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ABSTRACT

Aims. We study fast magnetohydrodynamic waves in a system of two coronal loops modeled as smoothed, dense plasma slabs in
a uniform magnetic field. This allows us to analyse in a simple configuration the collective behaviour of the structure due to the
interaction between the slabs.
Methods. We first calculate the normal modes of the system and find analytical expressions for the dispersion relation of the two-slab
configuration. Next, we study the time-dependent problem of the excitation of slab oscillations by numerically solving the initial value
problem. We investigate the behaviour of the system for several shapes of the initial disturbances.
Results. The symmetric mode respect to the centre of the structure is the only trapped mode for all distances between the slabs
while the antisymmetric mode is leaky for small slab separations. Nevertheless, there is a wide range of slab separations for which
the fundamental symmetric and antisymmetric trapped modes are allowed and have very close frequencies. These modes are excited
according to the parity of the initial perturbation.
Conclusions. We find that for any initial disturbance the slabs oscillate with the normal modes of the coupled slab system, which are
different from the modes of the individual slabs. We show that it is possible to excite the symmetric and antisymmetric trapped modes
at the same time. This kind of excitation can produce the beating phenomenon, characterised by a continuous exchange of energy
between the individual slabs.
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1. Introduction

Transversal coronal loop oscillations are routinely observed by
the EUV telescope on board TRACE. Several oscillating loops
have been studied in detail by Aschwanden et al. (1999, 2002);
Schrijver et al. (2002); Verwichte et al. (2004). Information
about the period, damping time and amplitude of the oscilla-
tions has been derived. These kind of oscillations have been in-
terpreted as standing kink fast magnetohydrodynamic (MHD)
waves since they produce displacements of the loop axis and the
loop footpoints seem to be anchored in the solar photosphere.

In general, the observed oscillating loops belong to com-
plex active regions and in most cases they cannot be considered
as isolated magnetic tubes. A clear example of such configura-
tions are coronal arcades, where loops are located forming en-
sembles of several magnetic flux tubes. There is also observa-
tional evidence of transversal loop oscillations in such complex
structures. For example, Verwichte et al. (2004), have studied
in detail the features of the oscillating loops forming an arcade
which were presumably disturbed by a prominence eruption.
In fact, these observations suggest that the loops do not oscil-
late independently and that different loops oscillate following an
organised motion.

From the theoretical point of view the behaviour of iso-
lated magnetic structures have been studied in several geome-
tries by Spruit (1981); Edwin & Roberts (1982, 1983); Cally
(1986, 2003); Díaz (2004), little work has yet been done on
multi-structures. Berton & Heyvaerts (1987) studied the magne-
tohydrodynamic normal modes of a periodic magnetic medium

while Bogdan & Fox (1991) and Keppens et al. (1993) anal-
ysed the scattering and absorption of acoustic waves by bun-
dles of magnetic flux tubes with sunspot properties. Murawski
(1993); Murawski & Roberts (1994) studied the propagation of
fast waves in two slabs unbounded in the longitudinal direc-
tion. On the other hand, the collective nature of oscillations has
been investigated in multifibril Cartesian systems (see Díaz et al.
2005) representing the oscillation of the fibril structure of promi-
nences. These authors found that in a system of equal fibrils the
only non-leaky mode is the symmetric one, which means that all
the fibrils oscillate in spatial phase with the same frequency.

Here we consider a simple line-tied two-slab model with-
out gravity and curvature; and solve the time-dependent problem
of the excitation of coronal loop oscillations. In general, an ini-
tial disturbance is likely to deposit some energy in the trapped
modes, while some energy will be emitted via the leaky waves.
We concentrate on the conditions that lead to the excitation of
trapped and leaky modes and analyse in detail the behaviour of
the system when more than a single trapped mode is excited at
the same time. We compare the results of the time-dependent
simulations with the information provided by the normal modes.
This allows us to study the interaction between the oscillating
slabs which leads to a collective behaviour of the system.

This paper is organised as follows. In Sect. 2 the loop model
and the basic MHD equations describing fast waves are pre-
sented. In Sect. 3 the features of trapped and leaky modes are
analysed in detail. In Sect. 4 the time-dependent problem is
considered and the resulting velocity profiles are studied for
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Fig. 1. Sketch of the two-slab system. The shaded area represents the
density enhancement of the two slabs while the hatched area represents
the photospheric medium, that fixes the feet of the slabs and produces
the line-tying effect.

several initial perturbations. An analytical analysis of the beat-
ing is given in Sect. 5. Finally, in Sect. 6 the main conclusions
are drawn.

2. Basic equations

We consider a system of two parallel loops modeled as dense
plasma slabs of half-width a and length L (Fig. 1). The dis-
tance between the centres of the slabs is d, so the distance be-
tween their inner edges is d − 2a. The density profile is sharp
and given by

ρ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρe, if 0 ≤ |x| < d/2 − a,
ρi, if |x ± d/2| ≤ a,
ρe, if |x| > d/2 + a,

(1)

where ρi and ρe are the density of the slabs and the coronal envi-
ronment. The magnetic field is uniform and parallel to the z-axis,
i.e. B = B0 ez. For the sake of simplicity, gravity and curvature
are neglected in the present model.

When considering perturbations about this equilibrium, we
use the linearised magnetohydrodynamic (MHD) equations in
the low-β limit (β = 0). In this limit the slow mode does not
appear. To simplify the study of fast modes it is also assumed
that perturbations do not depend on y, hence the Alfvén and
fast modes are decoupled. Furthermore, we Fourier analyse in
the z-direction, i.e. we assume that perturbations are of the form
e−ikzz, which allows us to study the effect of photospheric line-
tying by selecting the appropriate value of kz (we concentrate
on the fundamental mode, with kz = 2π/2L). With the Fourier
decomposition in z, the wave equation for the fast modes is the
Klein-Gordon equation (Terradas et al. 2005a),

∂2vx

∂t2
= v2A

∂2vx

∂x2
− ω2

c vx, (2)

where x is the coordinate in the direction normal to the magnetic
field lines (see Fig. 1), vx is the x-component of the velocity (vy
and vz are both zero), ωc = kzvA is the cut-off frequency and vA
is the Alvén speed,

vA(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
vAe =

B0√
µρe
, if 0 ≤ |x| < d/2 − a,

vAi =
B0√
µρi
, if |x ± d/2| ≤ 2a,

vAe =
B0√
µρe
, if |x| > d/2 + a.

(3)

3. Normal mode analysis

Before considering the time-dependent problem of perturbations
about the equilibrium, we briefly describe the main oscillatory
features of our two-slab model, given by the normal mode anal-
ysis. Normal mode solutions of Eq. (2) in a uniform medium
have a dependence of the form ei(ωt−kx) with k2 = ω2/v2A − k2

z . In
the present structure, the velocity of normal modes has the form
vx(x, t) = vx(x) eiωt, with

vx(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A eke x, if x < −d/2 − a,
B1 e−iki x + B2 eiki x, if −d/2 − a ≤ x ≤ −d/2 + a,
C1 eke x + C2 e−ke x, if |x| < d/2 − a,
D1 e−iki x + D2 eiki x, if d/2 − a ≤ x ≤ d/2 + a,
E e−ke x, if x > d/2 + a.

(4)

Here ke and ki are the external and internal wave numbers. The
internal wave number is given by

ki =

√
ω2

v2Ai

− k2
z . (5)

Depending on the character of ke andω there are two types of so-
lutions. Trapped modes are characterised by real ke and ω, with

ke =

√
k2

z −
ω2

v2Ae

· (6)

Leaky modes are characterised by complex ke and ω where
Terradas et al. (2005b)

ke = −
√

k2
z −
ω2

v2Ae

· (7)

In addition, we consider the boundary conditions at the inter-
faces of the dense slabs and the coronal environment. Following
Díaz (2004), these conditions reduce to the continuity of vx and
its x-derivative, ∂vx∂x .

We then impose both boundary conditions on the four
interfaces located at x = −d/2 ± a and x = d/2 ± a,
thus obtaining four equations for the velocity and four equa-
tions for its x-derivative. These equations form a homoge-
neous linear system of eight equations with eight unknowns,
i.e. A, B1, B2, C1, C2, D1, D2, E in Eq. (4). For this system of
equations to have a non-trivial solution, its determinant must be
zero. This gives the dispersion relation, which appears as a prod-
uct of two factors. One of these factors must vanish, which leaves
us with the following expressions,

(
k2

e + k2
i

)
tan(2 a ki) − e(d−2 a) ke

(
tan(a ki) − ke

ki

)

×
(
tan(a ki) +

ki

ke

)
= 0, (8)

or(
k2

e + k2
i

)
tan(2 a ki) + e(d−2 a) ke

(
tan(a ki) − ke

ki

)

×
(
tan(a ki) +

ki

ke

)
= 0. (9)

Moreover, the solutions of the homogeneous set of equations,
i.e. the constants in Eq. (4), are the kernel of the matrix of
the system.
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(a) (b)

(c) (d)

Fig. 2. Velocity profile, vx(x), for the fundamental symmetric mode (up-
per row) and the fundamental antisymmetric mode (lower row) for
a slab half-width a = 0.05L and a density enhancement ρi/ρe = 3. The
left and right columns correspond to a distance between slabs d = 0.5L
and d = 2L, respectively. a) and b) show that the symmetric mode is
trapped for the two separations, but c) and d) indicate that the antisym-
metric mode becomes leaky for small distances. The shaded surface
corresponds to the density enhancement of the slabs.

Equations (8) and (9) indicate that there are two kinds of
normal modes, whose spatial structure will be studied next.
Solutions to Eq. (8) are symmetric with respect to x = 0 and
both slabs move in phase (see Figs. 2a and b). On the other hand,
solutions to Eq. (9) are antisymmetric with respect to x = 0 and
both slabs move in antiphase (see Figs. 2c and d). In addition,
Fig. 2 shows that normal modes can either be trapped (as in pan-
els a, b and d) or leaky (as in panel c). Trapped modes attain
their maximum amplitude in or near the slabs, but leaky modes
present oscillations growing in amplitude as x → ∞.

We solve the transcendental Eqs. (8) and (9) and calculate ω
for different values of the slab separation, d, finding two types of
curves (Fig. 3). Figures 3a and b correspond to the real and imag-
inary part of the frequency, that has been written asω = ωR+iωI.
Here we only represent the fundamental and first harmonic
of the symmetric and antisymmetric modes. The frequency of
trapped modes is real and smaller than the external cut-off fre-
quency, ωce = ωc = kzvAe. Since ωI = 0 for trapped modes,
these solutions correspond to standing oscillations of the sys-
tem. Leaky modes have complex frequency with ωI > 0, so that
they represent damped oscillations, the origin of the damping
being that perturbations carry the energy away from the slabs.
Figure 3 shows that the fundamental symmetric mode (solid line)
is trapped for all distances. On the other hand, the fundamental
antisymmetric mode (dashed line) starts as leaky for small val-
ues of d/L and, as d/L is increased, its curve crosses the exter-
nal cut-off frequency, bifurcates and gives rise to two branches.
At the bifurcation point the imaginary part of the frequency be-
comes zero (Fig. 3b) and the two branches have ωI = 0. Both
branches are physically meaningless because they have ωI = 0
and ke is real and negative, which implies an oscillatory solution
in time with an exponential growth in space. For even larger sep-
arations between the slabs (d/L >∼ 1) the upper branch reaches
the external cut-off and the mode becomes trapped (thick dashed
line), becoming a physically relevant solution. All the harmonics
(both symmetric and antisymmetric) have the same behaviour as
the fundamental antisymmetric mode, although in the range of

(a)

(b)

Fig. 3. a) Real part, ωR, and b) imaginary part, ωI, of the frequency as
functions of the separation, d, for a density enhancement ρi/ρe = 3
and a half-width a = 0.05L. The line styles correspond to the fun-
damental symmetric mode (solid line), the fundamental antisymmet-
ric mode (dashed line), the first symmetric harmonic (dot-dashed line)
and the first antisymmetric harmonic (three-dot-dashed line). The dot-
ted line is the external cut-off frequency, ωce. Thick curves represent
trapped modes while thin lines correspond to leaky modes. ωRL/vAe

and ωIL/vAe are normalised frequencies. In the top panel the calculated
frequency from the time-dependent results for the symmetric (triangles)
and antisymmetric (diamonds) modes is also represented.

separations plotted in Fig. 3 they are leaky. From Fig. 3b we see
that the damping time, τ = ω−1

I , increases with the separation d.
The behaviour of solutions for small and large separations

between slabs can be derived from Eqs. (8) and (9). For small
separations, d >∼ 2a, we have e(d−2a) ke ≈ 1 and from Eq. (8) we
recover the sausage mode dispersion relation for one slab,

tan (2aki) = − ki

ke
, (10)

and from Eq. (9) the kink mode dispersion relation for one slab,

tan (2aki) =
ke

ki
· (11)

These formulas are identical to those in Edwin & Roberts (1982)
and Terradas et al. (2005b), although a is now replaced by 2a.
Therefore, for the minimum separation between slabs, d = 2a,
the system of two slabs is equivalent to a single slab but with
half width 2a. We also see that the symmetric mode tends to the
kink mode for d → 2a and the antisymmetric mode tends to
the sausage mode. Hence, we expect a gradual transition from
the solutions of one slab to those of a system of two slab as the
separation is increased.

For a very large separation between slabs, e(d−2a) ke → ∞,
both Eqs. (8) and (9) lead to(
tan (a ki) − ke

ki

) (
tan (a ki) +

ki

ke

)
= 0. (12)

This is the dispersion relation of one slab. This is the expected
behaviour, too, since for large separations the interaction be-
tween both slabs is negligible and they behave as independent
loops.
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(a) (b)

(c) (d)

Fig. 4. Time-evolution of the velocity, vx, for a distance between slabs
d = 0.5L and a symmetric initial impulse.

4. Time-dependent analysis: numerical simulations

Normal modes provide with information about the oscillatory
state and parameters of the system, but coronal oscillations are
often produced by an impulsive event and time dependent sim-
ulations are more appropriate to describe the evolution of the
system. In the case of a single slab (Terradas et al. 2005b)
an impulsive disturbance leads, after a time of the order of the
Alfvén transit time across the slab, to a distribution of its en-
ergy into one or more normal modes. The question that arises is
how this picture will be modified for a two-slab structure: after
an impulsive event, does the system oscillate in a normal mode
(or a sum of some normal modes) or do the modes of a single
slab appear?

To study the effect of an arbitrary initial perturbation we con-
sider the system of two slabs with a typical density enhancement
(ρi/ρe = 3), a typical slab half-width (a = 0.05L) and we excite
perturbations with different velocity profiles.

To solve Eq. (2) numerically the code PDE2D, (Sewell
2005), based on finite elements, has been used. The code, which
gives a numerical approximation to vx(x, t), makes use of a sec-
ond order implicit Crank-Nicholson method with adaptive time
step control. Since we consider a finite numerical domain, re-
flections at the domain boundaries may affect the dynamics of
the system of slabs. We have solved this problem by locating
the edges of the numerical domain far from the two slabs. Given
that the size of the domain is much larger than the loop thick-
ness, a non-uniform grid with 4000 grid points in the full do-
main, 45 of them located inside each slab (|x ± d/2| ≤ a), has
been used. In addition, we have made sure that the artificial dif-
fusion introduced by the numerical scheme is small enough. This
is a critical point since the artificial damping can be larger than
the physical damping, in our case arising from energy leakage,
and may lead to the wrong interpretation of the results. We have
performed different simulations by increasing the number of grid
points and have found that the solutions converge, which is an in-
dication that numerical diffusion does not affect considerably
the results. In addition, we have checked that the same results
are obtained by solving the initial-value problem with a standard
explicit method based on finite differences.

(a)

(b)

Fig. 5. a) Measured velocity at the centre of the right slab, x = d/2,
for the symmetric initial perturbation of Fig. 4. After a short transient
the system oscillates in a trapped mode, with period close to 2τA, and
the oscillatory amplitude remains unchanged. b) As expected, the pe-
riodogram of the signal in a) features a large power peak at a period
around 2τA. There is an excellent agreement between the period of this
peak and the period of the normal mode obtained from Eq. (8) (dotted
line). The periodogram lacks other power peaks.

The initial condition is the sum of two Gaussian profiles cen-
tred in each of the slabs,

vx(x, t = 0) =

⎧⎪⎪⎨⎪⎪⎩A exp

⎡⎢⎢⎢⎢⎢⎣
(

x − d/2
∆

)2⎤⎥⎥⎥⎥⎥⎦ + B exp

⎡⎢⎢⎢⎢⎢⎣
(

x + d/2
∆

)2⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (13)

where ∆ is the width of the Gaussian function and A and B
are the amplitudes of the right and left Gaussian pulses, re-
spectively. Firstly, we generate two types of initial conditions,
namely a symmetric initial pulse (A = B = 1) and an antisym-
metric initial pulse (A = −B = 1). Later, we excite the system
with an individual pulse with A = 1 and B = 0. In all the nu-
merical simulations performed, the width of the initial pulses is
∆ = 0.1L.

4.1. Symmetric or antisymmetric excitation

Let us start with the symmetric initial condition and a separa-
tion between slabs d = 0.5L. To see which normal modes can be
excited, we only need to care about the symmetric ones, since
the antisymmetric modes are not excited because their symme-
try is opposite to that of the initial perturbation. So we inspect
the dispersion diagram (Fig. 3) and see that for d = 0.5L there
is only a symmetric trapped mode (the fundamental symmetric
mode) and infinite leaky symmetric modes (of which only one is
shown in this plot). The results of the simulation are displayed in
Fig. 4, where we have plotted the velocity, vx, as a function of x
for different times (t is given in units of the external Alfvén tran-
sit time, τA = L/vAe). The initial perturbation produces trav-
elling disturbances to the left and right and these disturbances
show some dispersion as they propagate: short wavelengths are
at the front and long wavelengths at the back of the travelling
disturbances (Figs. 4c and d). A comparison of Figs. 2a and 4d
in the range −5 ≤ x ≤ 5 indicates that, for long times, the sys-
tem settles down into the trapped mode. To gain more insight
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(a) (b)

(c) (d)

Fig. 6. Time-evolution of the velocity, vx, for a distance between slabs
d = 0.5L and an antisymmetric initial impulse.

into the time evolution we plot the velocity at the centre of the
right slab (at x = d/2) in Fig. 5a. In this figure we see clearly
two phases, a transient (for 0 ≤ t/τA <∼ 3) and an oscillatory
phase (for t/τA >∼ 3). The transient is produced by two effects:
firstly, perturbations reflect and refract at the two slabs until the
energy contained in the initial impulse is transferred into the nor-
mal modes. This phase has a duration, which we call the relax-
ation time, of the order of a few times the Alfvén travel time
between the two slabs, i.e. a few times 0.5τA; secondly, the ex-
cited leaky modes carry their energy towards x → ±∞ and so
decay in a time of the order of τI. In Terradas et al. (2005b) this
phase was called the impulsive leaky phase. From Fig. 3b we
see that τI/τA � 1 for the first leaky harmonic, which means that
this mode damps out in a time comparable to the relaxation time.
The very short duration of this and all other leaky modes makes
them practically undetectable in Fig. 5a. Further confirmation
of this interpretation of Fig. 5a is given in its power spectrum
(Fig. 5b), which displays a single power peak whose frequency
exactly matches that of the trapped symmetric mode, while the
power at the frequencies of leaky modes is negligible. As a con-
clusion, the trapped fundamental symmetric mode is excited in
this simulation and there is a good agreement in the frequency
and velocity profile with the normal mode results. If leaky modes
are excited, they cannot be detected because of their very rapid
damping.

Next, we perturb the same system with an antisymmetric ini-
tial condition, so now the antisymmetric normal modes are ex-
cited. The results of the simulation, which again show the prop-
agation of perturbations in both directions along the x-axis, are
displayed in Fig. 6. In this case the amplitude of the oscillations
in both slabs decrease in time because all antisymmetric modes
are leaky for the selected separation between slabs (d/L = 0.5).
In Fig. 7a the velocity measured in the centre of the right slab,
x = d/2, is plotted. After the relaxation time, which again is of
the order of 3τA, the signal is an attenuated oscillation, as ex-
pected for leaky modes. In Fig. 7b we see the periodogram of
this signal, where the dashed line gives the theoretical frequency
of the fundamental leaky antisymmetric mode (from Fig. 3) and
as in the previous case coincides with the peak of the power
spectrum. Nevertheless, now the power peak is broad due to the
exponential attenuation of the signal. Regarding the spatial ve-
locity profile, it is not easy to compare the results of the simu-
lation with those of the normal mode analysis, but still Figs. 6c
and d bear some resemblance with Fig. 2c. We conclude that the

(a)

(b)

Fig. 7. a) Measured velocity at the centre of the right slab, x = d/2, for
the antisymmetric initial perturbation of Fig. 6. After a short transient
the system oscillates in a leaky mode and so the perturbation attenuates
exponentially. b) The periodogram of the signal in a) has a power peak
whose period is in excellent agreement with that of the normal mode
obtained from Eq. (9) (dotted line). The periodogram lacks other power
peaks.

considered antisymmetric disturbance mostly excites the funda-
mental antisymmetric leaky mode.

We next repeat this analysis for different slab separations and
obtain an estimation of the real part of the frequency of the nor-
mal mode,ωR, from the power spectrum of the simulations. With
these data we have superimposed in Fig. 3a, the value of ωR cal-
culated from the numerical simulations (see triangles and dia-
monds) on top of the theoretical dispersion diagram. The agree-
ment is outstanding for all values of d/L, so we conclude that
when the system is excited with a symmetric or antisymmetric
initial condition, it later oscillates in a normal mode predicted by
the theory. As a corollary, the system acquires a collective oscil-
lation, given by a normal mode, and does not oscillate with the
modes of an individual slab.

4.2. Arbitrary excitation

Now, the system is excited using an initial condition with no
particular symmetry about x = 0. The initial condition that we
consider is a Gaussian pulse centred in the right slab. This ini-
tial pulse is given by Eq. (13) with A = 1, B = 0 and, there-
fore, can be decomposed into the sum of a symmetric and an
antisymmetric excitation. Since Eq. (2) is linear, we expect that
this kind of initial disturbance will give rise to a superposition
of the solutions arising from the corresponding symmetric and
antisymmetric excitations. In this section we consider the slab
separations d = 0.5L and d = 2L.

Firstly, we consider the case d = 0.5L (Fig. 8), which implies
that the initial condition (Fig. 8a) is half the sum of the symmet-
ric and antisymmetric initial conditions of Sect. 4.1. During the
initial stages of the temporal evolution (Figs. 8b and c) vx has no
definite symmetry with respect to x = 0 because the solution is
the sum of the symmetric and antisymmetric modes of Sect. 4.1.
Let us recall that these modes are the fundamental symmet-
ric and the fundamental antisymmetric, which are trapped and
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(a) (b)

(c) (d)

Fig. 8. Time-evolution of vx for d = 0.5L and a non-symmetric initial
excitation.

Fig. 9. vx measured at the centres of the slabs for the simulation shown
in Fig. 8. The solid and dashed lines correspond to the right and left
slabs, respectively.

leaky, respectively. As a consequence, after some time (Fig. 8d)
the antisymmetric mode amplitude is negligible in the vicinity
of the slabs and the system oscillates in a symmetric manner.
In Fig. 9 the time dependence of the velocity, vx, is plotted in
both slab centres. Because of the superposition of the antisym-
metric leaky mode and the symmetric trapped mode both slabs
oscillate with different phases and amplitudes until t � 10τA.
Then, according to Fig. 7a, the antisymmetric perturbation ex-
tinguishes and the two slabs oscillate in phase. The periodogram
of the two curves in this plot coincides with that Fig. 5b because
the leaky mode is a very short duration signal and so its contri-
bution to the periodogram is very small. In addition, Fig. 9 gives
us a way of recovering the signals in Figs. 5a and 7a. By sum-
ming the signals in Fig. 9 the contribution of the antisymmetric
modes vanishes because they have the same amplitude and op-
posite sign in the slab centres, so we are left with the symmetric
mode, i.e. with Fig. 5a. In the same manner, the difference of the
signals in Fig. 9 leads to Fig. 7a. We thus conclude that the ini-
tial condition excites the symmetric and antisymmetric modes,
as expected, and that the system oscillates in its collective modes
and not in the modes of a single slab.

Secondly, we perturb the system with the same initial con-
dition but now the distance between the slab centres is d = 2L.
As can be appreciated in Fig. 3, this choice of the slab separa-
tion results in the fundamental antisymmetric mode becoming
trapped. The evolution of the system is again presented for dif-
ferent times (Fig. 10) and, although after some time the two slabs
seem to move in phase (Fig. 10b), in a later stage the right slab
has given all its energy to the left slab and so is motionless
(Fig. 10c). At an even later time (Fig. 10d) the picture is just the

(a) (b)

(c) (d)

Fig. 10. Time evolution of vx for d = 2L and a non-symmetric initial
disturbance. Note the interchange of energy between the two slabs in
the last two frames.

(a)

(b)

Fig. 11. a) vx measured at the centre of the slabs for the simulation
shown in Fig. 10. The solid and dashed lines correspond to the right
and left slabs, respectively. b) Power spectrum of the previous signal
(solid line). The two vertical dashed lines indicate the periods of the
fundamental antisymmetric mode (at 2.04821τA) and the fundamental
symmetric mode (2.10633τA).

opposite, with the left slab fixed and the right slab in motion.
Hence, the two slabs are continously exchanging energy and the
transition between the states depicted in Figs. 10c and d takes
place through a situation similar to that in Fig. 10b, where both
slabs are oscillating. This behaviour is repeated periodically.
This phenomenon is more clearly represented in Fig. 11a, where
the velocity, vx, is plotted at the centre of both slabs. Contrary to
the behaviour in the stationary regime for symmetric or antisym-
metric initial perturbations (Figs. 5a and 7a), the oscillations do
not attain a constant amplitude, but they instead display a sinu-
soidal modulation. This is a well known collective beating phe-
nomenon, like, for instance, that of two weakly coupled oscilla-
tors. It is due to the simultaneous excitation of the symmetric and
antisymmetric modes with alike frequencies. These frequencies
are recovered from the power spectrum of the velocity at the
centre of right slab (Fig. 11b), which shows two power peaks
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with periods almost identical to those of the fundamental anti-
symmetric mode (2.04821τA) and the fundamental symmetric
mode (2.10633τA). This match between the frequency of the
normal modes and the oscillations in the numerical simulation is
also evident in Fig. 3a. Both peaks in the power spectrum have
similar height, which allows us to conclude that the two normal
modes have been excited with similar amplitude.

In fact, from Fig. 3 we see that there exists a range of slab
separations where both trapped modes, i.e. the fundamental sym-
metric and antisymmetric, coexist and possess very close fre-
quencies. In this range of separations, which goes from d ≈
1.04L to infinity, the beating appears when non-symmetric initial
disturbances are applied. Hereafter we refer to this range of d as
the band of beating and to the separation where the band starts
as the minimum distance of beating (dmin). Then, our analysis
yields dmin � 1.04L for a/L = 0.05 and ρi/ρe = 3. In Sect. 5.1,
we shall study the beating properties for other density ratios and
will show that this band extends to smaller separations.

5. Analytical study of beating

For a slab separation in the beating band the system oscillates
in a superposition of the trapped symmetric and antisymmetric
modes. Then, in the stationary state, the system behaves as

vx(x, t) = αs fs(x) cos (ωst + φ0) + αa fa(x) cos (ωat), (14)

where the subscripts s and a refer to the symmetric and an-
tisymmetrical modes, respectively. The spatial functions fs(x)
and fa(x) are the corresponding eigenfunctions, for instance the
velocity profiles of Figs. 2b and d (for d/L = 2). The parame-
ters αs and αa are scaling factors that correspond to the amplitude
of the normal modes.

We define

Ω+ =
ωa + ωs

2
, (15)

Ω− =
ωa − ωs

2
, (16)

and

f1(x) = αa fa(x) + αs fs(x), (17)

f2(x) = αa fa(x) − αs fs(x). (18)

After some algebra we find

vx(x, t) = f1(x) cos (Ω+ t + φ0/2) cos (Ω− t − φ0/2) (19)

− f2(x) sin (Ω+ t + φ0/2) sin (Ω− t − φ0/2).

We next consider

vx 1(x, t) = f1(x) cos (Ω+ t + φ0/2) cos (Ω− t − φ0/2), (20)

vx 2(x, t) = − f2(x) sin (Ω+ t + φ0/2) sin (Ω− t − φ0/2), (21)

so that Eq. (20) can be written as

vx(x, t) = vx 1(x, t) + vx 2(x, t). (22)

We now focus on the situation that led to beating in Sect. 4.2,
that is, a system with d/L = 2 and the two trapped modes ex-
cited with identical amplitude. Then f1(x) and f2(x) (see Fig. 12)
come from the eigenfunctions fs(x) and fa(x) of Figs. 2b and d
and the mode amplitudes are identical, so we take αs = αa = 1.
In Fig. 12 we see that f1(x) and f2(x) are peaked functions
around the right and left slabs, respectively. Therefore, the func-
tion vx 1(x, t), for example, is also relevant in the neighbourhood

(a)

(b)

Fig. 12. The solid lines are a rescaled close-up view of Figs. 10d and c,
respectively. The dashed lines correspond to f1(x) and f2(x), respec-
tively. The analytical approximation then reproduces the velocity profile
obtained in the time-dependent simulation when a substantial amount
of energy is concentrated in a single slab. The difference among both
curves to the right and left of the slabs arises from the system not having
reached the stationary state. For greater times the difference becomes
smaller.

of the right slab and is negligible in the vicinity of the left one
(the opposite applies to vx 2(x, t)). This confers an intrinsic mean-
ing to these functions that, although not directly measurable, re-
produce some features of the numerical simulations. For exam-
ple, at t1 = 38.9τA in the numerical simulation (Fig. 10c) the left
slab reaches its maximum velocity and so the main contribution
to the analytical approximation of the velocity (Eq. (22)) comes
through vx 2(x, t1), i.e. through− f2(x). For this reason, the spatial
distribution of vx in Fig. 10c is very well reproduced by − f2(x),
as can be seen in Fig. 12b. Moreover, Fig. 12a shows a similar
agreement for the left slab at t2 = 75.9τA.

Given the spatial structure of vx 1 and vx 2, the velocity in
the centre of the right and left slabs obtained in the numerical
simulations should be similar to vx 1(x = d/2, t) and vx 2(x =
−d/2, t), respectively, so we have plotted these two functions to-
gether with their numerical counterparts (Fig. 13). During the
transient phase, the analytical approximation differs from the
time-dependent results, but once the stationary state is reached
(around t = 12 τA) the fitting is very good. The small difference
between the two solutions in the stationary phase is caused by
the slight amplitude difference of the two normal modes in the
numerical simulation (see Fig. 11b).

The beating oscillatory curve is a sinusoidal function mul-
tiplied by a sinusoidal envelope whose period (the beating pe-
riod) is

Tbeating =
2π
Ω−
=

4π
ωa − ωs

· (23)

In addition, the period of oscillation of the system is

T =
2π
Ω+
=

4π
ωa + ωs

· (24)

From the agreement found between the numerical simulations
and the behaviour of vx 1 and vx 2 (see Fig. 13) it is clear that
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(a)

(b)

Fig. 13. a) Superposition of vx measured at the centre of the right slab
from the time-dependent numerical simulation (solid line) and the ana-
lytical approximation (dashed line). b) The same for the left slab.

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Plots of ωR (left column) and ωI (right column) as functions
of the slab separation for different values of the density enhancement,
ρi/ρe. a) and b) ρi/ρe = 5; c) and d) ρi/ρe = 8; e) and f) ρi/ρe = 10.

the beating period and oscillation period calculated from these
simulations is in perfect agreement with Eqs. (23) and (24)
respectively.

In addition, it is useful to define the number of oscillations
within a pulsation period, or beating factor (bf),

bf ≡ Tbeating

T
=
Ω+

Ω−
=
ωa + ωs

ωa − ωs
· (25)

This factor is the number of peaks in a beating period. Small
beating factors indicate strong beating behaviour. The beating
factor is a good parameter to assess the beating phenomenon
since it is easily measurable from the time-dependent results. In
our example of Fig. 11b, the number of peaks in a full beating
period is approximately 71; this coincides with the theoretical
beating factor given by the last expression, bf = 71.5.

5.1. Parameter dependence of the beating

We investigate the beating properties of two identical slabs with
different separations and density contrasts (the slabs width is
held fixed and given by a/L = 0.05). In the previous section
we have seen that the dispersion relation allows us to extract
information about the beating with the help of Eqs. (23), (24)
and (25). For this reason we start plotting the real and imagi-
nary parts of the frequency as functions of d for different values
of ρi/ρe (see Fig. 14). In these plots we can appreciate that the
minimum distance of beating (i.e. the slab separation for which
the fundamental antisymmetric mode transforms from leaky into
trapped) decreases as the density ratio increases. This means that
denser slabs can display beating for smaller separations. The os-
cillatory period obtained from Eq. (24) is plotted in Fig. 15a. For
all the considered values of ρi/ρe, the oscillatory period is more
or less independent from the slab separation when this quantity
is larger than the length of the loops. Nevertheless, for d < L
(and for sufficiently high values of the density contrast, like for
example ρi/ρe = 8 or 10) the oscillatory period decreases as the
separation is reduced.

Two other parameters worth studying are the beating period,
Tbeating, and the beating factor, bf , extracted from the dispersion
relation data and Eqs. (23) and (25). These parameters are plot-
ted in Figs. 15b and c, respectively. We see that the beating pe-
riod grows to infinity with d/L which is the expected behaviour
of two slabs that tend to oscillate independently. On the other
hand, we see that for small slab separations bf becomes rather
small, implying that each beating period contains only a few
oscillatory periods. In particular, we find that slabs with high
density contrast can show strong beating for small distances in
comparison with slabs with small density contrasts.

6. Conclusions

We have studied the main features of a simple two-slab configu-
ration (without gravity and curvature). Firstly, we have analysed
in detail the normal modes of the system. We have derived an-
alytical expressions for the dispersion relation and have found,
in agreement with the results of Díaz et al. (2005), that the sym-
metric mode is the only trapped mode for any distance between
the slabs. On the other hand, the antisymmetric mode is leaky
for small slab separations, but there exists a wide range of slab
separations (larger than the critical distance) where both trapped
modes, i.e. the fundamental symmetric and antisymmetric, co-
exist and possess very close frequencies. Thus, trapped and/or
leaky modes are excited according to the ratio d/L, but also ac-
cording to the shape of the initial perturbation. It is then expected
that initial disturbances with odd parity with respect to the centre
of the system excite antisymmetric modes, whereas even distur-
bances lead to the excitation of symmetric modes.

Secondly, we have studied the temporal evolution of sym-
metric, antisymmetric and arbitrary excitations for a typical
coronal loop with a/L = 0.05 and ρi/ρe = 3 and different slab
separations. We have found that for symmetric disturbances and
after a short transient all that remains is the undamped trapped
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(a)

(b)

(c)

Fig. 15. a) Oscillatory period, b) beating period and c) beating factor,
for the density contrasts ρi/ρe = 3 (solid line), ρi/ρe = 5 (dashed line),
ρi/ρe = 8 (dot-dashed line) and ρi/ρe = 10 (three-dot-dashed line). Note
that the curves start at the slab separation for which the fundamental
antisymmetric mode transforms from leaky into trapped.

mode, with energy confined to both slabs. On the other hand,
since there are no trapped antisymmetric modes for slab separa-
tions smaller that dmin, an antisymmetric-like initial disturbance
can only deposit energy in the leaky antisymmetric modes. The
excitation of the fundamental antisymmetrical trapped mode is
only possible for d > dmin.

An arbitrary excitation in the regime d > dmin leads to
the simultaneous excitation of the symmetric and antisymmetric
modes. Since their frequencies are quite similar the oscillations
do not attain a constant amplitude and show a sinusoidal modula-
tion. This is a well known collective beating phenomenon which
is completely equivalent to the behaviour of two weakly cou-
pled oscillators. The frequency of oscillation of the system is
ωa+ωs

2 with an envelope frequency or beating frequency ωa−ωs
2 ,

where ωa and ωs are the antisymmetric and symmetric normal
mode frequencies, respectively. The beating is the result of the
continuous exchange of energy between the two slabs. We have
also shown that slabs with high density contrast can show strong
beating for small distances in comparison with slabs with small
density contrasts.

It is important to remark that for moderate slab separations
and any type of initial excitation, the system acquires a collective

motion and does not oscillate with the modes of an individual
slab. For this reason, and specially in coronal arcades, formed by
ensembles of loops, it seems much more appropriate to describe
the oscillations in terms of collective motions instead of individ-
ual loop oscillations. Nevertheless, since our model is too sim-
ple, it has no sense to perform a quantitative comparison with the
observations of loop oscillations in coronal arcades. However, it
is worth noticing that the most clear example of such kind of os-
cillations (see Verwichte et al. 2004) suggests that initially some
loops of the arcade oscillate in phase while at later times the mo-
tions are in antiphase. This can be an indication of beating phe-
nomenon as the result of the collective oscillation of some of the
loops. Unfortunately, it is not possible to extract more conclu-
sions since the amplitude of the oscillations is quickly damped
and only a few periods are observed. Additional observations of
oscillations in coronal arcades will be very useful.

Finally, in order to have a more realistic model additional
effects such as gravity, gas pressure and curvature need to be
included. However, one of the most significant improvements
to the model is to consider two cylindrical loops instead of
Cartesian slabs. Since the eigenfunction in cylindrical tubes
are much more confined than in slabs, the interaction between
the tubes will be in general smaller and the beating time will
be much longer. In addition, instead of the two modes of the
Cartesian slab (symmetric and antisymmetric), now the system
will have four different modes of oscillation. Two of these modes
will be symmetric while the other two will be antisymmetric in
the x and y-directions. The normal mode analysis of this config-
uration will be the subject of a future work.
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