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ABSTRACT

Context. Rapidly propagating coronal EUV disturbances recently discovered in the solar corona are interpreted in terms of guided
fast magnetoacoustic waves. Fast magnetoacoustic waves experience geometric dispersion in waveguides, which causes localised,
impulsive perturbations to develop into quasi-periodic wave trains.
Aims. We consider the formation of fast wave trains in a super-radially expanding coronal hole modelled by a magnetic funnel with a
field-aligned density profile that is rarefied in comparison to the surrounding plasma. This kind of structure is typical of coronal holes,
and it forms a fast magnetoacoustic anti-waveguide as a local maximum in the Alfvén speed.
Methods. We performed 2D MHD numerical simulations for impulsively generated perturbations to the system. Both sausage and
kink perturbations are considered and the role of the density contrast ratio investigated.
Results. The anti-waveguide funnel geometry refracts wave energy away from the structure. However, in this geometry the quasi-
periodic fast wave trains are found to appear, too, and so can be associated with the observed rapidly propagating coronal EUV
disturbances. The wave trains propagate along the external edge of the coronal hole. The fast wave trains generated in coronal holes
exhibit less dispersive evolution than in the case of a dense waveguide.
Conclusions. We conclude that an impulsive energy release localised in a coronal plasma inhomogeneity develops into a fast wave
train for both kink and sausage disturbances and for both waveguide and anti-waveguide transverse plasma profiles.
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1. Introduction

The solar corona is a highly structured medium, which mod-
ifies the behaviour of magnetohydrodynamic (MHD) waves.
The study of MHD wave interaction with coronal plasma non-
uniformities is one of the hot topics of solar physics. The in-
terest in waves is mainly motivated by the enigmatic prob-
lem of coronal heating, and by development of wave-based
techniques of plasma diagnostics (see e.g. recent reviews by
De Moortel & Nakariakov 2012; Pascoe 2014). Observations of
the solar corona with high time and spatial resolution revealed
the occasional appearance of rapidly propagating quasi-periodic
waves of the white light perturbations observed during eclipses
(Williams et al. 2001, 2002; Katsiyannis et al. 2003) and, re-
cently, of the EUV emission intensity (Liu et al. 2011, 2012).
In both bands the rapidly propagating disturbances were inter-
preted as fast magnetoacoustic waves; see Cooper et al. (2003)
for interpretating the white-light disturbances and Ofman et al.
(2011) for the EUV disturbances. The rapidly propagating dis-
turbances could also be responsible for the quasi-periodic vari-
ations in the polarised brightness in the polar coronal holes, de-
tected by Ofman et al. (1997).

Confident detection of rapidly propagating coronal distur-
bances generated a number of follow-up studies in the EUV
band. The typical apparent (projected) speeds of the disturbances
were found to exceed several hundred km s´1, and the periods
are several tens of seconds (see e.g. Shen et al. 2013, for another
recent event). Also, detailed analysis revealed the association of

rapidly propagating EUV disturbances with impulsive energy re-
leases (Shen & Liu 2012) and the wave-train nature of the dis-
turbances (Yuan et al. 2013). Formation of fast magnetoacoustic
wave trains in field-aligned plasma waveguides is a well-known
feature of impulsively generated dispersive waves, as pointed out
in Roberts et al. (1983, 1984). Numerical simulations carried out
by Murawski & Roberts (1993a,b,c, 1994) supported this sug-
gestion. Nakariakov et al. (2004) demonstrated that a guided fast
wave train has a characteristic “crazy tadpole” wavelet spectral
signature. Those signatures have been found in wavelet spec-
tra of rapidly propagating white-light disturbances (Katsiyannis
et al. 2003; Nakariakov et al. 2004) and EUV disturbances (Yuan
et al. 2013). Also, similar signatures are often detected in the in-
tegrated radio signals generated in solar flares (see Mészárosová
et al. 2009a,b,c, 2011; Karlický et al. 2013). Moreover, similar
evolution was numerically found in the interaction of magnetoa-
coustic waves with flare current sheets (Jelínek & Karlický 2012;
Jelínek et al. 2012) and with a fan structure above the magnetic
null point in a standard model of a solar flare (Mészárosová et al.
2013).

An advanced model of the dispersive evolution and prop-
agation of impulsively generated fast magnetoacoustic waves,
which reproduces the observed behaviour of rapidly propagat-
ing coronal disturbances well, was recently developed by Pascoe
et al. (2013) for an expanding magnetic funnel filled in with
dense plasma. A field-aligned density enhancement forms a dis-
persive waveguide for fast magnetoacoustic waves. Additionally,
the vertical stratification of the magnetic field causes the Alfvén

Article published by EDP Sciences A20, page 1 of 6

http://dx.doi.org/10.1051/0004-6361/201423931
http://www.aanda.org
http://www.edpsciences.org


A&A 568, A20 (2014)

speed outside the funnel to vary with height. The refraction of
fast waves that leak out of the funnel provides a mechanism by
which upwards-propagating quasi-periodic wave trains can be
generated outside of the structure in which they were initially
generated and evolved.

Another kind of structure common in the solar atmosphere is
a coronal hole. These regions are defined by their open field lines
and by a plasma that is less dense than the average surround-
ing values, and so they appear darker in EUV images. MHD
wave activity has been widely observed in coronal holes (see
e.g. reviews by Ofman 2005, 2009; Banerjee et al. 2011). From
the fast magnetoacoustic wave dynamics, the main difference be-
tween a coronal loop or dense funnel and a coronal hole is the
transverse profile of the plasma density. In the former structures,
the density is enhanced. For a low-β plasma, this corresponds to
a decrease in the local Alfvén and fast magnetoacoustic speeds.
Thus, coronal loops and dense funnels are fast magnetoacoustic
waveguides (e.g. Edwin & Roberts 1988; Nakariakov & Roberts
1995). The locally-oblique fast waves experience refraction or
reflection at the transverse non-uniformities and propagate along
the field. In contrast, in coronal holes the transverse profile of the
plasma density experiences a decrease that corresponds to an in-
crease in the fast magnetoacoustic speed. Thus, coronal holes
act as fast magnetoacoustic anti-waveguides (see e.g. Ofman &
Davila 1995). It is not known whether quasi-periodic fast wave
trains can be formed in coronal anti-waveguides.

In this paper we consider the impulsive excitation of fast
magnetoacoustic waves in a magnetic funnel with a field-aligned
structure that describes a local deficit in the average plasma
density. Such a configuration corresponds to a super-radially
open coronal hole. This structure forms a local maximum in
the Alfvén speed and so behaves as an anti-waveguide for fast
magnetoacoustic waves. This model is therefore applicable to
coronal holes and similar plasma configurations, such as cavi-
ties between two high density structures. The initial equilibrium
for the model is described in Sect. 2. In Sect. 3 the results of
numerical simulations are presented for two methods of exciting
waves in the system: an antisymmetric velocity pulse (exciting
sausage modes) and a symmetric velocity pulse (exciting kink
modes). Further discussion of the results is presented in Sect. 4.

2. Model setup

Our equilibrium magnetic configuration is a 2D potential mag-
netic field as used in Pascoe et al. (2013)

B “ B0 exp p´z̃q rsin px̃ ` πq ex ` cos px̃ ` πq ezs , (1)

where B0 is a constant determining the magnitude of the mag-
netic field. The horizontal and vertical coordinates are denoted
by x̃ and z̃, respectively, where a tilde denotes a dimension-
less variable with a characteristic length l0 being a normalising
quantity. For this magnetic field, it is convenient to define the
upper boundary of the numerical domain to be at z̃ “ 0, and
our numerical domain is defined for the ranges z̃ “ r´π, 0s and
x̃ “ r´π, πs (e.g. Fig. 1).

The absolute value of the magnetic field decreases exponen-
tially with height but is constant in the horizontal direction. The
local variation of the Alfvén speed is therefore provided by the
density profile, which is based on the general symmetric Epstein
profile (e.g. Nakariakov & Roberts 1995; Pascoe et al. 2007)

Fig. 1. Density profile for a funnel with density contrast ρF{ρ8 “ ´0.5
and p “ 8. The profile follows the field lines of the potential magnetic
field described by Eq. (1).

with a width that increases with height to remain aligned with
the expanding magnetic field (Pascoe et al. 2013)

ρ0 “ pρF ´ ρ8q sech2

ˆ

x̃

arccos exppz̃q ´ π{2

˙p

` ρ8, (2)

where ρ8 is the (constant) density far from the funnel, ρF is the
departure of the density in the centre of the funnel, and p deter-
mines the profile steepness. The value of ρF can be either positive
or negative so long as |ρF| ă ρ8, and in this paper we consider
the case of an anti-waveguide given by ρF ă 0.

Figure 1 shows the density profile for a funnel with density
contrast ρF{ρ8 “ ´0.5 and p “ 8. The corresponding Alfvén
speed profile is shown in Figure 2. The top panel shows the vari-
ation in the vertical direction (taken at the funnel axis x̃ “ 0),
which is proportional to the exponentially decreasing magnetic
field strength. The bottom panel shows the variation in the hor-
izontal direction (taken at z̃ “ ´0.2π), which forms an anti-
waveguide (local maximum) due to the field-aligned density pro-
file (Eq. (2) and Fig. 1).

The density structure is set in equilibrium by defining the
internal energy density as

ǫ “
Pg

ρ0 pγ ´ 1q
(3)

where Pg is a constant gas pressure and γ “ 5{3 is the ratio of
specific heat capacities. The plasma β increases with height but
remains small (β ă 0.001) throughout the numerical domain.
The low plasma βmeans all temperatures are negligibly low and
so excludes slow waves from our study.

Simulations were performed using the 2.5D MHD code
Lare2d (Arber et al. 2001), which solves the ideal MHD equa-
tions by taking a Lagrangian predictor-corrector time step and
remapping variables back onto the original Eulerian grid using
van Leer gradient limiters. For our chosen coordinates, the 2.5D
approximation corresponds to B{By “ 0. Furthermore, vy and By
remain zero due to our choice of initial conditions, and so our
model is essentially 2D. The resolution used is 4000 ˆ 2000 grid
points, with convergence tests at a resolution of 8000ˆ4000 grid
points showing no significant differences. Line-tied boundary
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Fig. 2. Variation in the (normalised) Alfvén speed in the vertical direc-
tion (top; taken at x “ 0) and the horizontal direction (bottom; taken at
z “ ´0.2π). The magnetic field (Eq. (1)) provides vertical stratification
while the density profile (Eq. (2) and Fig. 1) provides the local increase
that defines the anti-waveguide structure.

conditions were used, with damping layers near the edges of
the numerical domain to avoid perturbations reflecting back in-
wards. The domain has a size 2πˆ π in normalised units, which
may be converted to physical units by choosing normalisation
constants appropriate to the particular problem. The physical
length scales (x), time scales (t), and speeds (v) are related to
the dimensionless variables (denoted by tildes) by x “ x̃ l0,
t “ t̃ t0, and v “ ṽ v0, where l0, t0, and v0 are the chosen nor-
malisation constants for length scales, times, and speeds, and
v0 “ l0{t0. For example, choosing v0 “ 1 Mm/s, t0 “ 240 s (and
so l0 “ 240 Mm) means the Alfvén speeds in Fig. 2 represent the
speed in Mm/s, the simulation runtime of t̃ “ 5 corresponds to
20 minutes, and the numerical domain has a height of «750 Mm.

3. Results

3.1. Sausage perturbations

We excite fast waves by applying a perturbation inside the anti-
waveguide structure near the bottom of the numerical domain.
First we consider a spatially-localised compressive perturbation
given by

vx “ Ax exp

«

´

ˆ

x̃ ´ x0

∆x

˙2
ff

exp

«

´

ˆ

z̃ ´ z0

∆z

˙2
ff

, (4)

Fig. 3. Snapshot of velocity |u| (top) and density (bottom) perturbations
at t̃ “ 2 for ρF{ρ8 “ ´0.5 and p “ 8 and a sausage mode perturbation.
The line contours outline the equilibrium density profile.

where A is the initial amplitude, taken to be small enough to
avoid nonlinear effects, and the parameters ∆x and ∆z are the
width of the initial perturbation in the horizontal and vertical di-
rections, respectively. The width parameters are also normalised
to l0. The perturbation is located at px0, z0q “ p0,´0.75πq with
∆x “ ∆z “ 0.05 chosen to make the perturbation comparable
in size to the funnel at the height at which it is applied. This
leads to the efficient generation and dispersion of fast sausage
oscillations.

Pascoe et al. (2013) describe the case of a magnetic funnel
with a field-aligned density enhancement. In that case, the fast
wave energy is separated into two distinct components. Trapped
sausage waves propagate along the funnel axis, while leaky com-
ponents form wave trains outside the funnel, which initially
propagate horizontally, but then gradually turn upwards due to
refraction from the non-uniform Alfvén speed. These external
wave trains appear on both sides of the funnel and are called
“wing” wave trains.

Figure 3 (top panel) shows a snapshot of the velocity |u|
perturbations at a time t̃ “ 2 for a numerical simulation with
ρF{ρ8 “ ´0.5. The line contours outline the equilibrium den-
sity profile and indicate the transition from the low density in-
ternal region to the higher density environment. The figure is
cropped to allow comparison of the internal wave train (around
z̃ “ ´1) with the wing wave trains entering the frame in the
bottom left- and right-hand corners. The internal wave train
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Fig. 4. Wavelet analysis of the density signal (inset curve) inside a fun-
nel with ρF{ρ8 “ ´0.5.

propagates with a faster speed in accordance with the higher lo-
cal Alfvén speeds there (Fig. 2).

The quasi-periodic nature of the wave train is clearly seen
in the snapshots of the generated signal. We illustrate it by the
wavelet analysis of the density perturbations (measured at x̃ “ 0
and z̃ “ ´π{2) in Fig. 4. Here and in subsequent wavelets the
colour panel represents the Morlet wavelet power spectrum of
the signal. The colour contours correspond to levels of wavelet
power higher than 0.2, 0.4, 0.6, and 0.8 times the maximum
value. The solid contour shows the 99% significance level given
by Torrence & Compo (1998). The normalised time profile of the
signal is superimposed on the wavelet spectrum as a solid line.
The cross-hatched regions on either end of the wavelet spec-
trum indicate the cone of influence. The panel to the right of
the wavelet spectrum represents the global wavelet power spec-
trum (WPS) of the signal with the dashed line defining the 99%
significance level.

The wave energy associated with the oscillations inside the
anti-waveguide is only a small fraction of the energy in the wing
wave trains, so the corresponding density perturbations (bottom
panel of Fig. 3) have negligibly low amplitudes. The same is true
for the case of a kink perturbation (Sect. 3.2), so we focus our
attention on the behaviour of the wing wave trains.

Figure 5 shows the velocity and density perturbations at
a later time of t̃ “ 5. The quasi-periodic wing wave trains
are clearly visible on both sides of the anti-waveguide. The
density perturbation signal passing a fixed point at px̃, z̃q “
p´π{2,´π{2q and its wavelet power are shown in Fig. 6. Fewer
periods of oscillation are seen (i.e. a lower oscillation quality)
than the case of the waveguide model considered in Pascoe et al.
(2013).

Figures 7 and 8 show the density perturbation signals for
funnel anti-waveguides with ρF{ρ8 “ ´0.9 and ´0.1, respec-
tively. It can be seen that the signals weakly depend on the anti-
waveguide density contrast over the full range of permitted val-
ues ´1 ă ρF{ρ8 ă 0.

3.2. Kink perturbations

Next we consider the case of a kink perturbation, i.e. a transverse
displacement of the funnel axis. The applied perturbation has the
form

vx “ A exp

«

´

ˆ

x̃ ´ x0

∆x

˙2
ff

exp

«

´

ˆ

z̃ ´ z0

∆z

˙2
ff

, (5)

where all variables have the same definition as in Eq. (4).

Fig. 5. Snapshot of velocity |u| (top) and density (bottom) perturbations
at t̃ “ 5 for ρF{ρ8 “ ´0.5 and p “ 8 and a sausage mode perturbation.
The line contours outline the equilibrium density profile.
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Fig. 6. Wavelet analysis of the density signal (inset curve) outside a fun-
nel with ρF{ρ8 “ ´0.5.

Figure 9 shows the density perturbations at a time of t̃ “
5 for the kink perturbation. This driver also generates quasi-
periodic wing wave trains similar to the case of the sausage per-
turbation (compare with Fig. 5). However, the density perturba-
tions on each side of the anti-waveguide are now anti-symmetric
in accordance with the kink mode driver exciting a transverse
displacement. The case of kink perturbations in a dense funnel
is considered in Appendix A.

4. Discussion

In this paper we have considered the behaviour of impul-
sively generated fast magnetoacoustic waves in a super-radially

A20, page 4 of 6

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423931&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423931&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423931&pdf_id=6


D. J. Pascoe et al.: Fast wave trains in coronal holes

Wavelet power spectrum

0 1 2 3 4 5
t / t0

0.0

0.2

0.4

0.6

0.8

1.0

P
e
ri
o
d

99%

Wing

Global WPS

       
Power

0.0

0.2

0.4

0.6

0.8

1.0

99%

Fig. 7. Wavelet analysis of the density signal (inset curve) outside a fun-
nel with ρF{ρ8 “ ´0.9.
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Fig. 8. Wavelet analysis of the density signal (inset curve) outside a fun-
nel with ρF{ρ8 “ ´0.1.

expanding coronal hole, modelled as an expanding magnetic flux
slab filled in with a low-β plasma, surrounded by a denser low-β
plasma. Such a plasma configuration acts as a fast magnetoa-
coustic anti-waveguide, because it has a bump of the fast mag-
netoacoustic speed. We considered fast magnetoacoustic waves
excited by an impulsive source of the plasma motion spatially
localised inside the hole. The main result of this study is that in
the coronal hole plasma configuration, as well as in the previ-
ously considered case of a dense plasma funnel, fast waves de-
velop in quasi-periodic wave trains. These wave trains resemble
rapidly propagating quasi-periodic EUV disturbances recently
discovered with SDO/AIA in the solar corona. Quasi-periodic
wave trains are shown to form in both cases of the sausage and
kink symmetries of the initial impulsive excitation. We conclude
that the dispersively formed fast wave trains can be responsible
for the rapidly propagating quasi-periodic EUV disturbances ob-
served in coronal holes.

In agreement with the case of a dense coronal funnel, con-
sidered in Pascoe et al. (2013), fast wave trains appear inside the
waveguide and outside it. In both cases, the external fast wave
trains are subject to refraction that turns the local wave vector
in the vertical direction. In contrast to the dense funnel case, in
a coronal hole, external wave trains are much more pronounced
than the internal wave trains, which is consistent with the anti-
waveguide nature of the hole. Indeed, the fast waves cannot be
trapped inside it and tend to “slide down” outside the hole in the
horizontal direction. The quasi-periodic wave trains appearing
in the coronal hole geometry are found to generally have a lower
signal quality and are less sensitive to the density contrast ratio
than the case of a dense funnel structure.

Our results obtained for the internal source of the fast waves
are different from the case of waves excited outside the hole.
Externally excited fast waves are observed to reflect away from
coronal holes (e.g. Thompson et al. 1999) so cannot evolve in

Fig. 9. Snapshot of density perturbations at t̃ “ 5 for ρF{ρ8 “ ´0.5
and p “ 8 and a kink mode perturbation. The line contours outline the
equilibrium density profile.
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Fig. 10. Wavelet analysis of the density signal (inset curve) outside a
funnel with ρF{ρ8 “ ´0.5 in response to a kink perturbation.

quasi-periodic wave trains. Thus, the source of the rapidly propa-
gating quasi-periodic EUV disturbances in coronal holes should
be localised within the magnetic flux tube forming the hole.

In Appendix A we consider the evolution of kink perturba-
tions in a dense plasma funnel. We found that, similar to the
case of a sausage excitation, the initial perturbation evolves in
internal and external quasi-periodic fast wave trains. Thus, fast
wave trains are a robust feature of impulsive spatially localised
energy releases in plasma inhomogeneities of the solar corona.
Fast wave trains appear in both the cases of kink and sausage ini-
tial perturbations in both fast waveguides and anti-waveguides.
For the case of a cylindrical geometry, the kink wave train propa-
gating along the axis may also be subject to mode coupling (e.g.
Pascoe et al. 2010; Hood et al. 2013), which will cause the wave
train to undergo damping with a frequency-dependent rate that
acts like a low-pass filter (Terradas et al. 2010). Since the cou-
pling also applies to wave energy just outside the density struc-
ture (e.g. Fig. 9 of Pascoe et al. 2010), this may also affect the
external wave train near to the funnel but not the parts farther
away from the structure.
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Appendix A: Kink perturbations for a dense funnel
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Fig. A.1. Snapshot of density perturbations (top) at t̃ “ 5 for a dense
funnel with ρF{ρ8 “ 3 and p “ 8 and a kink mode perturbation. The
line contours outline the equilibrium density profile. The middle and
bottom panels show the wavelet analysis for the density perturbations
measured near the axis and in the wing, respectively.

To allow further comparison of the results in Sect. 3.2 with
the case of a dense coronal funnel studied by Pascoe et al.
(2013), we return here to the model in that paper for the case of
a symmetric velocity perturbation given by Eq. (5). Figure A.1
shows the results for a funnel with density contrast ρF{ρ8 “ 3
and p “ 8. The top panel shows a snapshot of the density

perturbations at t̃ “ 5. The middle and bottom panels show the
time signatures for the density perturbations measured near the
axis and in the wing, respectively. Quasi-periodic wave trains
are seen both inside and outside the funnel, and the dispersive
evolution is greater than the case of a rarefied anti-waveguide.
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