
Fast Lossless Compression of Scientific Floating-Point Data

Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher

Computer Systems Laboratory
School of Electrical and Computer Engineering

Cornell University, Ithaca, NY 14853
{paruj, jke, burtscher}@csl.cornell.edu

Abstract

In scientific computing environments, large amounts of floating-point data often need to
be transferred between computers as well as to and from storage devices. Compression
can reduce the number of bits that need to be transferred and stored. However, the run-
time overhead due to compression may be undesirable in high-performance settings
where short communication latencies and high bandwidths are essential. This paper de-
scribes and evaluates a new compression algorithm that is tailored to such environments.
It typically compresses numeric floating-point values better and faster than other algo-
rithms do. On our data sets, it achieves compression ratios between 1.2 and 4.2 as well
as compression and decompression throughputs between 2.8 and 5.9 million 64-bit dou-
ble-precision numbers per second on a 3GHz Pentium 4 machine.

1. Introduction

Some environments require the fast transfer of large amounts of numerical data over a

network. Examples include parallel scientific programs that exchange intermediate results

between compute nodes after each simulation step, the storage and retrieval of numeric

data sets to and from servers, and sending simulation results to other computers for fur-

ther processing, analysis, visualization, etc. While compressing such data reduces the

number of bits that need to be transferred and stored, the compression/decompression

overhead typically increases the communication latency and decreases the effective

bandwidth, which is undesirable in high-performance computing environments.

This paper describes a lossless compression algorithm for 64-bit floating-point values

that is fast enough to support software-based real-time compression and decompression

in settings such as the ones described above. In many instances, its compression and de-

compression overhead is lower than the time saved by transmitting the shorter, com-

pressed data. For example, we have included our algorithm in a message-passing inter-

face (MPI) library [8]. Parallel programs use such libraries to exchange data between the

CPUs in a parallel system. Unbeknownst to these programs, our library automatically

compresses the message data before they are sent and decompresses them at the receiver.

In this fashion, we have sped up scientific numeric programs by 3% to 98% on the 128-

node Velocity+ cluster [23].

The algorithm we present in this paper was inspired by VPC [4], a value-prediction-

based compression algorithm for program execution traces. In recent years, hardware-

based value predictors [11], [28], [31] have been researched extensively to accurately

predict the content of CPU registers, including floating-point registers. These predictors

use simple and fast algorithms because they are designed to make billions of predictions

per second, which makes them good models for our compression purposes.

Our algorithm compresses sequences of IEEE double-precision floating-point values as

follows. First, it predicts each value in the sequence and XORs it with the true value. If

the predicted value is close to the true value, the sign, the exponent, and the first few

mantissa bits will be the same. XOR is a reversible operation that turns identical bits into

zeros. Since the sign, the exponent, and the top mantissa bits occupy the most significant

bit positions in the IEEE 754 standard (Figure 1), we expect the XOR result to have a

substantial number of leading zeros. Hence, it can be encoded and compressed by a lead-

ing zero count that is followed by the remaining bits.

63 62 52 51 0

S Exponent Mantissa

Figure 1: Double-precision floating-point format of the IEEE 754 standard

The prediction operation is a fast hash-table lookup. XORing two values and counting

the leading zeros are also fast operations. As a consequence, both compression and de-

compression are very quick with our algorithm.

Unlike most related work on compressing floating-point data (Section 3), our approach

does not rely on consecutive values differing by only a small amount. Rather, it tries to

identify recurring difference patterns. In particular, for every processed subsequence of n
differences between consecutive values (i.e., the context), it records the next difference in

a hash table. When making a prediction, a table lookup is performed to retrieve the dif-

ference that followed the last time a similar sequence of n differences (i.e., a similar con-

text) was observed. By similar we mean that the top m bits of the floating-point values
are the same. The predicted difference is then added to the previous value to form the fi-

nal prediction. This approach works well in cases where subsequent data correlate rea-

sonably with earlier data, which is often the case for the intermediate and final floating-

point results produced by scientific programs.

The rest of this paper is organized as follows. Section 2 explains our compression algo-

rithm in more detail. Section 3 discusses related work. Section 4 describes the evaluation

methodology. Section 5 presents the results. Section 6 summarizes the paper.

2. Compression algorithm

Our algorithm is designed for compressing arrays of 64-bit IEEE double-precision float-

ing-point values. It employs a predictor to forecast the next array element based on earlier

elements. To compress a double, it encodes the difference (XOR result) between the pre-

dicted and the true value. If the prediction is close to the true value, the difference can be

encoded with just a few bits.

Figure 2 illustrates how the 236
th
 entry D236 in an array of doubles is compressed. First,

the predictor (Section 2.1) produces a prediction Pred. Then we XOR D236 and Pred to
obtain the difference Diff. Diff has many leading zero bits if Pred is close to D236. The

leading zeros are then encoded using a leading zero count (LZC236). The remaining bits

(Bits236) are not compressed.

We use four bits for the leading-zero counts, which encode 4*LZC zeros. This choice
allows us to work at half-byte granularity, which is more efficient than working at bit

granularity. Note that this scheme provides the same average code length as a six-bit

leading-zero count if the counts are evenly distributed. We do not use a more sophisti-

cated compression scheme to keep the compression and decompression time small.

Many CPUs, including Intel’s Pentiums [20], support machine instructions for count-

ing leading zeros, which can be used to accelerate our algorithm. However, to make the

performance comparisons fair, we only show results obtained with a portable C imple-

mentation of our algorithm in this paper.

During decompression, our algorithm first reads the four-bit leading-zero count LZC
and then 64-4*LZC effective bits to regenerate the difference Diff. The predictor in the
decompressor is kept consistent with the compressor’s predictor by updating them with

the same values, i.e., the previously seen doubles. Thus both predictors are guaranteed to

produce the same prediction Pred. The true value D236 can therefore trivially be regener-

ated by XORing Diff with Pred.

.

D235 delta1 delta2 delta3

hash fnc

dpred' dpred"

Pred

.

original array D234

predict function

hash table

 XOR

Diff

LZC236 | Bits236

D235 D236

compressed array

p
re
d
ic
to
r

LZC235 | Bits235LZC234 | Bits234

Figure 2: Compression algorithm overview

2.1. Predictor

We use a differential-finite-context-method predictor (DFCM) [11] in our compression

algorithm. It computes a hash out of the n most recently encountered differences (integer

subtraction) between consecutive values in the original array, where n is referred to as the
order of the predictor. Figure 2 shows the modified third-order DFCM predictor we use.

It performs a table lookup using the hash as an index to retrieve the differences that fol-

lowed the last two times the same hash was encountered, i.e., the last two times that same

sequence of last three differences was observed. The retrieved differences are used to

predict the next value by adding them to the previous value in the array as explained be-

low. Once a prediction has been made, the predictor is updated with the true difference

and value. We modified the predictor as follows to work well on floating-point data.

Hash function: For sequences of floating-point values, the chance of an exact 64-bit

prediction match is very low. Moreover, it is desirable that, for example, the decimal dif-

ference sequence <0.5001, 0.6001, 0.9001> be hashed to the same index as the sequence

<0.5000, 0.6000, 0.9000>. For these reasons, our hash function uses only the m most sig-

nificant bits and ignores the remaining bits. Our experiments show that hashing the first

fourteen bits (the sign bit, the eleven exponent bits, and the top two mantissa bits) results

in the best average prediction accuracy. We use the following hash function:

hash(delta1, delta2, delta3) = lsb0..19(delta1 ⊗ (delta2 << 5) ⊗ (delta3 << 10))

In this function, ⊗ denotes bit-wise XOR, << represents bit-wise left shift with zero in-

sertion, and the deltai stand for the fourteen most significant bits of the three most recent

differences between consecutive array elements. The lowest five bits of each deltai hold
the three least-significant exponent and the two mantissa bits and thus contain the most

frequently changing bits. Shifting the deltas by five bits relative to each other before

XORing them moves these frequently changing bits into non-overlapping positions,

which we found to decrease detrimental aliasing in the hash table. We only use the

twenty least-significant bits of the XOR result for the index because our hash table has

2
20
 (about one million) lines. Larger hash tables slow down the algorithm and do not in-

crease the prediction accuracy noticeably.

Prediction function: Note that we keep the most and the second-most recent value in

each line of the hash-table (dpred’ and dpred”). Both values are full 64-bit differences.
The predictor uses dpred’ if dpred” and dpred’ are not close to each other, i.e., their first
fourteen bits are not the same. Otherwise, the predictor uses dpred’+(dpred’-dpred”),
where the dpred’-dpred” term accounts for the drift in the difference values, which we

found to improve the prediction accuracy and thus the compression ratio.

3. Related work

Most previous work on lossless compression of floating-point values focuses on data

from audio, image, scientific measurement, and simulation domains. The majority of

such data is represented in the 32-bit IEEE 754 single-precision format. In contrast, our

work focuses on the 64-bit double-precision values produced by numeric programs.

Klimenko et al. [27] present a method that combines differentiation and zero suppress

algorithms to compress floating-point data arising from experiments conducted at the La-

ser Interferometer Gravitation Wave Observatory (LIGO E2 data). It has about the same

compression ratio as gzip but is significantly faster. Its success is tied to the nature of the

LIGO data, which are time-series whose values change only gradually.

A paper by Engelson et al. [7] is the only work we are aware of that proposes a scheme

for compressing 64-bit floating-point values. Their data comes from the output of a nu-

merical solver for ordinary differential equations. The authors use integer delta and ex-

trapolation algorithms to compress and decompress the data. Similar to the work by Kli-

menko et al., the success of this method depends on the “smoothness” of the data, i.e., the

difference between consecutive values is typically small and can therefore be encoded

with only a few bits.

Several papers [9], [25], [33], [34] concentrate on compressing floating-point data that

represent images. These studies focus on maximizing the compression ratio as the

(de)compression speed is not so relevant. Usevitch [34] proposes extensions to the

JPEG2000 standard that allow floating-point data to be efficiently encoded with bit-plane

coding algorithms where the floating-point values are represented as “big integers”.

Gamito et al. [9] describe modifications needed in JPEG2000 to accommodate lossless

floating-point compression, namely, adjustments in the wavelet transformation and ear-

lier signaling of special numbers such as NaNs in the main header. Isenburg et al. [25]

employ an arithmetic coder for single-precision floating point fields that represent resid-

ual vectors between the actual and the predicted vertex positions in triangular meshes.

Trott et al. [33] use an extended precision digits algorithm, the Haar wavelet transform,

and Huffman coding to losslessly compress 3D curvilinear grids.

Ghido [10] proposes an algorithm for lossless compression of floating-point audio

data. It transforms the floating-point values into integers, producing quantized sequences,

and generates an additional binary stream used for the lossless reconstruction of the

original floating-point values.

Utilizing value predictors as data models for compression purposes has previously

been explored for program-execution-trace compression [3], [4], [5]. However, that work

employs multiple predictors, which we cannot afford in this work because of the tight

time constraints. Another paper by the authors [26] describes how we included the

compression algorithm described in this paper in an MPI library to speed up parallel

message passing programs running on a cluster of workstations.

4. Evaluation methodology

4.1. System

We performed all measurements for this study on a 3GHz Intel P4-Xeon system with

1GB of main memory. The hard disk is a Seagate Cheetah 10K.6 Ultra320 SCSI, with a

capacity of 37GB, 8MB of build-in cache, and a spin rate of 10,000RPM. The operating

system is Linux Suse 9.1. Except where executables are directly available for our plat-

form, the compressors used in this study, including ours, were compiled with the GNU C

compiler (gcc) version 3.3.3 with the -O3 optimization flag.

4.2. Timing measurements

All timing measurements in this paper refer to the sum of the user and the system time as

reported by the UNIX shell’s time command. In other words, we report the CPU time and

ignore any idle time such as waiting for disk operations. All tested algorithms read data

from the hard disk and write data back to the hard disk. Given the large sizes of our data

sets, any effects due to disk caching should be minimal.

4.3. Other compressors

We compare our algorithm to six general-purpose and one special-purpose compressor.

This section briefly introduces these compressors.

We implemented the fsd compressor based on the fixed step delta-compressor pro-

posed by Engelson et al. [7]. They used this compressor to compress the 64-bit floating-

point output of an ordinary differential equation solver. Beside ours, it is the only special-

purpose compressor we are aware of that is designed specifically for IEEE double-

precision data. We chose a difference order of four for the fsd compressor, which yields

the best results on our data sets. Higher difference orders make the (de)compressor

slower and degrade the compression ratio.

rar [22] is an increasingly popular compressor that incorporates a combination of

Huffman [24], LZ77 [35], and Prediction by Partial Matching [32] algorithms. We use

the rar 3.51 executable for Intel-Linux platforms.

7-zip [16] is another compressor that has gained wide acceptance in the community. It

is based on the Lempel-Ziv-Markov Chain Algorithm (LZMA) [15], which uses a dic-

tionary compression scheme similar to LZ77. p7zip [13] is a version of 7-zip that is spe-

cifically designed for Intel-Linux platforms. We use the 7za stand-alone executable of

p7zip in this study.

lzpx [14] is a relatively small compressor written in C++. Its source code size is com-

parable to that of our compressor, which is the smallest compressor that we investigated

(about 300 lines of C code). lzpx is based on the Lempel-Ziv compression algorithm and

uses arithmetic coding [30].

zzip [12] is a compressor based on the Burrows-Wheeler Transform (BWT) [2] and is

written in C. Note that zzip does not work correctly on one of our data sets (sppm).

gzip [18] and bzip2 [17] are widely-used UNIX file compression tools. gzip’s main al-

gorithm is DEFLATE [19], which is a combination of LZ77 and Huffman coding,

whereas bzip2 is based on Burrow-Wheeler’s block-sorting algorithm that groups bytes

with similar contexts and compresses them with a Huffman coder.

4.4. Data sets

We evaluate the speed and the compression ratio of the algorithms described above on

data sets obtained from three NAS Parallel Benchmark (NPB) suite applications [1], three

ASCI Purple benchmarks [21], and a modified version of eulag [29]. The NAS Parallel

Benchmarks are a set of eight programs derived from computational fluid dynamics ap-

plications consisting of five kernels and three pseudo-applications. We use the three

pseudo-applications lu, bt, and sp. In addition, we use the three solvers sppm, sweep3d,

and aztec from the ASCI Purple suite. eulag is a fluid code developed at the National

Center for Atmospheric Research to model a broad range of physical situations. We use a

modified version that simulates brain injuries during accidents [6].

Table 1: Information about the data sets

size number of unique 1
st
 order

(MB) doubles doubles entropy

aztec 512.1 67,126,652 62,172,126 24.42

bt 254.0 33,298,679 30,928,542 23.67

eulag 135.3 17,730,000 16,832,168 23.97

lu 185.1 24,264,871 24,064,865 24.47

sp 276.7 36,263,232 35,881,610 25.03

sppm 266.1 34,874,483 3,572,226 11.24

sweep3d 119.9 15,716,403 14,113,187 23.41

The NPB and ASCI benchmarks are parallel programs for which we recorded the nu-

meric messages sent by (the randomly selected) Node 17. eulag is a sequential program

from which we recorded the simulation results after each time step. Table 1 provides

relevant information about the resulting data sets. The seven data sets are between about

100 and 500 megabytes in length, which is sufficient to warm up the compressor models

and to obtain accurate timing information. With the exception of sppm, the values in each

data set are largely unique, i.e., most values occur only once.

5. Results

5.1. Compression and decompression speed

This section evaluates how fast the seven compressors from Section 4.3 and our own

(dfcm) can compress and decompress the seven data sets on our reference machine. Since

this paper focuses on fast compression and decompression, we use the fastest version of

each algorithm in all cases where the speed can be selected in the command line (e.g.,

with the “--fast” option). Figure 3 shows the geometric mean runtimes for each algorithm

in seconds (lower numbers are better). Table 2 lists the compression throughput in num-

ber of doubles processed per second (higher numbers are better) for each algorithm and

data set. Table 3 is similar to Table 2 except it shows the decompression throughput. The

numbers in bold print mark the best results in both tables.

122.2

7.1 8.1
25.2

210.6

133.6

48.9

341.2

45.0

7.3 7.1

5.6

262.5

38.7

11.6

244.1

0

50

100

150

200

250

300

350

bzip2 dfcm fsd gzip lzpx p7zip rar zzip

ti
m
e
 (
s
)

decompression

compression

Figure 3: Geometric-mean compression and decompression time in seconds

Figure 3 illustrates that our algorithm is the fastest compressor/decompressor on aver-

age. fsd, the other special-purpose compressor, is nearly as fast (6% slower). The fastest

general-purpose compressor (gzip) is over twice slower.

Looking at the compression time only, we find dfcm to be 15% faster than fsd and

257% faster than gzip while at the same time also yielding higher average compression

ratios (Section 5.2). However, dfcm is 2.5% slower than fsd and 31% slower than gzip at

decompression. All other algorithms we studied are slower at compression and decom-

pression than our algorithm.

Looking at the throughput results in Table 2 and Table 3, we find that dfcm com-

presses our data sets at a rate of over 4.1 million doubles per second on average, com-

pared to about 3.6 million for fsd and just over one million for gzip.

Due to the symmetry of our algorithm, its decompression throughput is almost the

same as its compression throughput. Overall, gzip and fsd are the only algorithms that

achieve a higher decompression throughput than dfcm. On sppm, which is the only data

set that does not exhibit high first-order entropy and contains relatively few unique values

(Table 1), rar, fsd and gzip outperform dfcm.

Table 2: Compression throughput in doubles per second

bzip2 dfcm fsd gzip lzpx p7zip rar zzip

aztec 309,653.3 4,853,698.6 4,068,281.9 851,861.1 89,317.6 204,873.0 407,198.4 90,363.7

bt 201,859.1 3,899,142.7 3,394,360.8 798,721.0 82,351.1 207,597.7 699,258.3 83,482.5

eulag 193,791.7 2,832,268.4 3,390,057.4 755,754.5 77,872.5 155,240.3 330,413.7 87,223.9

lu 197,435.9 4,024,025.0 3,370,121.0 771,292.8 87,274.3 146,544.7 688,365.1 83,579.7

sp 196,017.5 4,291,506.7 3,203,465.7 1,201,963.3 123,143.3 200,437.9 419,567.7 67,541.9

sppm 283,417.2 5,951,277.0 4,637,564.2 5,046,958.5 983,765.4 646,063.0 2,478,641.3 ---

sweep3d 352,781.2 3,988,934.8 3,424,052.9 1,237,512.0 172,046.0 200,925.6 423,736.9 93,572.3

geo_mean 240,745.9 4,171,319.1 3,612,282.6 1,168,666.5 139,766.6 220,290.6 601,655.0 83,850.9

Table 3: Decompression throughput in doubles per second
bzip2 dfcm fsd gzip lzpx p7zip rar zzip

aztec 608,748.1 4,750,647.7 4,661,573.1 3,773,280.0 68,249.4 592,520.5 2,011,586.8 114,277.6

bt 499,305.4 4,085,727.5 3,858,479.6 4,157,138.5 67,270.1 606,202.1 2,021,777.7 106,375.4

eulag 466,578.9 2,850,482.3 4,038,724.4 4,011,312.2 62,214.9 503,407.2 1,870,253.2 103,436.2

lu 466,991.4 4,249,539.6 4,372,048.8 4,057,670.7 68,463.6 529,222.9 2,962,743.7 100,425.8

sp 484,673.0 4,416,958.8 3,527,551.8 6,115,216.2 109,871.9 677,690.7 1,869,238.8 113,033.0

sppm 2,245,620.3 4,381,216.5 4,719,145.2 11,509,730.4 755,185.9 3,001,246.4 7,404,348.8 ---

sweep3d 710,185.4 3,909,553.0 3,988,934.8 6,467,655.6 137,213.2 753,784.3 2,115,262.9 181,587.6

geo_mean 654,032.4 4,047,259.8 4,146,909.1 5,291,933.5 112,113.7 760,191.0 2,527,952.7 117,202.0

5.2. Compression ratio

Table 4 lists the compression ratio that the eight compressors achieve on the seven data

sets (higher numbers are better). The numbers in bold print mark the highest ratios.

Table 4: Compression ratio

bzip2 dfcm fsd gzip lzpx p7zip rar zzip

aztec 1.15 1.69 1.42 1.22 1.15 1.39 1.26 1.15

bt 1.10 1.36 1.02 1.13 1.10 1.32 1.15 1.10

eulag 1.04 1.23 1.06 1.06 1.05 1.15 1.07 1.09

lu 1.02 1.23 0.99 1.05 1.03 1.22 1.07 1.03

sp 1.08 1.25 0.95 1.11 1.07 1.31 1.14 1.07

sppm 6.78 4.16 2.14 6.31 7.94 8.31 7.68 ---

sweep3d 1.06 1.49 1.20 1.09 1.19 1.26 1.30 1.35

geo_mean 1.40 1.60 1.20 1.42 1.46 1.66 1.52 1.13

With the exception of sppm, which has low first-order entropy, none of the data sets

can be compressed by more than a factor of 1.7 with any of the eight algorithms. It ap-

pears that the floating-point results produced by numeric programs tend to be difficult to

compress effectively, especially when speed matters.

Our algorithm achieves the highest compression ratio on five of the seven data sets and

is a close second behind p7zip on sp. This is a nice result because our algorithm is also

one of the fastest. Note that all algorithms except fsd outperform dfcm on sppm, indicat-

ing that our algorithm is probably only preferable in situations where high-entropy data is

expected.

5.3. Memory usage

Table 5 shows how much memory the eight algorithms maximally allocate when com-

pressing and decompressing the seven data sets. All algorithms use a reasonable amount

of memory. No algorithm requires more than about 32 megabytes, which is small for a

computer used to perform numeric calculations. dfcm allocates close to 17 megabytes

with 16 megabytes in the hash table. However, due to the infrequency with which most of

the hash table entries are accessed, the active working set of our algorithm is much

smaller and appears not to result in slow processing due to poor cache performance.

Table 5: Memory usage in kilobytes

bzip2 dfcm fsd gzip lzpx p7zip rar zzip

compression 1,520 16,748 420 636 18,204 2,756 32,252 6,832

decompression 856 16,736 424 444 18,204 2,256 5,476 5,747

6. Summary and conclusion

In situations where large amounts of scientific floating-point data need to be compressed,

transferred, and decompressed in a speedy manner, our dfcm algorithm performs very

well. It is one of the fastest algorithms and often results in the highest compression ratio.

It compresses and decompresses IEEE double-precision values on average at rates of over

32 megabytes per second on a 3GHz Pentium 4. This rate exceeds the throughput of Fast

Ethernet networks and of many hard disks, meaning that our algorithm makes real-time

compression and decompression possible. In fact, the time saved due to sending or stor-

ing the shorter compressed data stream is likely to outweigh the runtime overhead intro-

duced by performing the compression. Hence, our algorithm may well compress the data

and reduce the overall runtime simultaneously.

7. Acknowledgment

This work was supported by the National Science Foundation under Grant No. 0125987.

References

[1] D. Bailey, T. Harris, W. Saphir, R. v. d. Wijngaart, A. Woo and M. Yarrow, The NAS Paral-

lel Benchmarks 2.0, Technical Report NAS-95-020, NASA Ames Research Center, 1995.

[2] M. Burrows and D. J. Wheeler, A Block-Sorting Lossless Data Compression Algorithm,

Digital SRC Research Report 124, 1994.

[3] M. Burtscher, VPC3: A Fast and Effective Trace-Compression Algorithm, Joint Interna-

tional Conference on Measurement and Modeling of Computer Systems, 2004, pp. 167-176.

[4] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan and N. B. Sam, The VPC

Trace-Compression Algorithms, IEEE Transactions on Computers, Vol. 54, 2005, pp. 1329-

1344.

[5] M. Burtscher and M. Jeeradit, Compressing Extended Program Traces Using Value Predic-

tors, 12th International Conference on Parallel Architectures and Compilation Techniques,

2003, pp. 159-169.

[6] M. Burtscher and I. Szczyrba, Numerical Modeling of Brain Dynamics in Traumatic Situa-

tions - Impulsive Translations, The 2005 International Conference on Mathematics and En-

gineering Techniques in Medicine and Biological Sciences, 2005, pp. 205-211.

[7] V. Engelson, D. Fritzson and P. Fritzson, Lossless Compression of High-Volume Numerical

Data from Simulations, Data Compression Conference, 2000, pp. 574-586.

[8] M. Forum, MPI: A Message-Passing Interface Standard, The International Journal of Su-

percomputer Applications and High Performance Computing, 1994, pp. 165-414.

[9] M. N. Gamito and M. S. Dias, Lossless Coding of Floating Point Data with JPEG 2000 Part

10, Applications of Digital Image Processing XXVII, 2004, pp. 276-287.

[10] F. Ghido, An Efficient Algorithm for Lossless Compression of IEEE Float Audio, Data Com-

pression Conference, 2004, pp. 429-438.

[11] B. Goeman, H. Vandierendonck and K. Bosschere, Differential FCM: Increasing Value

Prediction Accuracy by Improving Table Usage Efficiency, Seventh International Sympo-

sium on High Performance Computer Architecture, 2001, pp. 207-216.

[12] http://debin.net/zzip/, 2002.

[13] http://p7zip.sourceforge.net/, 2005.

[14] http://sourceforge.net/projects/lzpx/, 2005.

[15] http://tukaani.org/lzma/, 2005.

[16] http://www.7-zip.org/, 2005.

[17] http://www.bzip.org/, 2005.

[18] http://www.gzip.org/, 2005.

[19] http://www.ietf.org/rfc/rfc1951.txt, 1996.

[20] http://www.intel.com/design/pentium/MANUALS/24319101.PDF, 2005.

[21] http://www.llnl.gov/asci/platforms/purple/, 2005.

[22] http://www.rarsoft.com/, 2005.

[23] http://www.tc.cornell.edu/, 2005.

[24] D. A. Huffman, A Method for the Construction of Minimum Redundancy Codes, Proceed-

ings of the IERE, Vol. 40, 1952, pp. 1098-1101.

[25] M. Isenburg, P. Lindstrom and J. Snoeyink, Lossless Compression of Floating-Point

Geometry, CAD2004, 2004, pp. 495-502.

[26] J. Ke, M. Burtscher and E. Speight, Runtime Compression of MPI Messages to Improve the

Performance and Scalability of Parallel Applications, High-Performance Computing, Net-

working and Storage Conference, 2004, pp. 59-65.

[27] S. Klimenko, B. Mours, P. Shawhan and A. Sazonov, Data Compression Study with the E2

Data, LIGO-T010033-00-E Technical Report, 2001, pp. 1-14.

[28] M. H. Lipasti, C. B. Wilkerson and J. P. Shen, Value Locality and Load Value Prediction,

Seventh International Conference on Architectural Support for Programming Languages

and Operating Systems, 1996, pp. 138-147.

[29] J. M. Prusa, P. K. Smolarkiewicz and A. A. Wyszogrodzki, Simulations of Gravity Wave

Induced Turbulence Using 512 PE CRAY T3E, International Journal of Applied Mathemat-

ics and Computational Science, Vol. 11, 2001, pp. 101-115.

[30] J. Rissanen and G. G. Langdon Jr., Arithmetic Coding, IBM Journal of Research and Devel-

opment, Vol. 23, 1979, pp. 149-162.

[31] Y. Sazeides and J. E. Smith, The Predictability of Data Values, 30th International Sympo-

sium on Microarchitecture, 1997, pp. 248-258.

[32] D. Shkarin, PPM: one step to practicality, Data Compression Conference, 2002, pp. 202-

211.

[33] A. Trott, R. Moorhead and J. McGenley, Wavelets Applied to Lossless Compression and

Progressive Transmission of Floating Point Data in 3-D Curvilinear Grids, IEEE Visualiza-

tion, 1996, pp. 355-388.

[34] B. E. Usevitch, JPEG2000 Extensions for Bit Plane Coding of Floating Point Data, Data

Compression Conference, 2003, pp. 451-461.

[35] J. Ziv and A. Lempel, A Universal Algorithm for Data Compression, IEEE Transactions on

Information Theory, Vol. 23, 1977, pp. 337-343.

