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ABSTRACT

Aims. A model of a elliptically shaped coronal arcade with piecewise constant density is discussed to explore the effects of curvature
on radially polarised fast modes. It is important to test whether the main results in the straight and cylindrical geometries can be
extrapolated to these more complex equilibria.
Methods. An equilibrium model for a force-free, line-tied elliptical arcade is introduced and a partial differential equation is derived
for the velocity perturbation of the fast modes, which is solved analytically. The properties of the modes are studied in terms of
the dispersion relation, which depends on the eccentricity, the arcade width, and the density contrast.
Results. Modes mainly contained in the cavity below the arcade are also present, and have avoided crossings with the modes of the
arcade. Even the fundamental mode becomes leaky due to curvature. Approximated relations are deduced for the frequency of the
modes and the spatial structure is discussed, focusing on the different families through which a rich mode spectrum can be classified.
Conclusions. The different types of modes of the spectrum are described and its relevance to observations is discussed. The periods
obtained in Cartesian geometry provide a reasonable approximation, but this geometry lacks some other key ingredients: the damping
rates are different and some types of modes present in the elliptical geometry are not sustained in the straight slab.
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1. Introduction

Observations show clearly that the solar corona is structured in
regions with open magnetic fields or coronal holes and in re-
gions with closed magnetic field (with field endpoints anchored
in the photosphere). Closed regions are composed of myriads of
coronal loops, sometimes aligned together forming arcades with
a wide range of densities and temperatures. Oscillations are ob-
served in these coronal structures, especially in loops (see the re-
views in Aschwanden 2004; and Nakariakov & Verwichte 2005)
and also in coronal arcades (Verwichte et al. 2004, 2005)

The oscillatory properties of an isolated, infinite, uniform,
Cartesian slab were discussed by Edwin & Roberts (1982), and
its cylindrically-symmetric flux counterpart by Edwin & Roberts
(1983) and Roberts et al. (1984). These works provide a basic
theory for understanding the oscillations of coronal loops and ar-
cades, and their results are used to extract information regarding
the modes (coronal seismology). In particular, certain modes are
known to be highly dispersive and different families of modes
are supported by the flux tube: kink or sausage modes, depend-
ing of the azimuthal wavenumber, or body and surface modes,
depending on the radial wavenumber, may arise. However, it is
not known how these relatively simple models are affected by the
complexities of the real corona. Most theoretical studies of coro-
nal oscillations tend to study straight field configurations, explor-
ing a variety of aspects; for example, the effect of structure along
the axis (Roberts et al. 1984; Díaz et al. 2004; Van Doorsselaere
et al. 2004; Andries et al. 2005a, 2005b; Donnelly et al. 2006;
McEwan et al. 2006).

The role of curvature has been investigated during recent
years. Oliver et al. (1993) studied analytically the oscillatory

modes of a potential arcade. This work was extended numeri-
cally by considering non-potential and sheared arcades (Oliver
et al. 1996; Arregui et al. 2001, 2003, 2004a,b). Recently, the
modes of a cylindrical arcade have been explored, focusing on
the differences with the straight models (Smith et al. 1997; Brady
& Arber 2005; Selwa et al. 2005; Verwichte et al. 2006a,b; Díaz
et al. 2006). All these works show that leakage seems to be an
important effect resulting from curvature, but also other interest-
ing effects are present, such as the appearance of new families of
modes or the presence of avoided crossings. However, a cylindri-
cally symmetric arcade cannot explore the whole effects that are
expected, since the curvature is a fixed parameter. To study fur-
ther the role of curvature, we consider here a simple model of a
potential field in cylindrical elliptical coordinates, with a density
that varies across the field lines. The density variation does not
model the actual stratification of the corona, but is simply a con-
sequence of the field line divergence. Moreover, the field lines
are diverging away from the photospheric footpoints, so the ar-
cade is wider in the apex. It has been shown numerically that
field divergence is important for mode coupling (Beliën et al.
1997; Bogdan et al. 2003; Hasan et al. 2005), but in our analysis
we can decouple the modes and focus on the fast modes. Finally,
the results of the elliptical arcade are compared with those of
straight Cartesian and cylindrical geometries.

2. Equilibrium model and wave equations

The first task is to find a suitable equilibrium for our analysis.
The arcade is modelled as a curved structure with a density en-
hancement over the embedding coronal plasma (see Fig. 1).
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Fig. 1. Sketch of the equilibrium configuration representing an elliptical
magnetic arcade. The dense zone between u = u0 − a and u = u0 + a has
been shaded in grey. The magnetic field B0 points in the v-direction. The
configuration is described by cylindrical elliptical coordinates (u, v, z),
with invariance in the z-direction.

2.1. Cylindrical elliptic coordinate system

Throughout this paper we use cylindrical elliptic coordi-
nates (u, v, z), which are related with the Cartesian system by
the relations (Spiegel 1968)

x = c cosh u cos v,

y = c sinh u sin v. (1)

In this orthogonal coordinate system the scale factors are the
same for the two coordinates (u, v), namely

h2 = c2
(

sinh2 u + sin2 v
)

= c2 (cosh 2u − cos 2v) /2. (2)

The domain is restricted to the region 0 ≤ u < ∞ and 0 ≤ v ≤ π,
with v = 0 and v = π marking the position of the dense
photosphere.

The curves u = u0 constant are ellipses which satisfy

(

x

c cosh u0

)2

+

(

y

c sinh u0

)2

= 1, (3)

and the curves with v = v0 are hyperbolae which satisfy

(

x

c cos v0

)2

−
(

y

c sin v0

)2

= 1. (4)

Notice from Eqs. (3) and (4) that the parameter c in Eqs. (1)
marks the foci of the different curves. The eccentricity of the
ellipses in Eq. (3) is

ε = 1/ cosh u0. (5)

For small values of the coordinate u the curves are very eccentric
ellipses (and in the limit u0 → 0 they become a straight line
between the two foci); for large values the eccentricity is very
low and in the limit u0 → ∞ they become circles of radius

R ≈ c cosh u0 ≈ c sinh u0 ≈ c eu0/2. (6)

The coordinate u plays a similar role to the cylindrical coordi-
nate r. The scale factors in Eq. (2) are in this limit

h2 ≈ c2 sinh2 u0 ≈ R2. (7)

2.2. Plasma equilibrium configuration

Our equilibrium consists of a dense coronal loop embedded in
a coronal medium (Fig. 1). The whole configuration is invari-
ant in the z-direction. The dense material lies between the el-
lipses u = u0 ± a, with u = u0 being the central curve of the slab
axis. The equilibrium density is then:

ρ0(u, v) =

{

ρl(h/R1)α, |u − u0| ≤ a,
ρc(h/R1)α, |u − u0| > a.

(8)

Hereafter the value α = −4 is fixed, but other choices are pos-
sible. R1 is the loop half-distance between the two footpoints,
which will be discussed in detail later. We could have chosen
the arcade length L for the scaling of the density profile, but we
choose R1 to be consistent with the cylindrical model equilib-
rium profile in Verwichte et al. (2006a).

There are two important parameters regarding the size,
namely the distance between the footpoints, 2R1, and the height
of the summit R2, with

R1 = c cosh u0, R2 = c sinh u0. (9)

As u0 is increased R1 and R2 become similar and can be iden-
tified as the radius of the arcade. Notice that the arcade height
is smaller that the half-separation between footpoints (R2 ≤ R1).
Similarly, there are two widths of the loop, one in the footpoints,
D1, and one in the summit, D2, with

D1 = 2c sinh u0 sinh a, D2 = 2c cosh u0 sinh a. (10)

The width in the summit is bigger than in the footpoints (D2 ≥
D1), which is in accordance with theoretical and computational
equilibrium models. Notice that the parameter a plays a similar
role to the width of the arcade, but the position of the axis u0 is
also relevant.

Finally, the length of the structure must be defined, specially
for comparing with the results of the cylindrical and straight ar-
cades. The length of the arcade is defined as the length L of the
magnetic field line with u = u0,

L =

∫ π

0

√

(

dx

dv

)2

+

(

dy

dv

)2

dv

= 2(c cosh u0)

∫ π
2

0

√
1 − ε2 cos2 v dv

= 2(c cosh u0) E(ε, π/2). (11)

The resulting integral E(ε, π/2) is a complete elliptical integral
of the second kind (Abramowitz & Stegun 1967), which can be
expanded in the series

E(ε, π/2) =
π

2

∞
∑

n=0

1

n − 1

(

(2n)!

(2nn!)2

)2

ε2n. (12)

Therefore, for small values of u0 the eccentricity is large and the
integral is close to 1, so the length is L ≈ 2c; on the other hand,
for large values of u0 the integral is close to π/2, and the length
is L ≈ πR (with R defined in Eq. (6)). A sketch of E(ε, π/2) is
provided in Fig. 2.

2.3. Equilibrium magnetic field

We wish to construct an equilibrium magnetic field which satis-
fies the solenoidal and the force-free conditions and is oriented
in the v-direction in this geometry,

B0 = Bv(u, v)ev. (13)

The condition ∇ · B0 = 0 implies

∇ · B0 =
∂(hBv)

∂v
= 0, (14)

and from the force-free condition ∇ × B0 = 0,

∇ × B0 =
1

h2

∂(hBv)

∂u
ez = 0. (15)



A. J. Díaz: Fast MHD oscillations in a elliptical coronal arcade 739

Fig. 2. Plot of E(ε, π/2), the complete elliptical integral of the second
kind (see Eq. (11)). Two horizontal dashed lines have been overplotted
marking the limiting values for ε = 0 and ε = 1; since E(ε→ 0, π/2)→
π/2 and E(ε → 1, π/2)→ 1.

Therefore, the only choice is to have a dependence in the form
hBv =const., so the only component of our equilibrium magnetic
field Bv is in the form

Bv(u, v) =
B0R1

h
=

B0

(sinh2 u + sin2 v)1/2

R1

c
· (16)

Surface plots of Bv and cA are shown in Fig. 3. This equilibrium
configuration is produced by two line currents situated in the foci
of the ellipses, so the magnetic field is diverging in these two
points (in a similar way to the cylindrical case in r = 0). Again,
the scaling distance has been chosen to allow comparison with
the cylindrical models.

2.4. Wave equations

The starting point for our MHD wave analysis are the linearised
ideal MHD equations for zero-β,

ρ0(u, v)
∂u

∂t
=

1

µ
(∇ × B) × B0 +

1

µ
(∇ × B0) × B, (17)

∂B

∂t
= ∇ × (u × B0), (18)

∇ · B = 0, (19)

These equations describe the behaviour of the perturbed mag-
netic field B, velocity u, from which the perturbed density ρ
and pressure p can be obtained. For zero-β plasma all oscil-
lations are purely a response to magnetic forces; in a uniform
medium, these modes would be the Alfvén and fast magnetoa-
coustic waves.

The equation of motion (Eq. (17)) leads to

µρ0(u, v)
∂2
u

∂t2
= −B0 ×

(

∇ × ∂B

∂t

)

, (20)

in which Eq. (15) has been applied. Using the induction equation
(Eq. (18)) and the invariance along the z-coordinate (so deriva-
tives with respect to z are zero), it follows that

∂B

∂t
= eu

1

h

∂

∂v
(vuBv) − ev

1

h

∂

∂u
(vuBv) + ez

Bv

h

∂vz

∂v
. (21)

Substituting this result into Eq. (20) gives after some algebra
the following differential equations for the components of the
perturbed velocity u = (vu, vv, vz),

∂2vu

∂t2
−

Bv

h2µρ0

[

∂2

∂u2
(vuBv) −

∂2

∂v2
(vuBv)

]

= 0, (22)

∂2vv

∂t2
= 0, (23)

∂2vz

∂t2
−

B2
v

µρ0

∂

∂v

(

1

h2

∂vz

∂v

)

= 0. (24)

Thus, vv = 0 from Eq. (23), in a similar way to the az-
imuthal velocity being identically zero in the cylindrical geom-
etry. Equation (24) represents an Alfvén wave polarised in the
z-direction, with each field line oscillating at its own local Alfvén
frequency, forming a continuous spectrum. If propagation along
the z-axis is permitted, then the modes become strongly coupled
(Beliën et al. 1997), but here we concentrate on the fast mode
alone by setting vz = 0.

Equation (22) governing the fast modes can be rewritten us-
ing a new dependent variable w = vu/h and the expression of the
equilibrium magnetic field, Eq. (16), as

∂2w

∂u2
+
∂2w

∂v2
− h4

R2
1

µρ0

B2
0

∂2w

∂t2
= 0. (25)

With the choice of a equilibrium density profile so that α = −4
in Eq. (8) we obtain

∂2w

∂u2
+
∂2w

∂v2
−

R2
1

c2
A0

∂2w

∂t2
= 0, (26)

where cA0 = B0/
√
µρ0 is the Alfvén speed at u = u0, v = π/2

(x = 0, y = R2, at the apex of the arcade).
The partial differential equation Eq. (26) admits separation

of variables in the form

w(u, v, t) = f (u) g(v) eiωt (27)

where the time dependence has been Fourier-analysed, giving

d2g

dv2
+ m2g = 0,

d2 f

du2
+

⎛

⎜

⎜

⎜

⎜

⎝

ω2L2

c2
A0

1

4E(ε, π/2)2
− m2

⎞

⎟

⎟

⎟

⎟

⎠

f = 0, (28)

with m as a separation constant and R1/L = 1/(2E(ε, π/2)) from
Eqs. (9) and (11). The solutions of these equations are in the
form of trigonometric and hyperbolic functions, respectively,

g(v) = C1 cos mv +C2 sin mv, (29)

f (u) = C3 cosh κ ju + C4 sinh κ ju, (30)

where the following definition has been used,

κ2j = m2 − ω
2L2

c2
A j

1

4E(ε, π/2)2
, j = l, c. (31)

3. Dispersion relation

The next step is to apply the solutions to our model. First, the
photospheric line-tying demands that the solution must be zero
at x = 0, which is equivalent to

vu(u, v = 0, t) = vu(u, v = π, t) = vu(u = 0, v, t) = 0. (32)

The first and second condition demand that C1 = 0 and that the
separation constant m must be an positive integer, m = 1, 2, . . .
Hence, we find also the same different types of families that are
present in the cylindrical geometry.
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a b

Fig. 3. Surface plots of the Bv component of the equilibrium magnetic field (panel a)) and the Alfvén speed (panel b)). Sketches of the arcade have
been overplotted in each upper plane.

The general solution has three different regions: a dense ar-
cade plasma in u0 − a < u ≤ u0 + a, and coronal plasma in the
surrounding regions. Then

w(u, v) = sin mv

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A1 sinh κcu, u ≤ u0 − a,
A2 sinh κlu + A3 cosh κlu, |u0 − u| ≤ a,

A4eκc(u−u0−a), u > u0 + a,
(33)

with κl and κc defined by using Eq. (31) with the suitable
Alfvén speed. We consider such solutions in conjunction with
the boundary conditions

[vu] =

[

∂vu

∂u

]

= 0. (34)

These boundary conditions may be deduced from first principles
(Goedbloed 1983), much as in Díaz (2004).

The form of the solution in the outer region in Eq. (33),
u > u0 + a, has been selected so that it decays as u → ∞.
Because the Alfvén speed increases as we go far from the arcade,
trapped waves are here possible, as predicted in the cylindrical
model in Verwichte et al. (2006a), since the equilibrium density
dependence has been chosen so in the limit of low eccentricity
is equivalent to theirs). In the inner region, u ≤ u0 − a, the so-
lution in Eq. (33) has been chosen to satisfy the last condition
in Eq. (32).

Applying the boundary conditions (Eq. (34)) the constant
coefficients can be related. The following dispersion relation is
obtained

−κc
κl

tanh {2aκl} =
1 + tanh {κc(u0 − a)}

1 + tanh {κc(u0 − a)} κ2
l
/κ2c
, (35)

which, after some algebra, can be written also as

e4aκl =
(κc coth {κc(u0 − a)} − κl) · (κc − κl)
(κc coth {κc(u0 − a)} + κl) · (κc + κl)

· (36)

We obtain a single dispersion relation for all the modes, and
there is no distinction between kink and sausage modes, contrary
to the dispersion relations in cylindrical and Cartesian geometry.
Moreover, both A2 and A3 in Eq. (33) are necessary to have so-
lutions, pointing again to the fact that here the kink and sausage
modes are not a natural description for this problem, since the
two halves in which the axis u = u0 divides the arcade are not
equivalent.

There are various types of solution depending on the value
of m. If m = 1, then the solution has an anti-node at the ar-
cade summit; we name this as the vertical mode to differentiate
it from the transversal rocking modes (with displacement in the
z-direction in a 3D model). Modes with m = 2 have a node at
the arcade apex and appear to shift the arcade laterally; these we
term the swaying modes (see also Díaz et al. (2006)). The modes
may also be classified, depending on their symmetry with respect
to the arcade axis, as kink (even) and sausage (odd) modes, al-
though this classification is not evident in Eqs. (33) and (35).
Families with higher values of m are less relevant for the stand-
ing modes. We discuss further these features when studying the
resulting spatial distributions.

3.1. Limit of low eccentricity

Our first check is to test if the limit of a cylindrical arcade studied
in Verwichte et al. (2006a) is recovered. This limit is achieved
when the lower boundary of the arcade is far away from the
loci, so u0 − a ≫ 1. Under that condition Eq. (6) is satisfied,
so tanh {κc(u0 − a)} ≈ 1, and Eq. (36) becomes

eκl(2a)eiπn =
(κc − κl)
(κc + κl)

· (37)

The extra factor comes from the fact that the square root has
been taken. The first exponential function in the left-hand side is
expressed as

eκl(2a) = eκl[(u0+a)−(u0−a)] = eκl
eu0+ac/2

eu0−ac/2
= eκl

R+

R−
, (38)

where R± are the radius of the boundaries of the arcade. Hence,
Eq. (37) becomes

eκl ln R+/R−eiπn =
(κc − κl)
(κc + κl)

, (39)

which is exactly Eq. (17) in Verwichte et al. (2006a). Notice also
the definition of the κ in Eq. (31) is the same definition that their
Eq. (11) in this limit, since E(ε, π/2) ≈ π/2 when ε ≪ 1, so

κ j ≈ m2 − ω
2L2

c2
A j

1

π2
≈ m2 − ω

2R2

c2
A j

· (40)
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3.2. Elliptical cavity

Following Díaz et al. (2006), the modes of a elliptical domain
with a rigid boundary at u = u0 − a are explored. The solution
to Eq. (28) is

f (u) = D1 sinh κcu, (41)

in which the line-tying boundary condition f (u = 0) = 0 has
been applied. Next, the rigid boundary at the arcade position
means that f (u0 − a) = 0, so

κc(u0 − a) = inπ, n = 1, 2, . . . (42)

This leads to an explicit expression for the frequencies using the
definition in Eq. (31),

ωnL

cAc

= 2E(ε, π/2)

√

m2 +
n2π2

(u0 − a)2
· (43)

A straightforward conclusion from Eq. (43) is that the modes of
these elliptical membranes have very high frequency for arcades
with high eccentricity (u0 ≪ 1). Also, if a = u0 there is no cavity
below the arcade, so the frequencies of these modes tend to infin-
ity as a → u0. On the other hand, for high eccentricity all these
modes tend to the same frequency mπ, which is the frequency of
the fundamental mode of the arcade. This is in agreement with
the result in Verwichte et al. (2006a) that for a cylindrical arcade
model with this equilibrium density profile there are no modes
of the cavity (other than the fundamental mode of the system, in
which both the arcade and the cavity oscillate together).

3.3. Elliptical ring

Another interesting special case is a domain with rigid bound-
aries at the arcade limits u = u0 ± a, which is a good approx-
imation when the density contrast ρl/ρc is high. The solution
to Eq. (28) is

f (u) = D2 sinh κlu + D3 cosh κlu. (44)

The rigid boundary conditions f (u0 ± a) = 0 imply

tanh {κl(u0 − a)} = tanh {κl(u0 + a)} . (45)

After some algebra, the following expression is obtained:

ωnL

cAc

= 2E(ε, π/2)
ρc

ρl

√

m2 +
n2π2

4a2
· (46)

These modes have high frequency for thin structures and do not
depend on the eccentricity of the arcade, except via the elliptical
integral.

4. Results

4.1. Dispersion relations

We consider the dependence of the frequencies on the parame-
ters of the model: the density contrast, ρl/ρc, the width of the
arcade, related to a (Eq. (10)), and the eccentricity, related to the
position of the footpoints u0 by Eq. (5).

We have represented in Fig. 4 the frequencies vs. a for a fixed
value of the footpoints position. For this equilibrium density pro-
file, trapped modes are allowed but, in contrast with the results
in the cylindrical geometry, the cutoff frequency depends on the

Fig. 4. Logarithmic plots of the a) real and b) imaginary parts
of ω against the parameter a for vertical modes (m = 1, solid lines),
swaying modes (m = 2, dotted lines). The density ratio has been fixed
as ρl/ρc = 10 and the footpoint parameter as u0 = 1. Only the 12 low-
est values in panel a) and the 7 lowest values in panel b) have been
represented for each family.

eccentricity of the model, since in Eq. (31) a cutoff is achieved
when κc = 0, or

ωcutoffL

cAc

= 2E(ε, π/2) m. (47)

In the limit of high eccentricity the cutoff frequency of the
straight and cylindrical models, mπ, is recovered. For typical val-
ues of the parameters in the solar corona just one mode in each
family is in this regime (as in Fig. 4), but other modes might
become trapped if the density contrast is increased, for example.

Notice the appearance of avoided crossings in Fig. 4, con-
trary to what it is obtained in Verwichte et al. (2006a) for a
cylindrical arcade in a profile equivalent to this one. In Díaz et al.
(2006) it was stated that, for a different equilibrium, these modes
have spatial structure in the coronal region below the arcade, so
we refer to them as cavity modes, in contrast with the arcade
modes. This is due to the fact that in the elliptical geometry there
are regions with low Alfvén speed below the arcade which can
trap modes, and these are the modes present for low values of
the arcade thickness.

Equation (43) describes quite reasonably the behaviour of
the cavity modes before the avoided crossings (a small). All the
families with different values of m tend to have the same fre-
quency for higher harmonics, as predicted in Eq. (43), since the
term with the harmonic order n becomes larger compared with
the term m in the square root. On the other hand, the frequency of
the arcade modes is roughly inverse proportional to a (Eq. (46)),
a feature more apparent for higher harmonics again.
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Fig. 5. Detail of Fig. 4 near the cutoff for fundamental vertical mode
(m = 1) with the parameters ρl/ρc = 10 and u0 = 1. The solid line is
a trapped mode and the dotted line is an outwards propagating leaky
mode. Unphysical solutions have also been plotted in the dash-dotted
lines corresponding to modes that increase exponentially with distance
(no damping). The cutoff has been represented as a horizontal dashed
line. Notice that for lower values of a the leaky mode lies above the
cutoff.

On the other hand, the different families of modes related to
the m number have similar frequencies for thick arcades, but for
thin arcades the cavity modes are different. Similar conclusions
are obtained if higher values of m are considered. The swaying
modes (m = 2) do not have twice the frequency of the vertical
modes (m = 1), as happens in the Cartesian geometry.

One noticeable feature in Fig. 4 is that the even the funda-
mental mode has a cutoff as a is lowered, but then the mode ap-
pears again below the cutoff frequency (with an imaginary part to
its frequency) after a gap in the values of a were no fundamen-
tal mode is present. A closer look of this region is depicted in
Fig. 5 for the fundamental vertical mode. Notice that, in opposi-
tion to the straight model (Edwin & Roberts 1982, 1983) and the
cylindrical one (Verwichte et al. 2006a), the fundamental mode
is no longer trapped for all the values of the arcade width, but
has a cutoff and becomes leaky. On the other hand, if unphysi-
cal solutions are overplotted (as it is done in Fig. 5), we see that
there is a branching point and the behaviour is completed: the
previous trapped mode becomes a solution which expands ex-
ponentially away from the arcade, and this mode merges with
a similar one to form a leaky mode (which is a outward propa-
gating leaky mode, and therefore physically acceptable). These
unphysical modes are also present because in Eq. (31) there is a
choice of sign which leads to confined or exponentially increas-
ing modes for real values of frequency, and to inwards or out-
wards propagating modes for complex values of frequency. This
behaviour has been reported in the straight slab for higher har-
monics (Terradas et al. 2005), and is also present in the cylindri-
cal model (though not been discussed in Verwichte et al. 2006a).
However, in the elliptical geometry even the fundamental mode
has this gap and mode conversion near the cutoff. The reason is
that the cutoff is lowered by the elliptical geometry (Eq. (47)),
but in the limit a → 0 this fundamental mode tends to a nor-
malised frequency mπ (the same as that in the straight slab)
which is above the cutoff, and hence it becomes leaky.

Next, the footpoint position is considered, which is related
to the eccentricity of the arcade after rescaling with the length.
The parameter a is kept fixed. The real and imaginary part of the
resulting frequencies have been plotted in Fig. 6. Notice that u0

cannot take values smaller than a, so the curves are stopped when
u0 = a. We can see again the presence of avoided crossings be-
tween the arcade modes (lines with less inclination) and the cav-
ity modes (there is just one for the lower value of a in this figure).
Equation (43) describes quite reasonably the behaviour of the

Fig. 6. Logarithmic plots of the a) real and b) imaginary parts ofωL/cAc

against the parameter u0 for vertical modes. The density ratio has been
fixed as ρl/ρc = 10 and the width parameter as a = 0.5 (solid lines) and
a = 0.1 (dashed lines). Notice that u0 ≥ a is required, so the curves can
not reach small values of u0. Only the 20 lowest values in panel a) and
the 7 lowest values in panel b) have been represented for each family.

cavity modes away from the avoided crossings. An interesting
feature is that the imaginary part of the frequency is increased
as u0 is decreased, signalling that more eccentric arcades have
higher damping times.

As it was discussed in Sect. 2, the limit of a circular arcade
(and the straight slab) can be obtained if we allow the param-
eter u0 to be large, or if the eccentricity in Eq. (5) is small.
Figure 7 shows how this comparison is achieved by keeping con-
stant the arcade width in the summit compared with its length,
D2/(2L) = acart/L, with these two quantities defined in Eqs. (10)
and (11). Therefore, the parameter a in the elliptical arcade de-
pends on u0 as

a = arcsinh

[

2E(ǫ, π/2)
D2

2L

]

· (48)

Notice in Fig. 7 that as the eccentricity of the arcade tends to zero
(u0 ≫ 1) the avoided crossings follow a line. This line is similar
to the frequency of the modes of a Cartesian straight model (and
also a cylindrical model), as can be seen in the panel. However,
the elliptical model has also the cavity modes, not present in
the other geometries. It is very difficult to follow the avoided
crossings for investigating the dependence of the arcade modes
on the eccentricity, but the trend is that as the eccentricity is in-
creased the frequency of these modes is increased with respect
to the modes of the cylindrical model and even surpass the fre-
quency of the modes of the straight model. For ε ≈ 1 the ar-
cade modes in the elliptical geometry do not tend to the modes
of the straight slab and the periods for the elliptical geometry
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Fig. 7. Plots of the real part of ωL/cAc against the eccentricity ε for ver-
tical modes (m = 1). The density ratio has been fixed as ρl/ρc = 10
and the width of the arcade as D2/(2L) = 0.1, with the a parameter
calculated with Eqs. (48). The frequencies of the straight and cylindri-
cal arcade models are overplotted as horizontal dashed lines and dotted
lines, respectively. Only the 20 lowest values for the elliptical geometry
have been represented.

are slightly lower than those of the Cartesian slab, although in
this limit the arcade is almost lying flat and close to be straight,
but even in this limit the footpoints are connecting the hori-
zontal photosphere instead of two vertical ones at x = ±L in
the Cartesian model. Nevertheless, the avoided crossings with
the cavity modes (which are not present in the cylindrical and
Cartesian geometries) make difficult to perform numerical com-
parisons, and in any case the frequency shifts are very small.

Next, the dependence of the frequencies on the equilib-
rium density contrast between the arcade and the coronal
medium (ρl/ρc) is considered in Fig. 8. The agreement of the
frequencies with the approximate formulae deduced for the el-
liptical cavity (Eq. (43)) and the elliptical ring (Eq. (46)) is re-
markable, and when these curves cross each other the exact solu-
tion presents an avoided crossing, particularly in the limit of high
density contrast. In Fig. 8b it can be checked that the confine-
ment is better for arcades with high density contrast (the imag-
inary part tends to zero as ρl/ρc → ∞). All the imaginary parts
of the modes tend to infinity as ρl/ρc → 0, since no modes are
allowed in a semi infinite homogeneous plane.

Finally, the results of the elliptical model are compared with
those of the straight and cylindrical models (Fig. 9). We check
in panel a (real part of the frequency) that the cavity modes do
not have any counterparts in this geometry (although they ap-
pear in the cylindrical model for other equilibrium profiles), as
it has been commented early in this section. For thin arcades the
three geometries give similar values of ωL/cAc for the arcade
modes, and hence, similar periods. However, as the thickness is
increased the cylindrical geometry has no longer the same pe-
riods, but the elliptical and the straight one are still in a good
agreement. This is because the elliptical arcade is still far from
filling the cavity with dense material, while in the cylindrical
model the region of low density plasma below the arcade is be-
coming small. The plot is similar if other values of the eccentric-
ity are considered, except that the real part of the frequency for
the cavity modes is modified (Fig. 6a) and the imaginary part of
the elliptical modes is increased as u0 is lowered (Fig. 6b).

On the other hand, Fig. 9b (imaginary part of the frequency)
shows a very important conclusion: the damping due to the coro-
nal leakage depends highly on the geometry. As noted in Díaz
et al. (2006), the cylindrical model has a damping time roughly
two times the one in the straight Cartesian slab. On the other

Fig. 8. Plots of the a) real part and b) imaginary part of ωL/cAc against
the density contrast ρl/ρc for vertical modes (m = 1). The parameters
have been fixed as u0 = 1 and D2/(2L) = 0.1 (so a = 0.245). In panel a)
the curves of a elliptical ring (Eq. (46)) have been overplotted as dashed
lines and the curves of the elliptical cavity (Eq. (43)) have been over-
plotted in dotted lines. Only the 14 lowest values for the elliptical ge-
ometry have been represented in panel a) and the 7 lowest in panel b).

hand, the elliptical model gives an even longer damping rates
for the arcade modes (lower part of the band of frequencies), so
the coronal leakage is not efficient in this model to explain the
observed damping times for coronal structures such as loops.

4.2. Spatial structure

The solutions represented by Eq. (33) are two-dimensional,
with non-trivial dependence on the elliptical coordinates (u, v).
However, in this equilibrium the main different part is the de-
pendence on u via f (u), so we concentrate on this plots first.

The spatial structure of the first seven eigenfunctions is rep-
resented in Fig. 10 for a typical set of parameters. In this range
there is one single trapped mode, which decays exponentially as
u → ∞. The rest of the modes are leaky and propagate towards
u → ∞, and since we are considering stationary solutions they
grow exponentially as the distance from the arcade is increased
(in a similar way to previous works, see Cally 1986, 2003;
Stenuit et al. 1998; Díaz et al. 2004). The solutions are continu-
ous and smooth at the boundaries of the arcade, as the boundary
conditions demand.

The distinction between kink and sausage modes is not ev-
ident in these problems, and the modes can be difficult to as-
sign to such categories. For example, in Fig. 10 the first, fifth
and sixth are kink modes (both boundaries oscillating in phase),
while the second, third and seventh are sausage (both boundaries
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Fig. 9. Logarithmic plots of the a) real and b) imaginary parts ofωL/cAc

against the arcade half-width for vertical modes (m = 1). The density
ratio has been fixed as ρl/ρc = 10 and the eccentricity parameter as
u0 = 2. The results of the elliptical model are plotted in solid lines, while
the frequencies for the cylindrical and straight models are plotted in
dashed and dotted lines, respectively. Only the 15 lowest values in each
geometry have been represented (5 for the elliptical model in panel b).

oscillating in opposition of phase). Notice that sausage modes
have a displacement of the centre of the slab. It is also inter-
esting to see that some modes have mixed characteristics, like
the forth mode, which again points out that this distinction is no
longer inherent to the problem.

We can also see in Fig. 10 the different spatial properties of
arcade modes (first,third and fifth modes for these parameters)
compared with the cavity modes: the amplitude below the arcade
(0 ≤ u < u0 − a) is relatively smaller. Notice that the order of
the mode is also the number of extrema that it displays between
0 ≤ u < u0 + a. There is no relation between the order of the
mode and its character; for example, the sixth and seventh modes
are both cavity modes, but they can have different properties for
other choices of the parameters.

Finally, we can combine this dependence with the depen-
dence along the magnetic field (the v direction), which leads to
vertical and swaying modes, as in Díaz et al. (2006). It is im-
portant to remark that despite the equilibrium magnetic field be-
ing singular at the foci of the ellipses, the solution is regular in
all the domain. In Fig. 11 the velocity vector field at t = 0 is
represented with its dependence in the two dimensions, super-
imposed with the initial position of the arcade. Three harmonics
have been chosen to reflect the three types of modes: the trapped
ones (n = 1 for this choice of parameters), the leaky ones with
amplitude mainly in the cavity (n = 2) and the leaky ones with
amplitude in the arcade (n = 3), although we see that there is an

amplitude of a similar value in the cavity for these last type of
mode, but since the plasma in the arcade is denser the energy is
mainly in the arcade itself.

As in the cylindrical model, the two families of modes have
a different behaviour. The vertical modes (m = 1) have displace-
ment of the arcade mainly on the x-direction (apparent, since
all the motions are in the u-direction), but the swaying modes
(m = 2) displace apparently the arcade in the direction along
the photosphere, and distort the shape quite more notably that
in the cylindrical geometry. However, this distortion is only ap-
parent, since all the movements are in the radial direction, but
depending on the point of view of an observer, these swaying
modes could be difficult to identify as fast MHD modes in ob-
servations. It cannot be appreciated in the plots presented here,
but the amplitude is better confined in the arcade for the trapped
swaying (and higher order) modes that for the trapped vertical
mode, in accordance with the results for the Cartesian slab.

5. Conclusions

The linearised MHD wave equations have been written for an
equilibrium configuration described in elliptical cylindrical co-
ordinates, with the magnetic field and density varying in the di-
rection across the arcade. The resulting differential equations
have been solved analytically in the low-beta limit using sep-
aration of variables, and a two-dimensional solution has been
obtained.

First of all, the results obtained in Cartesian and cylindrical
geometries are very close to the modes of the elliptical geometry.
The first major difference is that the elliptical arcade supports
another type of modes: those having amplitude mainly in the
coronal region below the arcade. Obviously, these modes cannot
be described in the Cartesian geometry, and in the cylindrical
geometry they are not present for this choice of density profile
in the radial direction, since in the cylindrical model the Alfvén
speed tends to zero as r → 0 (Verwichte et al. 2006a, Fig. 2). On
the other hand, the elliptical configuration has a region with the
Alfvén speed different to zero near the origin and it is only van-
ishing in the foci (Fig. 3b), and hence modes can be trapped in
this zone. It has also been checked that these modes have a sim-
ilar frequency to the ones of an elliptical oscillatory membrane
(Eq. (43)) and that their amplitude is mainly below the arcade
(Fig. 11). Notice that these modes are present in other cylindri-
cal equilibrium density profiles (such as in Díaz et al. 2006).
However, these modes are difficult to observe in solar coronal
arcades, since the amplitude in the dense (visible) part is small.
Moreover, structures such as coronal loops are better described
in terms of toroidal coordinates, and in such systems there is no
cavity below the dense structure where this type of mode can
be trapped. That is the reason why this model is better suited
for coronal arcades, since a loop needs to be described using the
three dimensions, although some of the results found can be ex-
trapolated to coronal loop oscillations.

However, compared with a loop with elliptical cross-section,
the elliptical arcade does not have two families that become
degenerated in the limit of low eccentricity (Ruderman 2003).
This is because our line-tying boundary conditions limit free-
dom to oscillate in different directions. A loop whose height is
larger that its footpoint half-separation could be studied by ap-
plying the line-tying in the plane y = 0 and restricting v to the
range [−π/2, π/2], but that seems to be less common in the solar
corona (and the arcade modelled in this geometry would be thin-
ner in the apex that in the footpoints). Notice also that there are
no unstable modes in this problem and the equilibrium structure
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Fig. 10. Panels showing the spatial structure of the u-dependent part of the perturbed velocity fn(u) (first seven vertical harmonics, m = 1) for
ρl/ρc = 10, u0 = 1 and a = 0.1. All the functions have been normalised so the highest value of the amplitude in the dense region is equal to 1. The
limits of the region with dense plasma have been marked with vertical dashed lines.

Fig. 11. Vector field plot of the perturbed velocity (Eq. (22)) at t = 0 in the xy-plane. The mode family (vertical m = 1 and swaying m = 2) and the
order of the harmonic has been included in the legend. The initial position of the arcade is overplotted in each panel as a grey region.

is not collapsing because the magnetic tension is opposed by the
magnetic pressure.

As in the cylindrical geometry, the different harmonics of the
Cartesian slab in the direction along the field lines are no longer
multiples and become different families as m is changed (vertical
and swaying modes). In a three-dimensional object there would
be an extra type of family: those oscillating in the z-direction
of our model. We can see in Fig. 12 the perturbations from a
privileged point of view (the arcade is seen head on form the
side), but in the context of solar observations a perturbation such
as the swaying one would seem to have a component along the
field lines and could be mistakenly identified as a slow mode. On
the other hand, the distinction between kink and sausage modes
is not relevant for this geometry.

One of the main aims of this work is to test the effect of
curvature in the modes of a straight Cartesian slab (Edwin &
Roberts 1982). In that sense, the results of the elliptical geom-
etry confirm those of the cylindrical geometry (Verwichte et al.
2006a), since the periods we obtain are very close to those of the
straight slab. However, the damping times are remarkably dif-
ferent, and show that coronal leakage seems to be insufficient
to explain the damping in some coronal observations. The el-
liptical model has some ingredients that are not present in the
straight slab, such as having a single photospheric surface, a
larger thickness in the apex compared with that in the footpoints
and a curvature that depends on the position. Despite these as-
pects, our model confirms that the straight model gives a quite
accurate estimation of the modes and is easier to work with. It is
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Fig. 12. Plots of the boundaries of an arcade oscillating with the fun-
damental kink vertical and swaying modes. The boundaries have been
plotted for different instants during a period P: t/P = 0 (initial position),
t/P = 1/4 and t/P = 3/4 in dotted, solid and dashed lines, respectively.
The density ratio has been fixed as ρl/ρc = 10, the eccentricity param-
eter as u0 = 1 and the width parameter as a = 0.1. The amplitude has
been chosen to show better the displacements, but in reality it should be
smaller to be adequately described by the linear regime.

remarkable that even the fundamental mode becomes leaky for
certain ranges of the parameters.

Regarding the different families of MHD modes, it has been
shown in our analysis that they are decoupled (see Eqs. (22)
and (24)). However, previous works have shown that many ef-
fects contribute to couple these modes in the corona, especially
when gravitational stratification and curvature of field lines is in-
cluded (Beliën et al. 1997; Arregui et al. 2001, 2003, 2004a,b;
Bogdan et al. 2003; Hasan et al. 2005). Here, structure is caused
by the divergence of the field lines. Thus, the expansion of the
field lines alone does not induce coupling in our model un-
less some sort of dependence on the z-coordinate is allowed in
Eq. (20). Further work is expected to investigate the role of the
continous Alfvén spectrum and its coupling with the discrete fast
modes.

An important unanswered question is whether these conclu-
sions are modified when other equilibrium density profiles are
chosen instead of Eq. (8). In cylindrical geometry there are some
changes in the damping rate and the cavity modes (Díaz et al.
2006; Verwichte et al. 2006a), but it remains an open question to
check those results in the elliptical geometry. It would be also in-
teresting to compare the cavity modes that also are present in the
cylindrical geometry for different profiles. Another assumption
that needs to be explored further is the effect of a longitudinal
propagation in the z-direction. Including this term couples the
Alfvén and fast modes by coupling their equations, and could
lead to damping due to resonant absorption.

On the other hand, the equilibrium presented in this paper
can be extended to other problems, since it is still simple enough
to be solved analytically and the parameter space is small, but
has other effects not previously taken into account, such as

divergence of the field lines and the possibility to explore the
role of the eccentricity. Further comparisons with observational
data can also be taken, in particular for the damping rates, since
the shift in the periods of the fast modes has been proved to be
relatively small.
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