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Abstract. A fast and efficient procedure for finding low order approx- 
imations to large boolean functions, if such approximations exist, is de- 
veloped. The procedure uses iterative error-correction algorithms for fast 
correlation attacks OII certain stream ciphers and is based on represent- 
ing low order boolean functions by appropriate linear recurring sequences 
generated by binary filter generators. Applications and significance of the 
proposed method in thc analysis and design of block and stream ciphers 
are also discussed. 

1 Introduction 

Encryption and decryption functions of binary block and stream ciphers in their 
various modes of operation are necessarily based on boolean functions. The 
boolean functions are secret key dependent in block ciphers and self-synchronizing 
stream ciphers and may be key independent in synchronous stream ciphers where 
the initial state is key dependent. Linear approximations of boolean functions in 
stream cipher applications have been studied in [22], [23], [21], [26], [16], [2] for 
memoryless combiners, in [24], [all, [2] for Iioriliriear filter generators, in [17], [6], 

[7] for combiners with memory, and in [7] for arbitrary keystream generators. 
These results are related to correlation attacks [23] or fast correlation attacks 
[Is], [27] on shift register based keystream generators. On the other hand, a 
number of authors have investigated linear approximations of boolean and vec- 
torial boolean functions in product block ciphers, and a breakthrough in this 
area was made by Matsui in his seminal work [13], initiating many follow-up pa- 
pers on similar problems. Matsui developed an iterative (dynamic programming) 
method for finding linear approximations to encryption functions in product 
block ciphers and was the first to realize that even linear approximations with 
very small correlation coefficients can be used to reduce the uncertainty of the 
secret key. Maurer [14] has analyzed the security of self-synchronizing stream 
ciphers against the chosen-ciphertext attack and pointed out the importance 
of linear and other low order approximations to the key dependent feedback 
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function for approximate reconstruction of unknown plaintext from a given ci- 
phertext which in turn may lead to the complete plaintext recovery by using the 
plaintext redundancy. The reason for this is that any boolean function of low 
algebraic/nonlinear order can be described and evaulated in terms of a relatively 
low number of coefficients in its algebraic normal form (ANF) even if the number 
of input variables is large. Of course, approximate decryption by means of low 
order approximations to decryption functions may also be possible for any block 
cipher as well [20]. 

The task of finding low order approximations to  boolean functions neccssar- 
ily involves computing or estimating the correlation coefficient between a given 
boolean function and a candidate boolean function of low algebraic order, where 
the correlation coefficient between any two boolean functions f (X)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( X )  of 
n variables X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(XI,. . . ,z,) is as usual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e.g., see [21], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[IS]) defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

The functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf and g are not correlated if c(f, g) = 0, and are strongly correlated 
if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ( f , g )  is large in magnitude (i.e., close to  f l ) .  The objective of low order 
approximation of a given boolean function f is to find a boolean function g 
of low algebraic order such that the correlation coefficient c ( f , g )  is relatively 
large. To compute c ( f , g )  exactly for a. ca,ndidat,e 8, one has to  examine all 
2" possible arguments, but to estimate it reliably only O(l /c( f ,  g) ' )  argument 
values are needed, under a reasonable probabilistic assumption that 2n values of 
g ( X )  are chosen independently at random so that Pr{f : g} = (1 + c ( f , g ) ) / 2 .  
Accordingly, the correlation coefficient is considered to  be large in magnitude 

if Ic ( f ,g) l  is much bigger than 2-"/ ' .  The exhaustive search over all 2 E b o  (:) 
possible candidate functions g of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT or smaller is not feasible for moderately 
large n (e.g., n 2 64) which is the case in cryptographic applications. It should be 
noted that for linear/affine approximations (r = 1) one may apply the fast Walsh 
transform algorithm for exact computation of the correlation coefficients between 
f and all the linear functions, with the computational complexity O(n2") instead 
of 2'" (e.g., see [21]). A similar algorithm for an arbitrary order r is not known. In 
any case, for 2" very large the problem is how to find good candidate functions, 
if they exist. The problem is difficult and may even seem impossible to solve. 

Maurer [14] pointed out that boolean functions of n variables and of order 
a t  most r can be regarded as codewords of a binary rth-order Reed-Muller code 
with parameters (2n,Cl==o ( y ) ,  2n-T), see [25], where the information bits are 
the coefficients in the ANF of these functions. The considered problem can then 
be regarded as one of decoding such linear block codes, i.e., the minimum dis- 
tance decoding of such codes is equivalent to finding a low order approximation 
to a given boolean function with the maximiim correlation coefficient. Since the 
minimum distance is 2n-T,  one may correct any 2"-'-l - 1 or less errors by such 
codes which means that it is theoretically possible to  determine uniquely the 
best rth-order approximation g to a given boolean function f if the correlation 
coefficient c(f,g) is bigger than 1 - 2Yr.  However, as noted in [14], standard 
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decoding procedures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] for Reed-Muller codes (majority-logic decoding based 
on appropriate orthogonal parity-checks) are not feasible for large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2". Another 
important distinction is that in cryptographic applications the maximum mag- 
nitude of the correlation coefficients to  rth-order boolean functions is expected 
to be much smaller than 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - r .  Such approximations may no longer be useful 
for approximate decryption, but may be used in cryptanalytic attacks on the 
secret key. For example, Matsui [13] has shown that linear approximations to  
encryption functions in block ciphers with the correlation coefficients even close 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-n/2 can be used to  reduce the uncertainty of the secret key. Similar conclu- 
sions may hold for arbitrary low order approximations and for self-synchronizing 
and synchronous dream ciphers as well. 

Maurer [ 141 has proposed two local decoding algorithms for Reed-Muller 
codes, one for affine approximations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T = 1) and the other for approximations 
of an arbitrary order r .  Both are feasible for large 2" and essentially consist 
in majority-logic decoding based on appropriate subsets of orthogonal parity- 
checks for the ANF coefficients of a boolean function g of order at most T (the 
information bits). The first algorithm is based on the parity-checks involving 
three bits only, whereas the second one is based on decoding short Reed-Muller 
codes derived from the long one and then on making a majorit,y-logic decision 
over all the short codes for every coefficient of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. The short codes are obtained 
by setting some of the input variables to  zero. Maurer suggested that with high 
probability the first algorithm can work even if the correlation coefficient is 
much smaller than 1/2 and that the second one may find the best rth-order 
approximation with the correlation coefficient bigger than 1 - 2 - r .  

Another, information set decoding (e.g., see [3]) approach to  the low order 
approximation problem is taken in [20]. For approximations of order at most r, 
the information sets suggested are Hamming spheres of radius r. For an approxi- 
mation with the correlation coefficient c, the expected number of sphere samples 
to be examined to find with high probability an error-free one can be estimated 

as (2/(1 + c))xr=o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(:I, which is feasible only for relatively large c. 

The main objective of this paper is t o  develop a fast procedure for finding 
low order approximations to large boolean functions that can be successful even 
if the correlation coefficient of the best approximation is very small (e.g., much 
smaller than 1 - 2-' for an rth-order approximation). Our solution is based on 
appropriate parity-checks, but unlike [14], the decision (majority-logic rule or 
maximum posterior probability rule) is not made on the ANF coefficients of the 
approximation function (information bits) , but on all the codeword bits involved 
in the parity-checks. This implies that the observed set of the codeword bits 
should be closed with respect to  all the parity-checks used. The decision process 
is then repeated iteratively, each time recomputing all the parity-checks, which 
greatly increases the error-correction capability, i.e., enables one to successfully 
deal with much smaller correlation coefficients of the best approximation. To 
the same end, it is also important that the parity-checks be chosen with as 
few terms as possible. After the iterative algorithm is completed, the number of 
remaining errors, i.e., the Hamming distance to the best low order approximation 
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is considerably reduced. This then enables us to  apply a simple information 
set decoding technique to  reconstruct the codeword corresponding to the best 
approximation, if the correlation coefficient is not too small to be detected. 
Finally, the coefficients in its ANF are then obtained by an appropriate linear 
transform. 

It remains to explain how to construct the codewords of the underlying linear 
code and how to find the required parity-checks. For a boolean function f of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
variables to be analyzed, take a linear feedback shift register (LFSR) of length 
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n with a primitive feedback polynomial and a fixed initial state and select 
any consecutive n LFSR stages to  form a filter generator. Then for each boolean 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg of n variables and of order a t  most T with the zero constant term in its 
ANF, form a filter generator with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg as a filter function and produce a sequence of 
length N .  In view of an old result from [lo], it follows that every such sequence 
satisfies a linear recurrence determined by a binary polynomial h, of degree m, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
XI=’=, (T), provided that N > m,. The sequences are different and constitute 
a linear code with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, = XI==, ( y )  information bits (i.e., the coefficients in the 
ANF of 9). The parity-checks are then constructed from low weight polynomial 
multiples of h, where the weight of a binary polynomial is defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the number 
of its nonzero terms. Note that m greater than n can make finding the low weight 
and low degree polynomial multiples of h, easier (preferably, h, itself should have 
a low weight). 

Then, produce a sequence of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN by the filter generator with the given 
boolean function f as a filter function. This sequence is regarded as a received 
codeword at the output of a binary symmetric channel with the noise probabil- 
ity (1 - c)/2 corresponding to the assumed correlation coefficient c. Since c is 
assumed to be positive, we have to  run the decoding procedure twice: once for 
the received codeword and second time for its binary complement. The iterative 
probabilistic or majority-logic decoding algorithm with information set decod- 
ing then yields a linear recurring sequence satisfying h, that corresponds to  an 
approximation to f of order a t  most T with the correlation coefficient close to 
c or bigger, if it exists. A condition for the minimum c that can be detected is 
pointed out. The solution need not be unique, especially if T > 1. Interestingly, 
it thus turns out that the low order approximation problem for boolean func- 
tions can essentially be reduced to the problem of fast correlation attacks on 
LFSR’s with appropriate feedback polynomials. For T = 1 the feedback polyno- 
mials are primitive, but for T > 1 they are not. The basic iterative probabilistic 
decoding algorithm for fast correlation attacks was introduced in [15], while a 
similar iterative majority-logic decoding algorithm was independently proposed 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27]. Both the algorithms have origins in iterative error-correction decoding 
procedures given in [5 ] ,  [ll], and [3]. In a number of follow-up papers, these algo- 
rithms have been modified and further analyzed, e.g., see [4], [l], [18], [191, [281, 
[8]. The important difference that greatly facilitates the success of the low order 
approximation procedure is that the feedback polynomial, h,, can be chosen SO 

as to  maximize the number of parity-checks associated with parity-check poly- 
nomials of low weight and not too large a degree, and finding such parity-checks 
can be done in precomputation time. 
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The rest of the papcr is organized as follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA more detailed description of 

the background work from [14] and [20] is presented in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  The represen- 
tation of low order boolean functions by filter generators is explained in Section 
3, whereas the relation between low order approximation of boolean functions 
and fast correlation attacks is investigated in Section 4. Significance and poten- 
tial applications of the proposed method in the design and analysis of block and 
stream ciphers are discussed in Section 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Background Work 

Maurer [14] has proposed two local decoding algorithms for Reed-Muller codes 
that are feasible for large 2", one for affine approximations (7- = 1) and the 
other for approximations of an arbitrary order r. Both essentially consist in 
majority-logic decoding based on appropriate subsets of orthogonal parity-checks 
for the ANF coefficients of a boolean function of order at most T (the information 
bits). Regarding the affine approximations, note that every (2", n + 1, 2"-') 

first-order Reed-Muller code can be reduced to a (2" - 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, 2"-l) code being 
the dual of a binary Hamming code, by deleting the information/codeword bit 
corresponding to the constant term of an affine function. This means that linear 
boolean functions correspond to  codewords of the dual of a binary Hamming 
code, see [ 2 5 ] .  Majority-logic decoding of such codes is based on 2"-' orthogonal 
parity-checks for each information bit, where each parity-check involves three bits 
only. The algorithm proposed in [14] for decoding long first-order Reed-Muller 
codes is then the same except that it uses subsets of the parity-checks, for the 
decoding to be feasible for large 2". The best linearlaffine approximation with 
the correlation coefficicnt bigger than 1/2 is guaranteed to be found by this 
algorithm if all the parity-checks are used. Maurer suggested that this is with 
high probability true even if the correlation coefficient is much srnaller than 1/2. 

However, for an arbitrary r, the choice of a small subset of the parity-checks 
to be used in majority-logic decoding is not as simple as for r = 1. An interesting 
solution given in [14] is based on decoding short Reed-Muller codes derived from 
the long one and then on making a majority-logic decision over all the short codes 
for every information bit. The short codes of length 2l are obtained by setting 
n - 1 input variables to zero. It is recommended in [14] to choose sufficiently 
many subsets of 1 variables to cover every information bit of the long code if 1 is 
large, and to  use all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( y )  of them if 1 is relatively small. It is suggested that such 
an algorithm may with high probability find the best rth-order approximation 
with the correlation cocfficicnt biggcr than 1 - 2-T .  As opposed to the casc r = 1, 

Maurer did not discuss the situation when the correlation coefficient is smaller 
than 1 - 2Yr.  While it is intuitively clear that the proposed algorithm can work, 
the conditions for success are not quite clear (e.g., the choice of 1). 

Another, information set decoding (e.g., see [3]) approach to  the low order 
approximation problem is suggested in [20]. It is well-known [25] that the ANF 
coefficients of a boolean function of order a t  most r can be uniquely determined 
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from its values in the Hamming sphere of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT around the all-zero vector by 
a linear transform. It is observed in [ZO] that the same holds for the Hamming 
sphere of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr around any input vector as a center, where the corresponding 
linear transform incorporates the boolean derivatives of the function with respect 
to the center vector. In coding terms, the sets of codeword bits corresponding 
to these Hamming spheres represent particular examples of the information sets 
(there are many others), and the main point of information set decoding is to 
look for error-free information sets. Each Hamming sphere thus gives a candidate 
low order approximation to a given boolean function, and for each candidate 
the correlation coefficient is estimated on a set of O(l /c2) arguments, for an 
assumed value c. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA candidate function with the maximum magnitude of the 
correlation coefficient estimate is then picked as a low order approximation. If an 
approximation with the correlation coefficient, c exists, t,hen the expected number 
of sphere samples to be examined to find with high probability an error-free one 

can be approximated as (2/(1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ) ) ~ ~ = o  (:I. The computational complexity is 
thus prohibitively high, so that the method may work only for very large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,  given 
that n is moderately large and T is not very small. 

3 Low Order Functions and Filter Generators 

In this section, it is defined how to construct the codewords of the underly- 
ing linear code used for low order approximation and how to find the desired 
parity-checks. For a boolean function of 71 variables to be analyzed, take a linear 
feedback shift register (LFSR) of length m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n with a primitive feedback poly- 
nomial h. Choose and fix an arbitrary nonzero initial state and select arbitrary 
consecutive n out of m LFSR stages to form a filter generator. Recall [Z l ]  that 
a binary filter generator is a keystream generator consisting of a single binary 
LFSR and a boolean function whose inputs are taken from some shift register 
stages to produce the output. Such a generator realizes a linear/nonlinear feed- 
forward transform of an LFSR sequence. More precisely, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = ( ~ ( t ) ) & ~  be a 
binary maximum-length sequence of period 2m - 1 generated from the assumed 
initial state ( ~ ( t ) ) ; 2 - ~ ,  let f(q,. . . ,z,) be a boolean function of n, n 5 m, 
input variables, and let the first n LFSR stages define the inputs to the filter 
function. Then the output sequence y = (y(t))& of the corresponding filter 
generator is defined by y( t )  = f(z(t - l), . . . , z( t  - n) ) ,  t 2 0. 

For any T 2 1 (for low order approximations r / n  should be small), define a 
collection GT of 2kp, k, = EL='=, ( y ) ,  filter generators with the same initial state by 
using all possible boolean functions g of n variables and of order at most T ,  where 
the constant term in the ANF of g is assumed to be equal to zero. For simplicity, 
the parameters n and rn are dropped from the notation. Recall that the algebraic 
normal form (ANF) of g is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(z1,. . . , 2,) = Cs as n,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi where the 
sum is over all index sets S (1,. . . , 71) of cardinality at most T ,  and the 
coefficients as are binary. The output sequences produced by GT are periodic 
with a period equal to Z m  - 1 or to a factor of 2m - 1 and arc all different since g 
are different and all 2, possible arguments of g are used to  produce the output 
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bits. Furthermore, the set, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,, of 2kp different output sequences produced by G, 
is a binary vector space of dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk r ,  because the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAANF uniquely represents g 
and every g can be expressed as a sum of product boolean functions, whose ANF 
contains a single product term. The corresponding generating sequences for S, 
are the Ic, sequences produced by all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkT possible product boolean functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI 

variables and of order a t  most r .  This means that the output sequence produced 
by any g can be expressed as a linear combination of these generating sequences 
where the coefficients are exactly the ANF coefficients of g (see [21]). 

Moreover, due to  a well-known result from [lo], the sequences from Sr all 
satisfy a linear recurrence defined by an appropriate binary polynomial h, of 
degree m, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T). More precisely, if (Y is a root of h in a splitting field 
GF(2"), then the roots of h, in GF(2'") are exactly all the powers ae where e 
is an integer with an m-bit long binary expansion that contains at least one and 
at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ones. Accordingly, h, is the least common multiple of the minimum 
binary polynomials of all such powers. It can be obtained by standard algebraic 
techniques or, simply, by using the Berlekamp-Massey algorithm [12] over the 
binary field. Recall that the Berlekamp-Massey algorithm yields the shortest 
LFSR that generates a given finite field sequence of a finite length (its feedback 
polynomial is called the minimum feedback polynomial of the sequence, and is 
unique if its length is a t  most one half of the sequence length). It is shown in 
[21] that the minimum feedback polynomial of every sequence in S, produced 
by any product boolean function g of i adjacent variables, 1 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 r ,  necessarily 
contains as roots all the powers ae such that the binary expansion of e contains 
exactly i ones. For each 1 5 i 5 T ,  one may then take exactly one product 
boolean function of the first i variables, and h, is then the least common multiple 
of the minimum feedback polynomials of the corresponding r binary sequences 
produced by these r product functions. To determine the individual feedback 
polynomials uniquely, it suffices to take the first 2m, bits of these sequences 
and to apply the Berlekamp-Massey algorithm. The least common multiple can 
then be found efficiently by the Euclidean division algorithm. Alternatively, one 
may as well apply the multisequence Berlekamp-Massey algorithm [2] to these T 

product sequences of length 2m, and thus directly obtain h,. 

Consequently, S, is a set of 2k7 binary sequences which can be generated by 
an LFSR of length 7nT and the feedback polynomial h, from 2k7 different initial 
states. Each sequence in ST is then uniquely determined by any m, consecutive 
bits, by the forward and backward linear recurrences. Consider now a set of 
truncated output sequences of length N > m, produced by 6, by taking the first 
N output bits only. Since the sequences are different, this set is clearly a binary 
( N ,  k,) linear code, denoted as Cy, whose dimension is exactly kT. The code Cy 
can be regarded as a subcode of a truncated cyclic code with the parity-check 
polynomial h,. This cyclic code is a generalization of a cyclic representation of 
(2" - 1, C:=, ('r), 2"-,) Reed-Muller codes associated with boolean functions 
of m variables with the zero constant term in the ANF and with the codeword 
bit corresponding to  the all-zero vector omitted, see [9]. If m = n, then m, = kr 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC: is a truncated cyclic code itself. The desired parity-checks correspond 
to low weight polynomial multiples of h,. 
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It is allowed that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm can be greater than n in order to make easier finding the 

low weight polynomial multiples of h, whose degree is relatively small or moder- 
ately large, so that the length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN need not be too large. For example, for r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 the 
parity-check polynomial h, coincides with the LFSR polynomial h. It is there- 
fore preferable that h be a trinomial, which may not exist for m = n but exists 
for m > n. Of course, obtaining trinomial or low weight primitive polynomials 
of degree m by exhaustive search is relatively easy if the factorization of 2m - 1 
is known. One may develop special methods for finding low weight polynomials 
h, for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 2 1 as well. Starting from any determined low weight polynomial 
multiple of h,, other low weight polynomial niultiples can then be produced by 
the squaring technique proposed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15]. In general, finding low weight polyno- 
mial multiples of h, of not too large a degree can be performed by systematic 
search based on computing the residues of the single term (power) polynomials 
modulo h,. For higher degrees, one may use the meet-in-the-meedle technique 
[15] or algorithms for computing discrete logarithms in fields of characteristic 
two, as suggested in [27]. In any case, finding an appropriate (optimal) primitive 
polynomial h and low weight polynomial miiltiples of not too large a degree for 
the corresponding polynomial h, can be done in precomputation time. As usual 
[15], [I], any determined low weight polynomial multiple of weight W actually 
defines a set of W parity-checks corresponding to  its different phase shifts. The 
parity-checks should be tested for orthogonality in which case some of them may 
be discarded. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is largc enough, the same set of the parity-checks (except for 
a phase shift) is used for most the codeword bits, and near the ends the set is 
reduced appropriately. 

As noted above, since the dimension of the code C: is k,  if N > m,, every 
codeword in C,” uniquely determines a sequence in S, and, hence, a boolean 
function g of order at most r as well. In turn, every codeword is uniquely deter- 
mined by any m, consecutive bits or by any other information set. Therefore, 
the ANF coefficients of g can be obtained from any m, consecutive bits in the 
corresponding codeword. More precisely, each out of k ,  ANF coefficients of g can 
be expressed as a linear function of any m, consecutive bits from the associated 
codeword. To find these linear functions, it suffices to  take the first m, codeword 
bits (as variables) and to  form a system of linear equations in the unknown ANF 
coefficients by expressing the sequence of m, codeword bits as a linear combina- 
tion, with unknown coefficicnts, of the k ,  sequences of length m, produced by all 
k ,  possible product boolean functions of n variables and of order at most r .  The 
corresponding system of m, linear equations in k,  unknowns has rank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, and, 
hence, has a unique solution for the unknown ANF coefficients given the first 
rn, codeword bits. The system is sparse and can be easily solved by standard 
techniques even if k, and rn, are very large. This is executed in the precompu- 
tation time and as a result one thus obtains and stores a binary k, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx rn, matrix 
A, defining a linear transform for the unknown ANF coefficients of g in terms 
of the first m, bits of a given codeword in C:. 
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Attacks 

Low Order Approximations and Fast Correlation 

In the previous section, a filter generator based representation of low order 
boolean functions as codewords in an appropriate binary linear code of essen- 
tially cyclic structure was defined. In this section, this representation is used 
to propose a solution to the low order approximation problem for large boolean 
functions in terms of iterative probabilistic or majority-logic decoding algorithnis 
used in fast correlation attacks on certain stream ciphers. Assume that a boolean 
function f of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn variables is given where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn may be large. More precisely, we as- 
sume that f can be evaluated on a desired set of arguments of cardinality much 
smaller than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2". 

Accordingly, as described in the previous section, choose an LFSR with an 
appropriate primitive feedback polynomial h of degree m 2 n, select and fix 
the LFSR initial state, and then, in terms of filter generators, define a binary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( N ,  k,) linear code C:, where k ,  = El=, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) arid N -> m,, m, = El==, (1). Its 
codewords satisfy a binary polynomial h, of degree m, and uniquely represent 
boolean functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy of n variables and of order at most r. Then computc a 
binary k ,  x m, matrix A, defining a linear transform for the unknown ANF 
coefficients of in terms of the first m, bits of a given codeword in C,". The 
main precomputational effort is to determine a set, A,,  of low weight parity-check 
polynomials whose degrees should be as small as possible. Given n, a degree m 
and a primitive polynomial h should be optimized accordingly. 

Then form a filter generator from the same LFSR by using the given function 
f as a filter function and produce a sequence of length N .  This sequence is 
regarded as a received codeword for C," at  the output of a binary symmetric 
channel with the noise probability p = (1 - c ) / 2 ,  corresponding to the assumed 
correlation coefficient c. So, the crucial point of our approach is to observe the 
values o f f  for the argument values corresponding to successive states of an LFSR 
with an appropriate primitive feedback polynomial. The objective of low order 
approximation off is to  find a boolean function y of order at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT such that the 
absolute value of the correlation coefficient c( f ,  g) is c or larger, if such g exists. 
In coding terms, this problem then reduces to  the minimum distance decoding 
of C,", i.e., to finding a codeword at  the minimum Hamming distance (or close) 
to the received codeword. Since c is assumed to be positive, we have to run the 
decoding procedure twice: once for the received codeword and second time for 
its binary complement. Alternatively, one may incorporate the polynomial 1 + z 
as a factor of h, to  include the boolean functions g with the nonzero constant, 
term in the ANF (then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, is increased by one). As the codewords of Cy satisfy 
the linear recurrence defined by ti,, the minimum distance decoding of this code 
is then essentially similar to  the problem of the LFSR initial state reconstruction 
from a noisy LFSR sequence which arises in correlation attacks [23] on certain 
stream ciphers based 011 memoryless combiners. 111 this case, the LFSR feedback 
polynomial is h,, which is primitive only if T = 1. Since the number, 2 k v ,  of 
possible LFSR initial states (i.e., the number of low order approximations g) is 
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very large, only fast decoding procedures are of interest, which is essentially the 
situation dealt with in fast correlation attacks. 

The solution is in iterative probabilistic or majority-logic decoding proce- 
dures with information set decoding. The basic iterative probabilistic decoding 
algorithm for fast correlation attacks was introduced in [15], while a similar it- 
erative majority-logic decoding algorithm was independently proposed in [27]. 
Both the algorithms have origins in iterative error-correction decoding proce- 
dures given in [5], [Ill, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3]. In a number of follow-up papers, these algorithms 
have been modified and further analyzed, e.g., see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], [l], [18], [19], [28], [8]. The 
unknown codeword is assumed to have the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ,  where z = (zi)El is the 
received codeword produced by f and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe = (e i )z l  is the unknown error vector to 
be reconstructed. Iterative error-correction algorithms consist in making itera- 
tive decisions on all the bits in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe based on the parity-check values being updated 
after every decision on e .  In majority-logic error-correction, the majority-logic 
decision rule is applied based on the number of satisfied (zero valued) parity- 
checks. The assumed value of the correlation coefficient c is not used, and the 
algorithm works well if c is not too small and, especially, if the parity-checks have 
the same weight. For smaller values of c and parity-checks of different weights, 
one should apply probabilistic error-correction, where the statistically optimal, 
maximum posterior probability decision rule is employed for each bit of e which 
minimizes the symbol error-rate in the first iteration step. A probabilistic model 
is used in which e is assumed to be a sequence of independent binary random 
variables (bits) in each iteration step. Initially, the error bits are assumed to be 
identically distributed with Pr{ei = l} = p = (1 - c)/2. Let in each iteration 
step, pi and $i denote the prior and posterior probabilities that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAei = 1, respec- 
tively, and let the corresponding correlation coefficient be defined as ci = 1 - 2pi. 
Let A , i  denote the set of the parity-checks used for ei and let s(X) denote the 
binary value of a parity-check X E AT,i. Let c(X) be the correlation coefficient 
associated with X E AT,i which is defined as the product of the correlation coef- 
ficients c j  for all the error bits ej,  j # i, involved in X (since the error bits are 
assumed to be independent, c(X) is exactly the correlation coefficient of their 
modulo 2 sum [ 5 ] ) .  If the parity-checks in AT,i are orthogonal, then their random 
values are independent when conditioned on the value of ei,  so that the posterior 
probability p i  is then for each 1 5 i 5 N determined by 

Pi 

1 -pi 
- -  

The same expression may be used for nonorthogonal parity-checks as well. 
The main point of the iteration process is then to use the posterior proba- 

bilities computed in the current step as the prior probabilities for the next step. 
Equivalently (for orthogonal parity-checks [28], [HI), one may perform error- 
correction in each iteration step by using the maximum posterior probability 
decision rule: if pi > 0.5, then ei is set to 1, the observed bit z; is complemented, 
and is set to 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj3i. With error-correction in each step, the experiments [15], 
[18], [19], [S] show that the posterior probabilities relatively quickly converge to 
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the zero value for most positions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi on a codeword length. This fact is a conse- 
quence of the fixed points of the mapping defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  and does not necessarily 
mean that all or most the errors are thus corrected. But, hopefully, the number 
of errors (i.e., the Hamming distance to the best low order approximation) is 
reduced. One may then reset all the error probabilities to  the initial value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp [15] 
and repeat the iteration process for several times until all or most the errors are 
corrected. Experiments [8] show that some improvement is achieved with a fast 
resetting algorithm where resetting is performed according to the cumulative 
number of error-corrections, before the convergence point is reached. Alterna- 
tively, one may also use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa modified equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) so that the first prodiict, term 
is always equal to p/ ( l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- p )  or one, see [5], [28] .  

Let c,  denote the correlation coefficient ~ ( f ,  g) for the best low order approx- 
imation g to f .  Experimental evidence reveals that most the errors are corrected 
if c, is greater than an upper threshold value and if the assumed c is smaller 
than and relatively close to c*. On the other hand, if c ,  is smaller than or equal 
to a lower threshold value, then the number of errors can not be reduced, which 
means that the best low order approximation can not be found by using the 
assumed set of parity-checks. Between the two thresholds, the number of errors 
may be reduced, but remains relatively high on the average. According to a 
characterization of the lower threshold value obtained in [19], a necessary con- 
dition for a successful iterative error-correction can for relatively small e* be 
approximated as 

c Muc,"-' > 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W 

where zw denotes the average number of the parity-checks of weight w + 1 in 
A,,i over all positions 1 5 i 5 N .  Experiments show that this condition is close 
to being sufficient as well. If e, is smaller than the threshold implicit in (3), then 
the number of parity-checks must be increased. The significant gain obtained by 
iterative error-correction as compared with single-step error-correction can be 
seen in the case where all the parity-checks have the same weight (e.g., w = 2, 

see [14] for T = 1). Then the condition (3) becomes Mu,c:-' > 1, whereas for 
single-step error-correction for any m, consecutive codeword bits the condition 
for success can be expressed as mT%uc~w > 1. So, by iterative error-correction 
algorithms one may find low order approximations with very small correlation 
coefficients, much smaller than 1 - 2 Y T ,  if they exist. 

After a number of iteration rounds, the iterative error-correction is com- 
pleted, and an estimate z of the closest codeword is obtained. In general, it 
may contain a number of residual errors, which are then corrected by the in- 
formation set decoding procedure. One may use simple information sets of 7n, 
consecutive bits in z ( N  - m, + 1 of them) in search of an error-free one. For 
each assumed information set one then computes the remaining codeword bits 
by the forward and backward linear recurrence, and then the correlation coeffi- 
cient between each such candidate codeword and the received one is estimated 
by using O(l/c2) codeword bits. Unlike [20], this can be done without comput- 
ing the ANF coefficients of a low order boolean function g corresponding to the 
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assumed information set. A candidate codeword is accepted if the computed cor- 
relation coefficient estimate is consistent with the assumed value c or bigger. If 
an accepted codeword is found, then the A N F  coefficients of the corresponding 
low order approximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg are computed from the first m, codeword bits by the 
matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,. 

We have thus shown that the problem of finding a low order approximation 
to  a large boolean function f can be solved by iterative probabilistic decoding 
algorithms combined with information set decoding both applied to a sequence 
of values o f f  for the argument values taken from successive states of an LFSR 
with an appropriate primitive feedback polynomial, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh. However, there is a num- 
ber of important differences from standard fast correlation attacks. The main 
advantage is that the feedback polynomial, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhr, of the underlying LFSR can be 
chosen in precomputation time so as to optimize the success of iterative prob- 
abilistic decoding. If T = 1, then h, = h is a primitive polynomial and the 
situation is very much similar to the one in fast correlation attacks on memory- 
less combiners. More precisely, this is the case if the best affine approximation to 
f is unique and if its correlation coefficient, c, ,  to f is ‘considerably’ bigger than 
for other affine functions. Since the number, TI ,  of input variables of f is large, 
this is very likely to be true if c, is much biggcr than 2Yn12. If there exists a 
number of affine functions with mutually close correlation coefficients to  f much 
bigger than 2Tn12 (the case of multiple affine/linear approximations), then the 
situation is more similar to  the one in fast correlation attacks on nonlinear filter 
generators, see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. The problem in this case is that different affine functions are 
mutually uncorrelated, which may confuse the iterative error-correction algo- 
rithms. On the other hand, unlike [4], [24], we are here satisfied with any found 
affine approximation, not all of them. The problem may be resolved by using 
more complicated information sets, e.g., chosen from a number of the most sig- 
nificant probabilities (the smallest ones after the complementation) in the error 
probability vector after one or just a few iteration steps. 

If r > 1, then h, is not a primitive polynomial and its degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,. is large 
if n is large. Fortunately, the influence of large m, on the success of iterative 
error-correction is insignificant, see (3). Only the final, information set decoding 
stage is slightly affected. Also, the precomputational effort to find the low weight 
parity-checks and to compute the matrix A, is increased. In addition, for r > 
1, due to  the minimum distance property of rth-order boolean functions, it 
should be expected that the best rth-order approximation to f with a correlation 
coefficient much bigger than 2-n12, if it exists, is essentially not unique. Namely, 
for any rth-order function with the correlation coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc* to f ,  it is very likely 
that there exist a number of rth-order functions with the correlation coefficients 
to  f of the order of (1 - 2-(‘-’)) c,, which may be considered ‘close’ to c*. 
However, due to  the same effect, these multiple rth-order approximations are 
mutually correlated with the correlation coefficients close to 1 - 2-(,-’), which 
is less confusing for the iterative error-correction algorithms. 

There is another potential advantage to be used for any r 2 1. For any chosen 
primitive polynomial h, one may use different LFSR initial states to  form a set of 
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filter generators giving rise to a set of the corresponding codes to  which iterative 
probabilistic decoding algorithms can be applied simultaneously. Moreover, o~ ie  
may also deal with different polynomials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh. Suppose that none of the codeword 
estimates has yielded the desired low order approximation. It is now possible 
to combine individual codeword estimates by an appropriate procedure, e.g., 
by a majority-logic decision on the corresponding ANF coefficients obtained by 
applying the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, to the first m, bits of each of the codeword estimates. 
This can be useful especially in the case of multiple low order approximations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Conclusions 

A solution to a difficult, low order approximation problem for large boolean 
functions is developed by establishing a connection between binary filter gener- 
ators and iterative error-correction algorithms used in fast correlation attacks 
on certain stream ciphers. A boolean function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf to be approximated has to be 
evaluated on a set of arguments corresponding to successive states of an LFSR 
with an appropriate primitive feedback polynomial. The proposed procedure is 
fast and can with high probability find low order approximations with very small 
correlation coefficients to f ,  if such approximations exist. The correlation coef- 
ficient can be much smaller than 1 - 2 - T ,  which is the lower bound for the best 
rth-order approximation to  be unique necessarily. Its magnitude is practically 
limited only by the computational power available. 

The proposed method may have wide cryptographic applications. First, if f 
is a secret key dependent decryption function, then in the chosen-ciphertext sce- 
nario, the method can be used for approximate decryption of self-synchronizing 
stream ciphers [14] or block ciphers [20], provided the correlation coefficient of 
the found low order approximation is big enough with respect to the plain- 
text redundancy. More importantly, the method can generally be used for the 
analysis of any large boolean functions in various cryptographic applications. In 
this case, f is known and can be cvaluated on an arbitrary set of arguments. 
In block ciphers, f can be an encryption boolean function of both the secret 
key and plaintext input variables. Low order approximations even with very 
small correlation coefficients may thcn be used for the secret key reconstruction 
from a sufficient number of known (possibly chosen) plaintext-ciphertext pairs, 
as is demonstrated in [13] for linear approximations. Alternatively, apart from 
the black-box approach, in a structure-based approach, one may find low order 
approximations to large boolean functions employed in one-round functions of 
product block ciphers and then combine them to obtain an overall approximation 
for the whole cipher, see [13] for r = 1. Of course, rth-order boolean functions 
are not closed under composition for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT > 1, but any resulting approximation, 
of not necessarily low order, may be a basis for the secret key reconstruction as 
long as the number of nonzero terms in its ANF is not too large. 

In binary self-synchronizing stream ciphers, low order approximations to the 
feedback function, as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa boolean function of both the secret key and ciphertext, 
can also be used for the secret key reconstruction from known or chosen cipher- 
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text. In binary synchronous stream ciphers, every keystream bit is a boolean 
function of the secret key arid possibly of known mrssage key as well. Low order 
approximations to  such boolean functions, for a suitable set of keystream bits, 
can be a basis for the secret key reconstruction from known keystream sequence 
and known or chosen message key. Another interesting objective would be to 
approximate every keystream bit as a low order boolean function of a number 
(close to the memory size of the keystream generator) of previous keystream 
bits, where the secret key is fixed and unknown. The resulting linear [7] (for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T = 1) or nonlinear models of the keystream generator may then be used for the 
plaintext reconstruction from known ciphertext or, even, for the secret key re- 
construction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well. In a structure-based approach, one may determine and use 
linear approximations to  the next-state and output boolean functions to obtain 
linear sequential circuit approximations of the whole keystream generator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6], 

[7], which in turn can be exploited for finding linear models and for correlation 
attacks as well. 
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