next neighbor of x; if it
does not, inserting any free vertex will yield a valid 2-improvement.

We have also considered more powerful local search algorithms. In particular,
using generalized (and more complicated) versions of the techniques above, one
can detect a 3-improvement (of prove that none exists) in O(mΔ) time, where Δ
is the maximum vertex degree. Similarly, 2-swaps can be implemented in linear
time. Due to space constraints, we omit a full description of these algorithms.

3.1 Incremental Version

A typical local search procedure does not restrict itself to a single iteration.
If a valid 2-improvement is found, the algorithm will try to find another in the
improved solution. This can of course be accomplished in linear time, but we can
do better with an incremental version of the local search, which uses information
gathered in one iteration to speed up later ones.

The algorithm maintains a set of candidates, which are solution vertices that
might be involved in a 2-improvement. So far, we have assumed that all solution
vertices are valid candidates, and we test them one by one. After a move, we
would test all vertices again. Clearly, if we establish that a candidate x cannot
be involved in a 2-improvement, we should not reexamine it unless we have good
reason to do so. More precisely, when we “discard” a candidate vertex x, it is
because it does not have two independent 1-tight neighbors. Unless at least one
other neighbor of x becomes 1-tight, there is no reason to look at x again.

To accomplish this, we maintain a list of candidates that is updated whenever
the solution changes. Any move (including a 2-improvement) can be expressed in
terms of insertions and deletions of individual vertices. When we insert a vertex
v into the solution, its neighbors are the only vertices that can become 1-tight,
so we simply (and conservatively) add v to the list of candidates. When a vertex
x is removed from the solution, the update is slightly more complicated. We
must traverse the adjacency list of x and look for vertices that became 1-tight
due to its removal. By definition, each such vertex v will have a single neighbor
y in the solution; y must be inserted into the candidate list. We can find the
solution vertex adjacent to each 1-tight neighbor v in constant time, as long
as we maintain with each non-solution vertex the list of its solution neighbors.1

Therefore, we could still update the candidate list after removing x in O(deg(x))
time. For simplicity, however, we do not maintain the auxiliary data structures
in our implementation, and explicitly scan each 1-tight neighbor of x.
1 Standard doubly-linked lists will do, but updating them is nontrivial. In particular,

when removing a vertex x from the solution, we must be able to remove in constant
time the entry representing x in the list of each neighbor v. This can be accomplished
by storing a pointer to that entry together with the arc (x, v) in x’s adjacency list.

224 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

Although we have framed our discussion in terms of 2-improvements, these
updates can of course be performed for any sequence of removals and/or in-
sertions. As we will see, this means we can easily embed the incremental local
search algorithm into more elaborate heuristics. Once invoked, the local search
itself is quite simple: it processes the available candidates in random order, and
stops when the list of candidates is empty.

3.2 Maximum Clique

Although our experiments focus mainly on the MIS problem, it is worth men-
tioning that one can also implement a linear-time 2-improvement algorithm for
the maximum clique problem. Simply running the algorithm above on the com-
plement of the input is not enough, since the complement may be much denser.

Given a maximal clique C, we must determine if there is a vertex x ∈ C and
two vertices v, w �∈ C such that the removal of x and the insertion of v and w
would lead to a larger clique. Such a move only exists if the following holds: (1)
v and w are neighbors; (2) both v and w are adjacent to all vertices in C \ {x};
and (3) at least one of v or w is not a neighbor of x (by maximality). For a vertex
v with tightness |C| − 1, define its missing neighbor μ(v) as the only solution
vertex to which v is not adjacent. There is a 2-improvement involving v if it
has a neighbor w such that either (1) τ(w) = |C| or (2) τ(w) = |C| − 1 and
μ(w) = μ(v). Knowing this, the local search procedure can be implemented in
O(m) time as follows. First, determine the tightness of all vertices, as well as the
missing neighbors of those that are (|C|−1)-tight. Then, for each (|C|−1)-tight
vertex v, determine in O(deg(v)) time if it has a valid neighbor w.

4 Metaheuristics

4.1 Iterated Local Search

To test our local search, we use it within a heuristic based on the iterated local
search (ILS) metaheuristic [13]. We start from a random solution S, apply local
search to it, then repeatedly execute the following steps: (1) S′ ← perturb(S);
(2) S′ ← localsearch(S′); (3) set S ← S′ if certain conditions are met. Any
reasonable stopping criterion can be used, and the algorithm returns the best
solution found. The remainder of this section details our implementation of each
step of this generic algorithm.

Perturbations are performed with the force(k) routine, which sequentially
inserts k vertices into the solution (the choice of which ones will be explained
shortly) and removes the neighboring vertices as necessary. (We call these forced
insertions.) It then adds free vertices at random until the solution is maximal.
We set k = 1 in most iterations, which means a single vertex will be inserted.
With small probability (1/(2 · |S|)), however, we pick a higher value: k is set
to i + 1 with probability proportional to 1/2i, for i ≥ 1. We must then choose
which k vertices to insert. If k = 1, we pick a random non-solution vertex. If k

Fast Local Search for the Maximum Independent Set Problem 225

is larger, we start with a random vertex, but pick the j-th vertex (for j > 1)
among the non-solution vertices within distance exactly two from the first j − 1
vertices. (If there is no such vertex, we simply stop inserting.)

We use two techniques for diversification. The first is soft tabu. We keep track
of the last iteration in which each non-solution vertex was part of the solution.
Whenever the force routine has a choice of multiple vertices to insert, it looks
at κ (an input parameter) candidates uniformly at random (with replacement)
and picks the “oldest” one, i.e., the one which has been outside the solution for
the longest time. We set κ = 4 in our experiments. The second diversification
technique is employed during local search. If v was the only vertex inserted by
the force routine, the subsequent local search will only allow v to be removed
from the solution after all other possibilities have been tried.

Regarding the third step of the main loop, if the solution S′ obtained after
the local search is at least as good as S, S′ becomes the new current solution. If
|S′| < |S|, we have observed that always going to S′ may cause the algorithm to
stray from the best known solution too fast. To avoid this, we use a technique akin
to plateau search. If ILS arrives at the current solution S from a solution that
was better, it is not allowed to go to a worse solution for at least |S| iterations.
If the current solution does not improve in this time, the algorithm is again
allowed to go to a worse solution S′. It does so with probability 1/(1 + δ · δ∗),
where δ = |S| − |S′|, δ∗ = |S∗| − |S′|, and S∗ is the best solution found so far.
Intuitively, the farther S′ is from S and S∗, the least likely the algorithm is to set
S ← S′. If the algorithm does not go to S′ (including during plateau search), we
undo the insertions and deletions that led to S′, then add a small perturbation
by performing a 1-swap in S (if possible).

Finally, we consider the stopping criterion. We stop the algorithm when the
average number of scans per arc exceeds a predetermined limit (which is the
same for every instance within each family we tested). An arc scan is the most
basic operation performed by our algorithm: in fact, the total running time is
proportional to the number of such scans. By fixing the number of scans per arc
(instead of the total number of scans) in each family, we make the algorithm
spend more time on larger instances, which is a sensible approach in practice.
To minimize the overhead of counting arc scans individually, our code converts
the bound on arc scans into a corresponding bound on vertex scans (using the
average vertex degree), and only keeps track of vertex scans during execution.

4.2 The GLP Algorithm

We now discuss the algorithm of Grosso, Locatelli, and Pullan [8], which we call
GLP. Although it was originally formulated for the maximum clique problem,
our description (as well as our implementation) refers to the MIS problem. We
implemented “Algorithm 1 with restart rule 2,” which seems to give the best
results overall among the several variants proposed in [8]. What follows is a
rough sketch of the algorithm. See the original paper for details.

The algorithm keeps a current solution S (initially empty), and spends most
of its time performing plateau search (simple swaps). A simple tabu mechanism

226 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

ensures that vertices that leave the solution during plateau search do not return
during the same iteration, unless they become free and there are no alterna-
tive moves. A successful iteration ends when a non-tabu vertex becomes free:
we simply insert it into the solution and start a new iteration. An iteration is
considered unsuccessful if this does not happen after roughly |S| moves: in this
case, the solution is perturbed with the forced insertion of a single non-solution
vertex (with at least four solution neighbors, if possible), and a new iteration
starts. GLP does not use local search.

Unlike Grosso et al.’s implementation of GLP, ours does not stop as soon
as it reaches the best solution reported in the literature. Instead, we use the
same stopping criterion as the ILS algorithm, based on the number of arc scans.
Although different, both ILS and GLP have scans as their main basic operation.
By using the number of arc scans as the stopping criterion, we ensure that both
algorithms have similar running times for all instances.

5 Experimental Results

All algorithms were implemented by the authors in C++ and compiled with gcc
v. 3.4.4 with the full optimization (-O4) flag. All runs were made on a 3 GHz
Pentium IV with 2 GB of RAM running Windows XP Professional. CPU times
were measured with the getrusage function, which has precision of 1/60 second.
Times do not include reading the graph and building the adjacency lists, since
these are common to all algorithms. But they do include the time to allocate,
initialize and destroy the data structures specific to each algorithm.

5.1 Instances

The DIMACS family contains maximum clique instances from the 2nd DIMACS
Implementation Challenge [10], which have been frequently tested in the lit-
erature. It includes a wide variety of instances, with multiple topologies and
densities. Since we deal with the MIS problem, we use the complements of the
original graphs. For instances with no known optimum, we report the best results
available at the time of writing (as listed in [8,15]).

The SAT family contains transformed satisfiability instances from the SAT’04
competition, available at [18] and tested in [8,15]. All optima are known.

The CODE family, made available by N. Sloane [17], consists of challenging
graphs arising from coding theory. Each subfamily refers to a different error-
correcting code, with vertices representing code words and edges indicating con-
flicts between them. The best known results for the hardest instances were found
by the specialized algorithms of Butenko et al. [3,4].

The last two families, MESH and ROAD, are novel in the context of the inde-
pendent set problem. MESH is motivated by an application in Computer Graph-
ics recently described by Sander et al. [16]. To process a triangulation efficiently
in graphics hardware, their algorithm finds a small subset of triangles that cov-
ers all the edges in the mesh. This is the same as finding a small set cover on

Fast Local Search for the Maximum Independent Set Problem 227

the corresponding dual graph (adjacent faces in the original mesh become adja-
cent vertices in the dual). The MESH family contains the duals of well-known
triangular meshes. While converting the original primal meshes, we repeatedly
eliminated vertices of degree one and zero from the dual, since there is always a
maximum independent set that contains them. (Degree-one vertices arise when
the original mesh is open, i.e., when it has edges that are adjacent to a sin-
gle triangle instead of the usual two.) Almost all vertices in the resulting MIS
instances (which are available upon request) have degree three.

The ROAD family contains planar graphs representing parts of the road net-
work of the United States, originally made available for the 9th DIMACS Imple-
mentation Challenge, on shortest paths [5]. Vertices represent intersections, and
arcs represent the road segments connecting them. As in the previous family,
these graphs have numerous vertices of degree one. We chose not to eliminate
them explicitly, since these instances are already available in full form.

Due to space limitations, we only report results on a few representatives of
each family, leaving out easy instances and those that behave similarly to others.

5.2 Local Search

We first evaluate the local search algorithm by itself, in terms of both solution
quality and running time. We tested it with three different constructive algo-
rithms. The random algorithm (R) inserts free vertices uniformly at random
until the solution is maximal. The greedy algorithm (G) assigns a cost to each
free vertex equal to the number of free neighbors it has, and in each iteration
picks a free vertex with lowest cost. The randomized greedy algorithm (RG)
is a variant of G that picks the vertex to insert uniformly at random among
all minimum-cost free vertices. Both G and RG can be implemented in linear
time, but there is some data structure overhead associated with RG. While G
keeps the free vertices in buckets (one for each possible cost), RG maintains the
vertices sorted by cost, which is more complicated.

For a representative sample of instances, we ran the constructive algorithms
by themselves (R, G, and RG) and followed by local search (RL, GL, and RGL).
Table 1 shows the average solutions obtained for 999 random seeds, and Table 2
the average running times. Also shown are the number of vertices (n), the average
degree (deg), and the best known solution (best) for each graph. Given the
somewhat low precision of our timing routine (and how fast the algorithms are
in this experiment), we did not measure running times directly. Instead, we ran
each subsequence of 111 seeds repeatedly until the total running time was at
least 5 seconds, then took the average time per run. Before each timed run,
we ran the whole subsequence of 111 once to warm up the cache and minimize
fluctuations. (Single runs would be slightly slower, but would have little effect
on the relative performance of the algorithms.)

The greedy algorithms (G and RG) find solutions of similar quality, and are
usually much better than random (R). Random is consistently faster, however,
especially for very dense instances such as p hat1500-1. While the greedy algo-
rithm must visit every edge in the graph, the random algorithm only traverses

228 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

Table 1. Average solutions found by the random, greedy, and randomized greedy
constructive algorithms, without (R, G, RG) or with (RL, GL, RGL) local search. The
best results among these algorithms are marked in bold. The horizontal lines separate
different families, in order: DIMACS, SAT, CODE, MESH, and ROAD.

graph n deg best R RL G GL RG RGL
C2000.9 2000 199.5 80 51.2 59.5 66.0 68.0 66.5 67.4
MANN a81 3321 3.9 1100 1082.1 1082.1 1096.0 1096.0 1095.5 1095.6
brock400 2 400 100.1 29 16.7 19.4 22.0 23.0 22.0 22.4
brock400 4 400 100.2 33 16.7 19.2 22.0 22.0 21.7 22.0
c-fat500-10 500 312.5 126 125.0 125.0 126.0 126.0 126.0 126.0
hamming10-2 1024 10.0 512 242.3 412.8 512.0 512.0 512.0 512.0
johnson32-2-4 496 60.0 16 16.0 16.0 16.0 16.0 16.0 16.0
keller6 3361 610.9 59 34.4 43.1 48.2 48.9 48.5 49.6
p hat1500-1 1500 1119.1 12 6.8 8.1 10.0 10.0 9.9 10.4
p hat1500-3 1500 369.3 94 42.6 77.7 86.0 91.0 85.9 88.3
san1000 1000 498.0 15 7.7 7.7 10.0 10.0 9.5 9.5
san400 0.7 1 400 119.7 40 19.7 20.6 21.0 21.0 21.4 21.4
san400 0.9 1 400 39.9 100 44.2 54.0 92.0 100.0 81.3 100.0
frb59-26-1 1534 165.0 59 39.4 45.8 48.0 48.0 47.6 48.3
1et.2048 2048 22.0 316 232.9 268.6 292.2 295.0 292.9 295.8
1zc.4096 4096 45.0 379 254.2 293.5 328.5 329.5 327.3 328.6
2dc.2048 2048 492.6 24 15.6 18.7 21.0 22.0 21.0 21.3
dragon 150000 3.0 66430 56332 61486 64176 64176 64024 64247
dragonsub 600000 3.0 282192 227004 256502 277252 277252 275611 276451
buddha 1087716 3.0 480664 408215 445100 463914 463914 463303 464878
fla 1070376 2.5 549535 476243 523237 545961 545972 545507 546150

the adjacency lists of the vertices that end up in the solution. Even after lo-
cal search, RL is often faster than G or RG, but still finds worse solutions. On
sparser instances, RL can be slower than GL or RGL, since the local search has
a much worse starting point.

The local search is remarkably fast when applied to the greedy solutions. For
large, sparse instances (such as fla and buddha) the local search is much more
effective on RG than on G. In fact, G tends to find better solutions than RG,
but after local search the opposite is true. We conjecture that the stack-like
nature of buckets in G causes it to generate more “packed” solutions than RG.
The higher variance of RG helps after local search: over all 999 runs, the best
solution found by RGL (not shown in the table) was in most cases at least as
good as the best found by any of the other algorithms. (The exceptions were
san400 0.7 1, for which RL was superior, and dragonsub, for which G and GL
were the best.) This suggests that RGL (or a variant) would be well-suited to
multistart-based metaheuristics, such as GRASP [6].

For completeness, we briefly discuss the 3-improvement algorithm (not shown
in the tables). Applied to the solutions obtained by RGL, it improved the aver-
age solutions of only six instances: 1et.2048 (296.4), 2dc.2048 (21.6), frb59-26-1
(48.6), keller6 (50.2), p hat1500-1 (10.5) and san1000 (9.7). It also improved RL

Fast Local Search for the Maximum Independent Set Problem 229

Table 2. Constructive algorithms and local search: running times in milliseconds

graph n deg R RL G GL RG RGL
C2000.9 2000 199.5 0.08 0.47 8.15 8.57 16.62 16.96
MANN a81 3321 3.9 0.18 0.60 0.53 0.97 0.70 1.13
brock400 2 400 100.1 0.03 0.11 0.77 0.85 1.49 1.56
brock400 4 400 100.2 0.03 0.11 0.77 0.85 1.48 1.56
c-fat500-10 500 312.5 0.09 0.52 2.28 2.71 5.19 5.60
hamming10-2 1024 10.0 0.07 0.40 0.29 0.49 0.46 0.66
johnson32-2-4 496 60.0 0.02 0.10 0.45 0.52 1.01 1.08
keller6 3361 610.9 0.11 0.88 35.32 35.96 71.73 72.43
p hat1500-1 1500 1119.1 0.04 0.31 31.66 31.94 58.66 58.71
p hat1500-3 1500 369.3 0.07 0.61 11.35 11.73 21.26 21.64
san1000 1000 498.0 0.03 1.48 8.73 8.87 16.81 17.02
san400 0.7 1 400 119.7 0.03 0.18 0.88 1.00 1.69 1.80
san400 0.9 1 400 39.9 0.03 0.14 0.35 0.46 0.67 0.79
frb59-26-1 1534 165.0 0.06 0.33 4.86 5.10 10.00 10.25
1et.2048 2048 22.0 0.10 0.46 1.17 1.46 1.97 2.26
1zc.4096 4096 45.0 0.17 0.85 4.06 4.63 7.86 8.44
2dc.2048 2048 492.6 0.06 0.45 21.25 21.59 36.15 36.41
dragon 150000 3.0 17.80 64.22 33.95 69.28 42.09 77.53
dragonsub 600000 3.0 123.95 390.90 193.38 400.14 169.59 377.23
buddha 1087716 3.0 281.65 795.98 448.92 854.27 447.78 859.55
fla 1070376 2.5 299.70 867.04 521.01 969.91 741.88 1193.48

on these instances, as well as 1et.2048 and brock400 4, but still not enough to
make the random algorithm competitive with their greedy counterparts. It only
improved the results obtained by GL in one case (1et.2048). On the positive side,
the 3-improvement algorithm is reasonably fast. In most cases, it adds less than
20% to the time of RGL, and at most 80% (on johnson-32-2-4). Still, the minor
gains and added complexity do not justify using 3-improvement within ILS.

5.3 Metaheuristics

Although local search can improve the results found by constructive heuristics,
the local optima it finds are usually far from the best known bounds. For near-
optimal solutions, we turn to metaheuristics. We compare our iterated local
search (ILS) with our implementation of Grosso et al.’s GLP algorithm. Our
version of GLP deals with the maximum independent set problem directly, and
its time per operation is comparable to the original implementation.

Tables 3, 4, and 5 present results for DIMACS, CODE, and SAT, respectively.
For each instance, we first show its number of vertices, its density, and the best
known solution. We then report the minimum, average, and maximum solutions
found over nine runs of each algorithm (the numbers in parentheses indicate how
many of these runs found the maximum). Finally, we give the average running
time in seconds. Both algorithms were run until the average number of scans per
arc reached 217. The best averages are highlighted in bold.

230 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

Table 3. DIMACS family. For each algorithm, we show the minimum, average, and
maximum solutions found over 9 runs, as well as the average running time in seconds.
Both algorithms were run until the average arc was scanned 217 times.

graph ils glp
name n dens best min avg max time min avg max time
C2000.9 2000 0.100 80 77 77.2 78(2) 277 77 77.9 79(2) 246
MANN a45 1035 0.004 345 344 344.7 345(6) 8 343 343.6 344(5) 8
MANN a81 3321 0.001 1100 1100 1100.0 1100(9) 20 1097 1097.7 1098(6) 27
brock400 1 400 0.252 27 25 25.0 25(9) 26 25 25.9 27(4) 27
brock400 2 400 0.251 29 25 25.4 29(1) 26 25 26.8 29(4) 26
brock400 3 400 0.252 31 25 30.3 31(8) 27 31 31.0 31(9) 23
brock400 4 400 0.251 33 25 31.2 33(7) 27 33 33.0 33(9) 20
hamming10-2 1024 0.010 512 512 512.0 512(9) 24 512 512.0 512(9) 13
keller6 3361 0.182 59 59 59.0 59(9) 1385 59 59.0 59(9) 1026
p hat1500-1 1500 0.747 12 11 11.8 12(7) 345 12 12.0 12(9) 1207
san1000 1000 0.498 15 15 15.0 15(9) 185 15 15.0 15(9) 426

Table 4. Results for the CODE family with 217 scans per arc

graph ils glp
name n dens best min avg max time min avg max time
1dc.1024 1024 0.046 94 93 93.2 94(2) 31 93 93.1 94(1) 42
1dc.2048 2048 0.028 172 170 171.3 172(6) 76 170 171.3 172(6) 95
1et.2048 2048 0.011 316 316 316.0 316(9) 38 316 316.0 316(9) 57
1tc.2048 2048 0.009 352 352 352.0 352(9) 35 352 352.0 352(9) 52
1zc.1024 1024 0.064 112 111 111.3 112(3) 23 112 112.0 112(9) 40
1zc.2048 2048 0.038 198 196 197.4 198(6) 53 197 197.7 198(6) 92
1zc.4096 4096 0.022 379 364 370.7 379(1) 127 367 373.0 379(1) 224
2dc.1024 1024 0.323 16 16 16.0 16(9) 105 16 16.0 16(9) 322
2dc.2048 2048 0.241 24 24 24.0 24(9) 388 23 23.8 24(7) 851

Together, the algorithms do rather well on these families. For almost all in-
stances, the best known bound was found at least once. For all four exceptions
(C2000.9 and the three largest frb instances) the best solution shown in the tables
is within one unit of the best known [8].

The average solutions found by ILS and GLP are usually within 0.1 unit
from one another. Among the exceptions, GLP found better solutions on nine
(C2000.9, brock*, p hat1500-1, and 1zc.*) and ILS on four (MANN*, 2dc.2048,
and frb53-24-1). The brock instances are dense random graphs with a “hidden”
larger clique. C2000.9 is also random, with larger cliques naturally hidden by
the large value of n. GLP is clearly better at finding these cliques, probably
because of its stronger tabu mechanism. In contrast, GLP does poorly on the
MANN instances (sparse graphs with large independent sets), while ILS finds
the optimal solution MANN a81 in only 0.9 seconds on average.

Running times in the tables refer to full executions. When both algorithms
found the same solution in every run, it makes sense to compare the average time

Fast Local Search for the Maximum Independent Set Problem 231

Table 5. Results for the SAT family with 217 scans per arc

graph ils glp
name n dens best min avg max time min avg max time
frb30-15-1 450 0.176 30 30 30.0 30(9) 20 30 30.0 30(9) 28
frb35-17-1 595 0.158 35 35 35.0 35(9) 30 35 35.0 35(9) 41
frb40-19-1 760 0.143 40 40 40.0 40(9) 42 40 40.0 40(9) 57
frb45-21-1 945 0.133 45 44 44.6 45(5) 65 44 44.6 45(5) 79
frb50-23-1 1150 0.121 50 49 49.1 50(1) 86 48 49.0 50(1) 106
frb53-24-1 1272 0.117 53 51 51.6 52(5) 98 51 51.1 52(1) 121
frb56-25-1 1400 0.112 56 54 54.1 55(1) 118 54 54.0 54(9) 139
frb59-26-1 1534 0.108 59 57 57.2 58(2) 137 57 57.1 58(1) 161

to reach it (not shown in the tables). ILS is faster on 2dc.1024 (by a factor of 2),
frb40-19-1 (3), and keller6 (13). The algorithms are essentially tied for 1tc.2048.
GLP is faster for the remaining instances, usually by a factor of less than four.
On san1000 and hamming10 2, GLP was at least 6 times faster.

Although our algorithm does well on these families, GLP is somewhat more
robust on DIMACS and CODE. This is not the case for large, sparse graphs, to
which we now turn our attention. Table 6 presents results for the MESH family.
Because its graphs are much larger, we limit average number of arc scans to 214.

Table 6. Results for the MESH family with 214 scans per arc

graph ils glp
name n min avg max time min avg max time
dolphin 554 249 249 249(9) 1 249 249 249(9) 1
mannequin 1309 583 583 583(9) 3 583 583 583(9) 1
beethoven 4419 2000 2002 2004(3) 9 1999 2001 2004(1) 5
cow 5036 2333 2339 2346(2) 11 2335 2343 2346(6) 5
venus 5672 2668 2676 2680(2) 11 2680 2682 2684(4) 6
fandisk 8634 4057 4068 4072(2) 18 4063 4069 4073(1) 11
blob 16068 7232 7236 7239(1) 36 7234 7239 7242(1) 21
gargoyle 20000 8843 8846 8849(1) 50 8841 8844 8847(1) 32
face 22871 10203 10206 10211(1) 51 10203 10205 10207(1) 31
feline 41262 18791 18803 18810(1) 105 18806 18813 18822(1) 74
gameguy 42623 20625 20639 20664(1) 104 20635 20657 20676(1) 61
bunny 68790 32211 32228 32260(1) 208 32221 32246 32263(1) 184
dragon 150000 66399 66417 66430(1) 506 66318 66331 66343(1) 507
turtle 267534 122262 122298 122354(1) 1001 122133 122195 122294(1) 1185
dragonsub 600000 281942 281972 282002(1) 2006 282100 282149 282192(1) 2340
ecat 684496 321881 321981 322040(1) 3191 321689 321742 321906(1) 4757
buddha 1087716 480604 480630 480664(1) 4773 478691 478722 478757(1) 6795

Even though all instances come from the same application, results are remark-
ably diverse. The relative performance of the algorithms appears to be correlated
with the regularity of the meshes: GLP is better for regular meshes, whereas ILS

232 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

is superior for more irregular ones. We verified this by visual inspection, but
the standard deviation of the vertex degrees in the original (primal) mesh is a
rough proxy for irregularity. It is relatively smaller for bunny (0.58) and dragon-
sub (0.63), on which GLP is the best algorithm, and bigger for buddha (1.28) and
dragon (1.26), on which ILS is superior.2 Note that dragonsub is a subdivision of
dragon: a new vertex is inserted in the middle of each edge, and each triangle is
divided in four. Both meshes represent the same model, but because every new
vertex has degree exactly six, dragonsub is much more regular.

Although optimal solutions for the MESH family are not known, Sander et
al. [16] computed lower bounds on the cover solutions for eleven of their original
meshes (the ten largest in Table 6 plus fandisk). These can be easily translated
into upper bounds for our (MIS) instances. On average, ILS is within 2.44% of
these bounds (and hence of the optimum). The highest gap (3.32%) was observed
for face, and the lowest for gameguy (1.22%). The gaps for GLP range from 1.13%
(on gameguy) to 3.45% (on buddha), with an average of 2.48%.

Finally, Table 7 presents the results for ROAD, with the average number of
scans per arc limited to 212. Here ILS has clear advantage.

Table 7. Results for the ROAD family with 212 scans per arc

graph ils glp
name n deg min avg max time min avg max time
ny 264346 2.8 131421 131440 131454(1) 248 131144 131178 131213(1) 293
bay 321270 2.5 166349 166355 166360(1) 287 166215 166226 166250(1) 372
col 435666 2.4 225741 225747 225754(1) 395 225569 225586 225614(1) 568
fla 1070376 2.5 549508 549523 549535(1) 1046 548592 548637 548669(1) 1505

We note that MESH and ROAD are fundamentally different from the previous
families. These are large graphs with linear-sized maximum independent sets.
Both ILS and GLP start from relatively bad solutions, which are then steadily
improved, one vertex at a time. To illustrate this, Figure 1 shows the average
solutions found for the two largest instances (buddha and fla) as the algorithms
progress. GLP initially finds better solutions, but is soon overtaken by ILS.
The third curve in the plots (ILS+plateau) refers to a version of our algorithm
that also performs plateau search when the current solution improves (recall
that ILS only performs plateau search when the solution worsens). Although
faster at first, ILS+plateau is eventually surpassed by ILS. The average solu-
tions it found (after all 212 scans per arc) were 480285 for buddha and 549422
for fla.

For comparison, we also show results for longer runs (220 scans per arc, with
nine different seeds) on C2000.9 (from the DIMACS family) and 1zc.4096 (from
the CODE family). As before, GLP starts much better. On 1zc.4096, ILS slowly
2 The standard deviation is not always a good measure of regularity. Despite being

highly regular, gameguy has a triangulation pattern in which roughly half the vertices
have degree 4 and half have degree 8, leading to a standard deviation higher than 2.

Fast Local Search for the Maximum Independent Set Problem 233

 455000

 460000

 465000

 470000

 475000

 480000

 485000

231229227225223221

so
lu

tio
n

vertex scans

ILS
ILS+plateau

GLP
 534000

 536000

 538000

 540000

 542000

 544000

 546000

 548000

 550000

231229227225223221

so
lu

tio
n

vertex scans

ILS
ILS+plateau

GLP

 72

 73

 74

 75

 76

 77

 78

 79

230228226224222220218216

so
lu

tio
n

vertex scans

ILS
ILS+plateau

GLP
 330

 335

 340

 345

 350

 355

 360

 365

 370

 375

231229227225223221219217215

so
lu

tio
n

vertex scans

ILS
ILS+plateau

GLP

Fig. 1. Average solutions found as the number of scans per vertex increases. Results for
buddha (top left), fla (top right), C2000.9 (bottom left), and 1zc.4096 (bottom right).

reduces the gap, but does not quite close it. On C2000.9, GLP is consistently
better, even as the number of scans increases.

6 Final Remarks

We have proposed a fast implementation of a natural local search procedure for
the independent set problem. Within an iterated local search (a metaheuristic),
it provided results competitive with the best methods previously proposed, often
matching the best known solutions (including optima) on the DIMACS, CODE,
and SAT families. On large, sparse instances (meshes and road networks), its per-
formance is consistently superior to that of GLP, particularly when the graph is
irregular. For these large instances, however, we do not know exactly how far our
method is from the optimal solution: there may be much room for improvement.
It seems reasonable, for example, to deal with these problems more locally. In-
stead of looking at the entire graph at once, we conjecture that one could do
better by focusing at individual regions at a time.

Acknowledgements. We thank D. Nehab and P. Sander for sharing their paper
and providing us with the MESH instances, and three anonymous referees for
their helpful comments.

234 D.V. Andrade, M.G.C. Resende, and R.F. Werneck

References

1. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Algorithmica 29(4), 610–637 (2001)

2. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique prob-
lem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization
(Sup. Vol. A), pp. 1–74. Kluwer, Dordrecht (1999)

3. Butenko, S., Pardalos, P.M., Sergienko, I., Shylo, V., Stetsyuk, P.: Finding maxi-
mum independent sets in graphs arising from coding theory. In: Proceedings of the
2002 ACM Symposium on Applied Computing, pp. 542–546 (2002)

4. Butenko, S., Pardalos, P.M., Sergienko, I., Shylo, V., Stetsyuk, P.: Estimating
the size of correcting codes using extremal graph problems. In: Pearce, C. (ed.)
Optimization: Structure and Applications, Springer, Heidelberg (2008)

5. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: 9th DIMACS Implemen-
tation Challenge: Shortest Paths (2006) (last visited on March 15, 2008),
http://www.dis.uniroma1.it/∼challenge9

6. Feo, T., Resende, M.G.C., Smith, S.: A greedy randomized adaptive search proce-
dure for maximum independent set. Operations Research 42, 860–878 (1994)

7. Grosso, A., Locatelli, M., Della Croce, F.: Combining swaps and node weights in
an adaptive greedy approach for the maximum clique problem. J. Heuristics 10,
135–152 (2004)

8. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very effi-
cient heuristics for the maximum clique problem. J. Heuristics (30 October, 2007),
doi:10.1007/s10732-007-9055-x

9. Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search for the
maximum clique. Discrete Applied Mathematics 145(1), 117–125 (2004)

10. Johnson, D.S., Trick, M.: Cliques, Coloring and Satisfiability. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, vol. 26. AMS (1996)

11. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New
York (1972)

12. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the max-
imum clique problem. Information Processing Letters 95, 503–511 (2005)

13. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer, Dor-
drecht (2003)

14. Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique problem.
J. Artificial Intelligence Research 25, 159–185 (2006)

15. Richter, S., Helmert, M., Gretton, C.: A stochastic local search approach to vertex
cover. In: Proceedings of the 30th German Conference on Artificial Intelligence
(KI), pp. 412–426 (2007)

16. Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges
(submitted, 2008)

17. Sloane, N.J.A.: Challenge problems: Independent sets in graphs (2000) (last visited
on March 15, 2008), http://www.research.att.com/∼njas/doc/graphs.html

18. Xu, K.: BHOSLIB: Benchmarks with hidden optimum solutions for graph problems
(2004) (last visited on March 15, 2008),
http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm

http://www.dis.uniroma1.it/~challenge9
http://www.research.att.com/~njas/doc/graphs.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

	Fast Local Search for the Maximum Independent Set Problem
	Introduction
	Basics
	Local Search
	Incremental Version
	Maximum Clique

	Metaheuristics
	Iterated Local Search
	The GLP Algorithm

	Experimental Results
	Instances
	Local Search
	Metaheuristics

	Final Remarks

