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Abstract

Wepresent a detailed theoretical analysis of the implementation of shortcut-to-adiabaticity protocols

for the fast transport of neutral atomswith atom chips. The objective is to engineer transport ramps

with durations not exceeding a few hundredmilliseconds to providemetrologically relevant input

states for an atomic sensor. Aided by numerical simulations of the classical and quantumdynamics,

we study the behavior of a Bose–Einstein condensate in an atom chip setupwith realistic anharmonic

trapping.We detail the implementation of fast and controlled transports over large distances of several

millimeters, i.e. distances 1000 times larger than the size of the atomic cloud. A subsequent optimized

release and collimation step demonstrates the capability of our transportmethod to generate

ensembles of quantum gaseswith expansion speeds in the picokelvin regime. The performance of this

procedure is analyzed in terms of collective excitations reflected in residual center ofmass and size

oscillations of the condensate.We further evaluate the robustness of the protocol against experimental

imperfections.

1. Introduction

Recent proposals for the implementation of fundamental tests of the foundations of physics assumeBose–

Einstein condensates (BECs) [1, 2] as sources of atom interferometry sensors [3–6]. In this context, atom chip

devices have allowed to build transportable BECmachines with high repetition rates, as demonstratedwithin the

Quantus project for instance [7, 8]. The proximity of the atoms to the chip surface is, however, limiting the

optical access and the available interferometry time necessary for precisionmeasurements. This justifies the

need of well-designed BEC transport protocols in order to perform long-baseline, and thus precise, atom

interferometrymeasurements.

The controlled transport of atoms is a key ingredient inmany experimental platforms dedicated to quantum

engineering. Neutral atoms have been transported as thermal atomic clouds [9–11], condensates [12, 13], or

individually [14, 15], usingmagnetic or optical traps. Transport of ionswith electromagnetic traps has also been

achieved recently [16, 17]. In all those experimental realizations, the transport was performed in 1D.When

solving the transport problem, it is tempting tofirst consider themost trivial solution: the adiabatic transport.

Yet, besides the fact that the adiabatic solution is far fromoptimal, it is usually not possible to implement it due

to typical experimental constraints. Close to an atom chip surface for example, fluctuations of the chip currents

constitute an important source of heating for the atoms, which can lead ultimately to the destruction of the BEC.

A nearly adiabatic, and therefore slow, transport is consequently unpractical inmost cases. Pioneering

theoretical work on fast transport was reported in [18] and shortcut-to-adiabaticity (STA) protocols were

proposed [19] to implement fast, non-adiabatic transport withwell-defined boundary conditions. Such a

reduction of the time overhead can be promising aswell for scalable quantum information processing in certain

architectures [20, 21]. On the theoretical side, the protocols that have been proposed relied either on optimal
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control [22, 23], counterdiabatic driving [24, 25] or reverse engineering [26] and the validity of a variety of such

fast transport protocols for BECswas established beyond themean-field regime [27, 28]. Besides the transport in

harmonic traps, the transport in the presence of anharmonicities [29–31] or the issues related to robustness have

been extensively discussed [32]. Experimentally, it is worth noting that STA transport protocols were

successfully implemented for BECs [33] and for trapped ions in phase-space [34].

The optimization proposed in this article is found using a reverse engineeringmethod applied to a simplified

one-dimensional approximation of the system’s classical equations ofmotion. This solution is then tested

numerically in a full three-dimensional quantum calculation using a time-dependentmean-field approach

[35, 36]. Our results are then analyzed in terms of residual center ofmass and size oscillations of the condensate

density distribution in the final trap, at the end of the transport.We then propose to implement a subsequent

holding stepwhose duration is precisely controlled in order tominimize the expansion rate of the BEC in

directions where a delta-kick collimation (DKC)procedure [37–40] is not efficient. This DKC step towards the

pK regime is necessary for atom interferometry experiments lasting several seconds. The conclusion of this study

is that, with the conjugation of (i) a controlled transport, (ii) a controlled holding time, and (iii) awell-designed

finalDKC step, it is possible to displace BECs bymillimeters and to reach expansion speeds in the pK regime.

Indeed, the practical implementationwe are discussing here leads to an optimalfinal expansion temperature

of 2.2 pK.

The outline of the paper is as follows: in section 2we describe the architecture of the atom chip and of the

magnetic biasfield creating the time-dependent potential for the atoms, with strong confinement in two-

dimensions.We also give the values of currents, biasfield, andwire sizes that realize this time-dependent trap. In

section 3we present the theoreticalmodels we are using and their associated numerical implementations, as well

as the reverse engineering techniquewe have adopted. In section 4we give the results of our numerical

investigations on the performance of the controlled transport and expansion of the condensate.We also discuss

here the robustness of the proposed protocol. Conclusions and prospective views are given in thefinal section 5.

2. Scheme and atom chipmodel

2.1. Scheme

In this sectionwe introduce the atom chipmodel and the trapping potential used in the present study. Atom

chips designed for themanipulation of neutral atoms are insulating substrates with conductingmicro-structures

such asmetal wires [12, 41, 42]. Thewire geometry design can easily be adapted for a particular application [43].

DCwire currents generate inhomogeneousmagnetic fields which can be used to trap atoms near the chip surface

where highmagnetic field gradients produce high trap frequencies and enable fast evaporation. This allows high-

fluxBEC creation of typically 105 atoms s−1
[8].

We consider here the case of a Z-shaped chip configuration [44], as shown infigure 1, in the presence of a

time-dependent homogeneousmagnetic biasfieldBbias(t). If the biasfield varies slowly, the spins of the atoms

remain adiabatically alignedwith the totalmagnetic field. In theweak field approximation and in the absence of

gravity, the trapping potential can be expressed as

m=( ) ( ) ( )V t m g tR R, B , , 1F F B

whereμB is the Bohrmagneton, gF is the Landé factor,mF is the azimuthal quantumnumber, andB(R, t) is the

totalmagnetic field. The three-dimensional spatial position is denoted by º ( )X Y ZR , , . As shown in [9], a

temporal variation of themagnetic field can be used to transport the atoms.Our goal here is to design and test a

fast transportation scheme for a realistic setup.We showhow the implementation of such a scheme is feasible by

specializing our discussion to the hyperfine state = = ñ∣F m2, 2F of the ground 5S1/2 state-of
87Rb as a study

case. This hyperfine state is a low-field seeking state with gF=+1/2.5

2.2. Chipmodel

The Z-shapedwire is represented schematically on the left side of figure 1. In a first approximation the wires

are considered as infinitely thin. The twowires aligned along the Y-axis are 16 mm long. Thewire alongX

measures 4 mm. They carry a DC current Iw=5 A. Themagnetic bias field Bbias(t) points along Y and its

magnitude varies betweenBbias(0)=21.5 G (initially) and Bbias(tf)=4.5 G (at the end of the displacement).

These parameters are close to those used in theQuantus experiment [8]. Slices of the initial trapping potential

V(R,0) at time t=0 in the (YZ) and (XY) planes are shown in panels (a) and (b) of figure 1, respectively. As

shown in the left panel of figure 1,Z denotes the distance to the chip surface. The atoms are initially trapped at

a distanceZi≈0.45 mm from the chip surface directly under the origin of the axes. The shape of the trap seen

5
Most of the data on rubidiumatoms used here can be found in the notes byDASteck (see http://steck.us/alkalidata)(Accessed: 24

April, 2018).
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in panel (a) shows a strong confinement in the Y andZ-directions with similar trap frequencies νY(0) and

νZ(0). On the contrary, the cigar shape seen in panel (b) reveals that n n n»( ) ( ) ( )0 0 0X Y Z . The initial trap is

thus characterized by a strong two-dimensional confinement in the Y andZ-directions. The initial potential

shows a small tilt angle θ(0)=θi≈1.53° in the (XY) plane. In figure 1, the positions of the initial and final

potential minima aremarked by a white+ sign. The trapping potentialV(R, tf) obtained at the end of the

transport (t=tf) is shown in panels (c) and (d) of figure 1. At this time theminimumof the potential is located

at a distance »Z 1.65 mmf from the chip surface and is again centered in the (XY) plane. The BEC transport
takes place over a total distanceZf−Zi≈1.2 mm. This distance ismuch larger than the typical size of the

BEC, of a fewμm. The comparison of panels figures 1(a) and (c), and of panels figures 1(b) and (d), shows that

during the transport the size of the trap along Y andZ decreases a lot while remaining of the same order of

magnitude alongX. Thus, at tf the aspect ratio is not as large as initially, and νX(tf)<νY(tf)≈νZ(tf). The tilt

of the potential has increased to θ(tf)=θf≈12.5°. In order to calculate the three eigenfrequencies of the
rotated trap, one can diagonalize theHessianmatrix associated to the potential. This allows to rotate the

coordinate system by the tilt angle θ(t), and to define the new coordinates º ( )x y zr , , , with z=Z, associated

with the three eigen-axes of the trap at any time t. The rotated axes x and y are shown as black dotted lines in

figures 1(b) and (d).

3. Theoreticalmodel

In the harmonic approximation the trapping potential generated by the chip can bewritten as

w w w= + + -( ) [ ( ) ( ) ( )( ) ] ( )V t m t x t y t z zr,
1

2
, 2x y z t

2 2 2 2 2 2

where zt denotes the position of theminimumof the trap along the z-axis at time t and w p n=a a( ) · ( )t t2 for

α=x, y or z. For amore precise description of the trap, the lowest order anharmonic term (cubic) along z

should be included, yielding the anharmonic potential

w= +
-

( ) ( ) ( )
( )

( )
( )V t V t m t

z z

L t
r r, ,

1

3
, 3a z

t2
3

3

where L3(t)determines the characteristic length associatedwith this third-order anharmonic term. For typical

chip geometries as reported in [8], the cubic term is by far the largest correction to the harmonic order.

Figure 1. Left panel: schematic representation of the chip configuration and of the displacement of the BEC.Other panels: (a) and (b)
show two cuts of the initial trapping potentialV(R, 0) in the (YZ) and (XY) planes, respectively. (c) and (d) show similar cuts of the
trapping potentialV(R, tf) at the end of the transport procedure corresponding to the time t=tf. The dashed black lines in panels (b)
and (d) serve to illustrate the tilt angle θ(t) of the principal axis x and y of the trap in the (XY)plane. The associated energy color scales
are given on the right side, inμK.
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Figure 2 shows the different trap parameters used in this study such as the position of theminimumof the

trap along the z-axis, zt figure 2(a), the trapping frequencies νx, νy and νzfigure 2(b), the parameter L3figure 2(c),

and the tilt angle θfigure 2(d). zt is shown as a function of the experimentally tunable parameterBbiaswhile all

other parameters are shown as a function of zt for the sake of simplicity. In the next section, the theoretical

models used to calculate the BECdynamics are presented.

3.1. BECdynamics

3.1.1.Mean-field approach

In themean-field regime, the evolution of a BEC in a time-dependent potentialV(r, t) can be described by

the time-dependentmacroscopic condensate wave functionΨ(R, t) solution of theGross–Pitaevskii equation

[35, 36]




¶ Y = - D + + Y Y
⎡

⎣
⎢

⎤

⎦
⎥( ) ( ) ∣ ( )∣ ( ) ( )t

m
V t gN t tR R R Ri ,

2
, , , , 4t aR

2
2

wherem denotes the atomicmass and p=g a m4 s
2 is the scattering amplitude. as is the s-wave scattering

length [46] andN denotes the number of condensed atoms. The nonlinear term Y∣ ( )∣gN tR, 2 describes the

mean-field two-body interaction energy [47]. TheGross–Pitaevskii equation is written here in the fixed

coordinate system º ( )X Y ZR , , , with

Figure 2. (a)Position zt (inmm) of theminimumof the trapwith respect to the chip surface (z-direction) as a function of themagnetic
bias fieldBbias (inG). Note thatBbias=21.5G at time t=0 and thatBbias=4.5G at the end of the displacement (time t=tf). The
two horizontal dashed linesmark the values of the initial and final trap-to-chip distances zi and zf, respectively. (b)Trapping
frequencies νx (thick green line), νy (dashed red line) and νz (thin blue line) inHz (log scale) as a function of zt (inmm). (c)Anharmonic
coefficient L3 (inmm) as a function of zt (inmm). (d)Tilt angle θ (in degrees) as a function of zt (inmm). For the simulations presented
later in the paper, we use accurate analyticalfits of the quantities plotted here using second- or (when necessary) third-order Padé
approximants [45].
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w w w

w

= + +

+ - +
-

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

V t m t X t Y t XY

t Z z
Z z

L t

R,
1

2
2

1
2

3
, 5

a X Y XY

Z t
t

2 2 2 2

2 2

3

and

w w q w q= +( ) ( ) [ ( )] ( ) [ ( )] ( )t t t t t acos sin , 6X x y
2 2 2 2 2

w w q w q= +( ) ( ) [ ( )] ( ) [ ( )] ( )t t t t t bsin cos , 6Y x y
2 2 2 2 2

w w=( ) ( ) ( )t t c, 6Z z
2 2

w w w q q= -( ) [ ( ) ( )] [ ( )] [ ( )] ( )t t t t t dcos sin . 6XY x y
2 2

In the present work, the time-dependent Gross–Pitaevskii equation (4)describing the BECdynamics is

solved numerically using the second order split-operatormethod [48] and the initial ground state is calculated

with the imaginary time propagation technique [49]. To efficiently describe the transport over 1.2 mmwhile

resolving theμmscale BEC shape on a numerical grid, we use a co-moving frame [50–52]. This transformation

eliminates the center ofmassmotion and defines a new time-dependent BECwave function.

F ¢ = Y ¢ +j- ¢+( ) ( ( ) ) ( )[ ( ) · ( )]t t tR R R, e , , 7t t
a

K Ri a a

where ¢ = - ( )tR R Ra defines the new time-dependent variable grid, translated by the vectorRa(t) compared to

afixed laboratory frame, andwhere

 =( ) ˙ ( ) ( )t m t aK R , 8a a

 òj = ¢ ¢( ) ∣ ˙ ( )∣ ( )t
m

t t bR
2

d . 8a

t

a
0

2

Using this transformation, the new time-dependent BECwave functionΦ(R′, t) verifies the transformedGross–

Pitaevskii equation




¶ F ¢ = - D + ¢ + + ¢ + F ¢ F ¢¢
⎡

⎣
⎢

⎤

⎦
⎥( ) ( ) · ∣ ( )∣ ( ) ( )t

m
V t m gN t tR R R R R R Ri ,

2
, ¨ , , , 9t a a aR

2
2

that we solve numerically in a splitting approachwhich separates the kinetic energy operator from the potential

and interaction energy [48]. To limit the size of the numerical grid describing the new coordinate

R′=R−Ra(t), a good choice forRa(t) is to take it as the instantaneous position of the center ofmass of the BEC

[50–52].Moreover, it is well known that, if the potential remains (to a good approximation) harmonic at all

time, the average position of the condensate

º = áY Y ñ( ) ( ( ) ( ) ( )) ( )∣ ∣ ( ) ( )t X t Y t Z t t tR R R R, , , , 10a a a a

followsNewton’s classical equation ofmotion [53]. Since the potentialminimum in theX- andY-directions

remains at the origin, = = = =( ) ( ) ( ) ( )X t Y t x t y t0a a a a applies during the entire propagation. As a
consequence the following relationsX′=X, ¢ =Y Y and ¢ = - ( )Z Z Z ta also hold.Note finally that, along z,

in the harmonic approximation and in the absence of gravity, the center ofmass positionZa(t)=za(t) simply

follows

w+ - =( ) ( )( ( ) ) ( )z t t z t z¨ 0. 11a z a t
2

In practice, to take into account the eventual influence of anharmonicities we consider that the classical transport

trajectory za(t) is a solution of the anharmonic equation

w+ - +
-

=
⎛

⎝
⎜

⎞

⎠
⎟( ) ( )( ( ) )

( )

( )
( )z t t z t z

z t z

L t
¨ 1 0, 12a z a t

a t2

3

in agreementwith equations (3) and (5).

As a conclusion, thenumerical procedure described in thepresent section allows to solve the time-dependent

Gross–Pitaevskii equation (9). It is possible, if necessary, to obtain the solution Y( )tR, of theGross–Pitaevskii

equation (4) in thefixed frameof reference at any time tby simply inverting the relation (7).

3.1.2. Scaling laws

The introduction of the frame transformation (7) in our numerical approach dramatically improves the

computational efficiency of the procedure. In three-dimensions, the procedure can remain computationally

expensive, depending on the exact propagation time tf and on the evolution of the trap parameters (position and

frequencies).We therefore introduce an alternative, approximate approach, that we compare, in section 4, with

the solution of theGross–Pitaevskii equation.
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In the Thomas–Fermi regime of large atomnumbers [47] andwithin the harmonic approximation, one can

calculate the evolution of the size of the BEC in the rotating frame by solving three coupled differential equations

[54, 55]

l w l
w

l l l l
+ =a a a

a

a
( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )t t t

t t t t
¨ 0

, 13
x y z

2
2

forα=x, y and z. The scaling factorsλα(t) describe the evolution of the size of the BEC in the three directions,
providing that the initial conditions verifyλα(0)=1 and l =a˙ ( )0 0. These ‘scaling laws’ assume that the BEC

keeps its Thomas–Fermi parabolic shape at all time and that the condensate follows adiabatically the rotation of

the trap in the (XY)plane.

The initial size of the BEC in the rotating frame is then defined by [47]

w
w

=a
a

⎛

⎝
⎜

⎞

⎠
⎟( )

¯ ( )

( )
( )R a

Na

a
0

15 0

0
, 14

sTF
osc

osc

1 5

where w w w w=¯ ( ) [ ( ) ( ) ( )]0 0 0 0x y z
1 3 is the geometricmean of the three oscillator frequencies and

 w= [ ¯ ( )]a m 0osc
1 2 is the characteristic quantummechanical length scale of the 3Dharmonic oscillator. The

characteristic size of the BEC along the three principal axes of the trapα=x, y and z is then given at any time t by

the relation

l=a a a( ) ( ) ( ) ( )R t t R 0 . 15
TF TF

Knowing the parabolic shape of thewave function, these three typical sizes a ( )R tTF can be related to the three

widthsΔα(t) (i.e. the standard deviations in the directionsα=x, y and z) of the BECwave function, using

aD = a( ) ( ) ( )t R t 7 . 16
TF

Numerically, we also evaluate the threewidthsD ( )x t ,Δ y(t) andΔ z(t) in the rotating frame from the solutionΨ

(R, t) of the time-dependent Gross–Pitaevskii equation in the laboratory frame using

q q q qD = D + D + D( ) [( ) ( ) ( ) ] ( )x t X XY Y acos 2 cos sin sin , 172 2 2 2 1 2

q q q qD = D - D + D( ) [( ) ( ) ( ) ] ( )y t X XY Y bsin 2 cos sin cos , 172 2 2 2 1 2

D = D( ) ( )z t Z c, 17

where

D = áY Yñ - áY Yñ( ) [ ∣ ∣ ∣ ∣ ] ( )X t X X a, 182 2 1 2

D = áY Yñ - áY Yñ( ) [ ∣ ∣ ∣ ∣ ] ( )Y t Y Y b, 182 2 1 2

D = áY Yñ - áY Yñ( ) [ ∣ ∣ ∣ ∣ ] ( )Z t Z Z c, 182 2 1 2

D = áY Yñ - áY YñáY Yñ( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )XY t XY X Y d. 18

3.1.3. Collective excitationmodes

Weuse themean-field equation (4) togetherwith the scaling approach (13) to describe the characteristic size

excitations of the BECwhich arise in thefinal trap at the end of the transport protocol, due to the fast anisotropic

trap decompression over the transport. These excitations can be described as a sumof different collectivemodes

with different amplitudes [54–61].

Thefirst low-lying collective excitationmodes of a BEC in a cigar shape potential arewell known [56]. They

can be easily described if we approximate the atom chip trapping potential at time tf by

w h» +^ ^( ) ( ) ( )V t m x rr,
1

2
, 19f

2 2 2 2

where = +r̂ y z2 2 and w w w= »^ ( ) ( )t ty f z f . The trap aspect ratio is denoted here by h w w= ^( )tx f . For a
lowdegree of excitation, thesemodes form a basis of six possible excitations, as depicted schematically in

figure 3.

Thesemodes are associatedwith specific, characteristic frequencies

w w= ^^ ( )a, 20D

w h w w= =^ ( ) ( )t b, 20D x fx

w h d w= + + ^[ ] ( )c2 3 2 2 , 20Q1
2 1 2

w w= ^ ( )d2 , 20Q2

w h w= + ^[ ] ( )e1 , 20Sc
2 1 2

xy
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w h d w= + - ^[ ] ( )f2 3 2 2 , 20M
2 1 2

where d h h= - +[ ]9 16 164 2 1 2. The dipolemodes D̂ andDx show a classical oscillation of the center ofmass

of the condensate at the trap frequencies w w= ^D̂ and w h w w= =^ ( )tD x fx
, respectively. Thefirst quadrupole

modeQ1 shows a simultaneous expansion of the two strong axes, while theweak axis is compressed. In the

second quadrupolemode, theweak axis does not oscillate and the size oscillations are only present along the two

strong axes. The scissorsmode Scxy shows the effect of the trap rotation about the direction of transport, and the

monopolemodeM, also called breathingmode, shows an alternating compression and expansion of the

condensate in the three directions in phase.

3.2. Reverse engineering protocols

Wepresent here themethod of reverse engineering, used tofind a perturbation-free transport of the center of

mass of the BEC [62, 63]within a STA approach. This reverse engineering protocol works as follows: we set the

classical trajectory of the atoms, za(t), according tofixed boundary conditions, which have to be fulfilled

experimentally to ensure an optimal transport, i.e. initially and finally the center ofmass has to be at rest, at the

position of theminimumof the trap. This leads to the following boundary conditions

= = =( ) ˙ ( ) ( ) ( )z z z z a0 ; 0 0; ¨ 0 0 21a i a a

and

= = =( ) ˙ ( ) ( ) ( )z t z z t z t b; 0; ¨ 0, 21a f f a f a f

where zi and zf denote the initial and final positions, respectively. To account for experimental constraints, we

alsowish the trap-to be at rest initially and finally.We therefore impose

= = =( ) ˙ ( ) ( ) ( )z z z z a0 ; 0 0; ¨ 0 0, 22t i t t

and

= = =( ) ˙ ( ) ( ) ( )z t z z t z t b; 0; ¨ 0. 22t f f t f t f

The conditions on the second derivatives of the positions are imposed to enforce smoothmagnetic field changes.

Inserting these last six constraints inNewton’s equations (11) or (12) shows that they are equivalent to the

additional four constraints

= =( ) ( ) ( )( ) ( )z z a0 0; 0 0 23a a
3 4

and

= =( ) ( ) ( )( ) ( )z t z t b0; 0, 23a f a f
3 4

where the exponent (n) denotes the nth time derivative. These four extra boundary conditions (23a), (23b) can

be seen as additional robustness constraints against oscillations of the center ofmass of the BEC in the final trap.

The simplest polynomial solution to the ten boundary conditions can be fulfilledwith the polynomial function

of order nine

= + - - + - +( ) ( ) [ ] ( )z t z z z u u u u u126 420 540 315 70 , 24a i f i
5 6 7 8 9

where u=u(t) denotes the rescaled time t/tf. The second derivative of the polynomial function (24) presents a

sine-like variation due to the presence of an acceleration stage followed by a deceleration step. This suggests a

non-trivial Ansatz for za(t) in the form

Figure 3. Schematic representation of the excitation dynamics of the condensate for the lowest excitationmodes. From left to right:
the dipole oscillationsDx and D̂ , thefirst quadrupolemodeQ1, the scissorsmode Scxy, the second quadrupolemodeQ2, and the
monopolemodeM.
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whose second derivative presents a similar sine-like shape, andwhere
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is a ‘chirped’ function of time. The constants a and b act here as two additional control parameters,making this

solutionmore powerful than the simple polynomial one. These parameters can be optimized to limit the impact

of the anharmonic term in equation (3) in order to recover a BEC at rest after the transport. Note that, according

to equation (12), to limit the anharmonic effects, one has to fulfill the following criterium

c =
-

"( )
( )

( )
( )t

z t z

L t
t1, . 27

a t

3

The elaborate form (25) of za(t) is used in section 4with a=−1.37 and b=0.780.With such parameters the

maximumvalue reached byχ(t) during the transport is 0.03while it reaches 0.09without any chirp (i.e. for

a=b=0). Once za(t) is defined, one can extract themagnetic biasfieldBbias(t) from equation (11) since the

trap parametersωz(t) and zt are related toBbias(t) unambiguously. The technical procedure used to extract these

parameters, and thusBbias(t), is described in appendix A.

4. Results

The results of the transport protocol realizedwith the atom chip arrangement described in the preceding

sections are presented for a total displacement duration of 75 ms. The consequences of thismanipulation are

evaluated for the position of thewave packet center, denoted as the ‘classical’ degree of freedom, aswell as for the

size dynamics of the BEC.

4.1. Control of the BECposition dynamics

Infigure 4(a), the atomic cloud position is shown during and after the implementation of the STAprotocol in the

cases of a chip trap assumed to be harmonic (thin solid blue line) andmore realistically including the cubic term

of equation (3) (dashed red line). In both cases, the classical solution ofNewton’s equation is indistinguishable

from the average position of thewave packet solution of theGross–Pitaevskii equation. The position of the

atomic cloud during the transport is plotted in the left part of the figure. The dashed vertical line signals the end

Figure 4.BECposition during and after the STA transport ramp. The vertical dashed line signals the end of the transport time and the
beginning of the in-trap oscillations. The upper plot (a)depicts the evolution of the position expectation value za of the BEC as a
function of time in the case of a linear ramp (solid green), the harmonic trap case (thin blue curve) and the casewith a cubic term
(dashed red line). The lower graph (b) shows the deviation from the trap position zt for better visibility of the STA ramp results. The
Gross–Pitaevskii solutions are indicated at chosen times by the empty squares (harmonic case) and the plain circles (cubic term
included) symbols. In the latter case, the non-adiabatic transport is reflected in residual oscillations of thewave packet in thefinal trap.
Their amplitude is, however, remarkably low ( m0.7 m).
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of the displacement and the beginning of a holding period in the final trap. The upper panel (a) of the

graph shows the appropriateness of the transport ramp to guide the atoms overmore than 1.2 mmwith no

noticeable residual center ofmass oscillations. To bemore convinced that the STA rampworks out thanks to the

careful optimization described in the previous section and not because the transport time is long enough to

approach the adiabatic limit, we also plot the classical solution for the same displacement time butwith a linear

ramp (green solid line). The contrast with the optimized solutions is clear, with large residual oscillations with an

amplitude of the order of 100 μmafter tf=75ms. This clearly shows that the chosen ramp duration is far from

the adiabatic time scale, whichwould trivially bring the atoms at rest in the final trap.

The STA rampdevised in this case allows for the position of the atomic cloud to deviate from the trap

position during the transport. This becomes visible infigure 4(b), which shows the offset [za(t)−zt] between the

positions of the BEC and the time-dependent trap. In this graph, theGross–Pitaevskii solutions are indicated at

chosen times by empty black squares (harmonic potential) and by plain red circles (cubic term included). For the

chosen ramp time, themaximumoffset is about 14 μm.This relatively large offset is responsible for limiting the

quality of the transport, as quantified by the amplitude of residual oscillations in the anharmonic case (dashed

red line and circles). Indeed, the harmonic solution found for the BEC trajectory by solving equation (11)

becomes less appropriate themore the atoms explore trap anharmonicities which showupwhen leaving the trap

center. This effect is clearly noticedwhen comparing the holding trap oscillations infigure 4(b) between the

harmonic case (no visible residual oscillations) and the onewith a cubic term, which shows an oscillation

amplitude of about 0.7 μmaround the trap center. It is interesting to note that the chirp introduced in

equation (26) drastically reduces the residual oscillations of the BEC. Indeed, the oscillation amplitudewould

reach approximately 6 μmwith a=b=0. Similarly, with no chirp, the same oscillation amplitude of 0.7 μm

would require a ramp time tf>300ms. The quantummechanical solution found by computing the average

position of the BECwave function rigorously lies on theNewtonian trajectory in both cases. This was predictable

in the harmonic case since it is a consequence of Ehrenfest’s theorem applied to our problem.One can also

notice that the quantummechanical solutions are following here theNewtonian trajectory in the anharmonic

case. This is because the anharmonic effect is small for such a transport time of 75 ms.

Inorder toquantitatively assess themagnitudeof the anharmonic termduring the transport,weplot in

figure 5(a) themaximumoffset to trap center reachedby theBECas a functionof the ramp time tf. The solid curve is

again corresponding to theNewton’s equation solution and the reddots are depicting theGross–Pitaevskii solution.

Figure 5.Offset to adiabaticity and its impact on the transport as a function of ramp times. Themaximumdistance reached by the
atomic cloud relative to the trap center is plotted in (a), the anharmonicity (cubic potential term)magnitude in percents of the
harmonic potential term is depicted in (b) and the consecutive amplitude of the residual oscillations is shown in (c). The longer the
transport duration, themore the system tends to the adiabatic limit, the smaller these oscillations caused by the cubic term. The
Newtonian trajectories (solid blue curves) agree verywell with the full GP solutions (red dots). The black starmarks the ramp time
tf=75ms used in this study.
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As expected, short ramps lead to atomicpositions departing further from the trap center in both the classical and

quantumcase since the adiabaticity criterion is less respected.The larger this spatial offset is, thehigher themagnitude

of the cubic term in equation (3) is, theworse theharmonic trap-based reverse engineering for the chip trap trajectory

is, and the larger thefinal residual oscillations are.This is perfectly visiblewhen analyzingfigure5(b) giving the

magnitudeof the cubic term (in percent) relative to the oneof theharmonic term.As a consequence, the residual

oscillation amplitudes shown infigure 5(c) are larger for shorter ramp times, as expected. In all cases, the quantum

solution is in a good agreementwith the classical one, leading to the conclusion that regarding thepositionof thewave

packets, BECs canherebe safely treated as classical point-like particles. As a result, knowing themaximumoscillation

amplitude tolerated in an experiment, one can implementour treatment tofind the fastest transport ramp.

4.2. Robustness of the STAprotocol

To assess the practical feasibility of the proposed fast BEC transport, it is necessary to estimate the impact of

small experimental imperfections. The present robustness study, therefore, characterizes the residual oscillation

amplitude induced by ramp timing errors, denoted here by δ tf, and offsets δBbias in the time-dependent

magnetic biasfield applied to drive the chip trap.

Considering themore complete case where cubic potential terms are present, we useNewton’s

equations (12), whereωz, zt and L3 are implicit functions ofBbias(t). The average position of the condensate can

bewritten as

= +( ) ( ) ( ) ( )z t z t t , 28a a z
0

where za
0(t) denotes the unperturbed trajectory. A lowest order perturbative treatment applied toNewton’s

equation (12) yields

 w d dw
w

+ - + - + - =( )( ) ( )
( )

( )
( ) ( )t z z z

t

L t
z z¨ 0, 29z z z t z a t

z
a t

2 2 0
2

3

0 2

where dzt and δωz denote first order perturbations to the trap position and to the trap frequency, respectively. In

the following, we solve equation (29) for the harmonic (i.e.  ¥L3 ) and anharmonic trapping cases.

Figure 6 shows the residual oscillation amplitude as a function of the perturbations δBbias in panel (a) and δ tf
in panel (b). This figure confirms the robustness of our transportmethod. Indeed, δBbias=1mGof control

error in the biasfield only leads to an offset of about 0.5 μmin thefinal position of the BEC.Moreover, the same

order of infidelity in the final position of the BEC requires ramp timing errors better than 1 ms, a limit which is

easilymatched experimentally. Both limits are therefore considered to be safely within state-of-the-art

capabilities of standard cold-atom laboratories.

Figure 6.Residual oscillation amplitude of the BEC in thefinal trap as a function of amagnetic field offset (a) or timing errors in the
applied ramp (b). Both harmonic (solid blue curve) and anharmonic (dashed red curve) cases are considered. For typical state-of-the-
art cold-atom experiments, the level of control should be sufficient to ensure errors smaller than 1 μm.The black starsmark the
results obtained for a ramp time tf=75ms taking into account the anharmonicities of the potential in the case where both tf andBbias
are perfectly controlled.
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4.3.Dynamics of the atomic cloud size

In this section, the time-dependent spatial density distribution of the transported BEC is considered.

By applying a similar treatment as reported in [62, 63], it is possible to suppress residual holding trap

oscillations of the wave packet center as well as size excitations after the transport. This is achieved,

however, at the cost of a long transport time. In this article, we would like to highlight the potential of

atom chip-generated STA protocols in themetrological context, i.e. with fast enough transport to allow

for short duty cycles.

The gallery infigure 7 shows typical BECwave packet size oscillations occurring during and after the

transport ramp considered in the last section. An adiabatic or long enough transport would bring the BEC to its

ground state in the final holding trap, reflected in trivialflat lines starting at 75 ms for the three sizes of the left

panel.We observe instead a breathing of thewave packet in the three space directions with the largest amplitude

occurring in theweak frequency axis x. Although the transport is performed in our simulations solely in the

z-direction, we clearly witness a size oscillation of the atomicwave packet in the two other directions due to the

mean-field interactions connecting all spatial directions.

The left panel offigure 7 illustrates the results of simulations based on the scaling approach (harmonic

approximation, solid blue curve) on one hand and on a numerical solution of theGross–Pitaevskii equation in

the harmonic case (black empty squares) on the other. An introduction of the anharmonicities in theGross–

Pitaevskii equation yields the solid red circles and the dashed green line is themost complete case including both,

anharmonicities and trap rotation during the transport.

Figure 7. Size dynamics of the BECwave packet. In the left panels (a)–(c), the standard deviations of the spatial density distributions
are calculated for the time-dependent condensate wave function for the three principal axes. The solid blue curve is the solution of the
scaling approach, the empty black circles are found by solving theGross–Pitaevskii equation in the harmonic case and the red circles
correspond to themore realistic case of the anharmonic trapping potential. The dashed green line is themost complete case including
anharmonicities and trap rotation during the transport. The right column shows the averaged probability densities along x (graph d), y
(graph e) and z (graph f) calculated by solving theGross–Pitaevskii equation for the anharmonic casewith trap rotation, revealing the
collective oscillations connecting the three directions. The dark red regions are associatedwith densitymaxima and the dark blue
regions correspond to low atomic densities. The last plot (f) is shiftedwith respect the trap position zt. The dashed orange lines
show the expected BECposition in the three directions as a function of time. The vertical dashed linesmark the end of the transport
(tf=75ms) and the beginning of the holding period.
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Qualitatively, the four configurations show a similar behavior. The numerical results being similar with and

without the cubic term suggests that our trade-off ramp time versus anharmonicitiesmagnitude, previously

made for the atomic cloud center, is conclusive regarding BEC size dynamics as well. This is one of themain

results of this study since it demonstrates the benign effect of anharmonicities in typical atom chip traps even

with fast STAnon-adiabatic transports.

The right panel offigure 7 is a density plot complementing the left part with the density probability

distribution during the transport and for 150 ms of holding time. The quasi-cylindrical symmetry of the trap is

reflected in the collective excitationmodes observed. Indeed, the strongly trapped directions y and z are subject

to in phase size oscillations. The size along theweak axis x is subject to larger-amplitude size oscillations since the

trapping frequency is weak along this axis. The excitedmodes responsible for these oscillations will be identified

by the quantitative study of next section.

4.4. Collective excitations and optimization of the expansion dynamics

4.4.1. Collective excitations in the holding trap

To gain insight into the impact of the transport speed on the collective excitation of the BEC in the final trap, we

plot infigures 8(a) and (c) the extracted BEC size oscillations resulting from the rampof equation (25) for a total

transport time of 75 ms and 750 ms, respectively. In order to compare to analytical results, we consider a

cylindrical symmetry suggested byfigure 2(b)where νy is chosen to be strictly equal to νz.We plot the sizes

normalized to the ones at the end of the transport in the directions x (solid blue line) and y or z (dashed red line)

as a function of the holding time thold=(t−tf) in thefinal trap.

In both cases, the final holding time is chosen to be 500 ms and one easily notices the complex shape of the

residual size oscillations for the fast ramp compared to the slower one, where a simple periodic evolution of the

size of the BEC is obtained. This difference occurs due to the rapid variation of the trap aspect ratio in the fast

ramp. Indeed, in the transport offigure 8(a), the aspect ratio (ωx/ω⊥) varies by one order ofmagnitude in 10 ms

only, when a similar variation happens in 100 ms for the slow transport offigure 8(c).

Infigures 8(b) and (d)we plot the Fourier transforms of the Thomas–Fermi radius in Log scale, as a function

of the oscillationmode frequency ν for the two casesmentioned previously of tf=75ms and 750 ms. These

graphs reveal themain collectivemodes and their harmonics present in the holding trap after the end of the

transport. The vertical dashed lines in these plots denote the analytically found collective excitation frequencies

according to the treatment described in section 3 and reported in [56]. This treatment is an approximation in the

Figure 8.Upper panel: size excitation dynamics after the transport of the BEC as a function of the holding time thold=(t−tf) in the
final trap. Two realizations of the same ramp are considered: a fast transport with tf=75ms (left column) and a slow transport with
tf=750ms (right column). Lower panel: Fourier transformof the Thomas–Fermi radius of the BEC in Log scale as a function of the
mode frequency ν. For both panels, the solid blue curves are used for theweak axis x and the dashed red ones for the two strong axes y
and z. The vertical dashed lines in (b) and (d) correspond to the three low-lying excitationsmodesQ1,Q2 andM calculated following
the treatment of [56].
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case of small perturbations. It is clearly not valid for the faster transport reported here. It is, nevertheless, a useful

indicator to identify the excitationmodes presenting the largestmagnitude.

The slow ramp is characterized by the presence of a single quadrupolemodeQ1 explaining the simple

periodicity of the size oscillation behavior, with the two strong axes in phase and theweak axis out of phase. Note

that the oscillationmagnitude is, in this case, quite negligible, the size departing only by about 1% from the one

at the end of the transport. The fast transport ramp is, however, exciting several collectivemodes explaining the

more complex size oscillation periodicity and the larger-amplitude variation to about±70% change relative to

thefinal transport size in theweak axis x.

This analysis is useful onmany levels. The predominance of the quadrupoleQ1mode suggests, for example,

the optimizationwe discuss in the next section. By taking advantage of the symmetry of certainmodes, one can

also imagine, in further studies, designing a transport protocol forbidding or enhancing them.

4.4.2. Optimization of the expansion dynamics

The designed quantum states studied in this article would serve as an input of a precision atom interferometry

experiment [64]. In suchmeasurements, it is beneficial toworkwith the slowest cloud expansion possible since

this increases themaximum interferometry time available, with an impact on the density threshold for detection

and hence, on the sensitivity of the atomic sensor [65].Moreover, long free evolution times of several seconds are

beneficial formicro-gravity [39, 66–70] and atomic fountain experiments [4, 6, 71]. To largely reduce the

expansion rate of the atomic samples, theDKC technique [37–40] is commonly applied. It consists in re-

trapping an expanding cloud of atoms for a brief duration in order to align its phase-space density distribution

along the position coordinate axis, thereforeminimizing itsmomentumdistributionwidth in preparation for a

further expansion. This is in analogywith the collimating effect of a lens in optics andDKC is often referred to as

an atomic lens. It is worth noticing that the phase-space density is conserved in such a process which does

therefore not achieve a cooling in the sense of reducing the phase-space density. Thismethodwas successfully

implemented and led to record long observation times of several seconds [40, 72].

If the trap is anisotropic, as the quasi-cylindrical case considered in this paper, the lensing effect is different in

every direction andwould typically be negligible in theweak frequency axis when the two others are well

collimated. To overcome this problem,we take advantage of the collective excitations described in the preceding

section to release the BEC at awell-defined time, soon after amaximum size amplitude of theweak trapping

direction such that the subsequent expansion velocity is naturally reduced. This timing is chosen such that the

kinetic energy associatedwith the natural re-compression of the cloud is quickly balanced by the repulsive

mean-field interaction energy which naturally leads to an expansion of the cloud in this direction.

To illustrate this optimization, we consider in this section the case of a transport from z 0.45 mmi to

z 1.35f mmin 75ms. This transport is realizedwith the chipDC current Iw=5A and a biasmagnetic field

which varies betweenBbias(0)=21.6G (initially) andBbias(tf)=5.9G (at the end of the displacement). Thefinal

trap is characterized by the frequencies νx=12.5 Hz, νy=50 Hz and νz=49.5 Hz. This is realized following

the reverse engineering technique described in section 3. Thefinal trap is used to hold the atoms after the end of

the transport. The result of this optimization is shown infigure 9(a)where the blue curves show the variation of

the size of the released BEC in the x-direction for three different holding times of 29.4, 31.4 and 33.4 ms. A

natural choice is to consider the switch-off time of 31.4 ms leading to a collimated subsequent free expansion.

Indeed, a holding time slightly below leads to an immediate fast increase of the condensate size (see the dashed–

dotted blue line infigure 9(a))while a holding time slightly above leads to a transient compression of the BEC

(see the dashed blue line infigure 9(a)) soon followed by a very fast expansion.

Following the intermediate and optimal choice =t 31.4hold ms, after 100 ms of free expansion themean-

field interaction energy is almost entirely in the formof kinetic energy and an atomic lens (DKCpulse) can be

applied. It is realized by switching-on a cylindrical trap of frequencies νx=1.7 Hz and νy=νz=7.2 Hz forΔ

tlens=4.84ms, createdwith aDC current of intensity Iw=0.1A and amagnetic biasfield ofBbias=0.12G,

leaving the trapminimumat zf=1.35 mm. The collimation effect is dramatic in the y and z-directions (red

dashed line and green dashed–dotted line infigure 9(b)). The expansion observed after the application of the

DKCpulse corresponds to an average speed in the three spatial directions of about 25.3 μm s−1, equivalent to a

temperature of 2.2 pK (see appendix B for details). Figure 9(c)finally shows the robustness of the procedure in

case of timing errors for the holding time thold and for the lens durationΔ tlens.With timing errors as large as

0.5 ms the expansion temperature remains below 20 pK. This demonstrates themarginal influence of relatively

large timing errors for the 3D collimation effect proposed here.

To illustrate the importance of taking advantage of the collective oscillations, we plot in the samefigure the

virtual case of an adiabatic transport in the x-direction (thin dotted blue line). If one applies amere adiabatic

decompression as suggested by this latter curve, the expansion temperaturewould bemuch larger, higher than

550 pK, even if we consider verywell collimated y and z-directions, the x-direction being hardly affected by the
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magnetic lens. It is therefore crucial to control the release timing of the BEC in order to implement low-velocity

expansions.

5. Conclusion and outlook

While BEC creation on atom chipswas demonstratedwith competitive high-flux of 105BEC atoms s−1 as a

source ofmetrology-oriented experiments [8], the necessary displacement of the atoms far from the chip surface

constrained the use of this technique due to the long times needed to bring atoms to desired positionswithout

detrimental center ofmass and size excitations. In this study, we demonstrate a STA set of protocols based on

reverse engineering that solve the speed issue. This proposal goes beyond existentmethods since it includes

characteristicmean-field interactions and their coupled effects in the three spatial dimensions even for a 1D

transport of a degenerate bosonic gas. To illustrate the appropriateness of our theoretical proposal, we

considered the commonly usedZ-chipwire geometry combinedwith a bias homogeneousmagnetic field. The

study is carried out considering atom chip-characteristic cubic anharmonic terms in the rotating trapping

potentials whichmanipulate the atoms. Although the STAprotocols are inspired by harmonic traps and

Newton’s equations, the validity of our recipe is supported by solving a scaling approach andmean-field

equations for interacting BEC ensembles.With the help of analytical and numericalmodels, wewere able to

engineer fast atomic transport ramps in few tens ofms and carry a trade-off study between speed and accepted

residual excitations at the target position imposed by non-ideal realistic trap profiles. This trade-off showed the

benign effect of typical atom chip anharmonicities on the transport speeds. For the sake of experimental

implementation, the efficiency of this proposal was tested against typical deviations in themain control

parameters (magnetic field and timing errors) showing an excellent degree of robustness. Landmark effects of

BECphysics as collective excitationswere considered and analyzed. The results of this latter investigation

revealed the benign character of collective excitations compared to the single particle approach on one hand, and

the potential for optimization one could benefit fromby using these collective excitations on the other.

Figure 9.Transport, holding, release andmagnetic lensing of a BEC to pK expansion velocities. Panel (a): effect of the release timing
from the holding trap in theweak trapping direction x. The choices of 29.4 ms (dashed–dotted blue curve), 31.4 ms (solid blue curve)
or 33.4 ms (dashed blue curve) illustrate different expansion behaviors (diverging, collimated and focused, respectively). This timing
has a little effect on the released size dynamics of the two strong axes y and z, not shownhere for the sake of clarity. Panel (b): full
sequence with transport, holding, release and delta-kick collimation leading to an average, over the three spatial directions, expansion
rate at the pK level. The naturally collimated case of panel (a) is chosen (solid blue line). A free expansion of 100 ms is necessary before
applying theDKCpulse lasting for 4.84 ms in a {1.7, 7.2, 7.2}Hz trap. This pulse has a negligible effect on the x-axis expansion due to
theweak frequency in this direction, but it collimates well the atomic cloud in the y- and z-directions (dashed red line and dashed–
dotted green line). The resulting expansion speeds are 22.2 μm s−1

(5.2 pK), 8.7 μm s−1
(0.8 pK) and 8.2 μm s−1

(0.7 pK) in the x, y
and z-directions, respectively. This amounts to a global expansion temperature of 2.2 pK only.Without the collective excitations (i.e.
for an adiabatic transport in the x-direction, thin blue dotted curve representingDx as a function of time), the collimation
performance ismuchworse, leading to a global expansion temperature of 555 pK. Panel (c): optimal parameters search by scanning
the holding and lens durations. Thewhite starmarks the optimal values leading to an expansion temperature of 2.2 pK shown in (b).
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Combining all the aforementioned tools, this study exhibits the possibility to precisely transport an atom

chip-generated BEC for severalmmwith aμmcontrol level. Delta-kick atom chip collimationwould prepare

this ensemble in a regime of a pK expansion rate thanks to the collective excitations acquired during the

transport ramp. This highly controlled BEC source concept would require only fewhundreds ofms, about

200 ms for the study case of this article, when implemented in a state-of-the-art atom chip BECmachine. These

specificationsmake of the proposed arrangement an exquisite and novel source concept to feed a highly precise

atom interferometer. This would allow to unfold the already promising potential (mobility, autonomy and low

power consumption) of atom chip-based atomic sensors in themetrology field [73]. Further directions would

involve the implementation of optimal control theory tools [22, 23] to consider arbitrary potential profiles and

even fastermanipulations while allowing for larger intermediate excitations. Themethods developed in this

paper apply directly for optimizing themanipulation of cold atomic ensembles in optical dipole traps. The

possibility to generate ‘painted potentials’ [74]with these traps is of a particular interest as a future

complementary control tool in STAprotocols, as discussed explicitly in [75] for combined transport and

expansions of BECs.
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AppendixA. Extracting the trap parameters

One can very accurately fit the variation of the trapping frequencywith ztusing a second order Padé function in

the form

w
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The classical evolution of the particle is set byNewton’s equations, given in equation (11). Using

equations (A.1) and (11), one can infer the evolution of theminimumof the trap zt as a function of za(t) and its

derivatives, by solving the simple second order polynomial equation
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( )z t

z t z t t

z t

¨

2 ¨
, A.3t

a a

a

where the discriminantD( )t is defined by

b g a z b aD = + - - - +( ) ( ) ( )( ) ( )t z z z z z¨ 4 ¨ ¨ . A.4a a a a a
2

One of these two solutions is physically admissible and inserting it in equation (A.1) yields the frequency

variationωz(t). Since the biasfieldBbias can also be easily and accurately fitted by a Padé function of zt, the

necessary variation ofBbias(t) to perform an STA transport is easily extracted.
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Appendix B. Expansion temperature

In analogywith the commondefinition of temperature inMaxwell–Boltzmann statistics [76], we define the

expansion temperature by:

=
D

+
D

+
D
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⎥ ( )k T

m x

t
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t
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3

2 2

d

d

d

d

d

d
, B.1B

2 2 2

and from equation (16)we easily obtain

= + +⎜ ⎟ ⎜ ⎟

⎡
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⎢
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⎛

⎝

⎞

⎠
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⎝
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⎤
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( )k T
m R

t

R

t

R

t21

d

d

d

d

d

d
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x y z
2 2 2

Note also that in 1D the coefficient 3/2 of equation (B.1) is replaced by 1/2 andwe end up in this case

with = ( )k T m R td d 7B
2 .

References

[1] Cornell E A andWiemanCE 2002Rev.Mod. Phys. 74 875

[2] KetterleW2002Rev.Mod. Phys. 74 1131

[3] GaaloulN,Hartwig J, Schubert C, ErmterWandRasel EM2014Atom Interferometry (Proceedings of the International School of Physics

‘Enrico Fermi’) vol 188 (Amsterdam: IOSPress) pp 657–89

[4] Hartwig J, Abend S, Schubert C, Schlippert D, AhlersH, Posso-Trujillo K, GaaloulN, ErtmerWandRasel EM2015New J. Phys. 17

035011

[5] Altschul B et al 2015Adv. Space Res. 55 501

[6] AsenbaumP,Overstreet C, Kovachy T, BrownDD,Hogan JMandKasevichMA2017 Phys. Rev. Lett. 118 183602

[7] vanZoest T et al 2010 Science 328 1540

[8] Rudolph J et al 2015New J. Phys. 17 065001

[9] HänselW, Reichel J, Hommelhoff P andHänsch TW2001Phys. Rev. Lett. 86 608

[10] PritchardM J, ArnoldA S, Cornish S L,HallwoodDW, Pleasant CVS andHughes I G 2006New J. Phys. 8 309

[11] Couvert A, Kawalec T, Reinaudi G andGuéry-OdelinD 2008Europhys. Lett. 83 13001

[12] HänselW,Hommelhoff P,Hänsch TWandReichel J 2001Nature 413 498

[13] Günther A, KemmlerM,Kraft S, Vale C J, ZimmermannC and Fortágh J 2005Phys. Rev.A 71 063619

[14] SchraderD, Kuhr S, AltW,MüllerM,GomerV andMeschedeD 2001Appl. Phys.B 73 819

[15] Kuhr S, AltW, SchraderD,Dotsenko I,Miroshnychenko Y, RosenfeldW,KhudaverdyanM,GomerV, Rauschenbeutel A and

MeschedeD2003Phys. Rev. Lett. 91 213002

[16] Bowler R, Gaebler J, Lin Y, TanTR,HannekeD, Jost J D,Home J P, LeibfriedD andWinelandD J 2012 Phys. Rev. Lett. 109 080502

[17] Walther A, Ziesel F, Ruster T,Dawkins S T,Ott K,HettrichM, Singer K, Schmidt-Kaler F and PoschingerU 2012 Phys. Rev. Lett. 109

080501

[18] Masuda S andNakamuraK 2010Proc. R. Soc.A 466 1135

[19] Torrontegui E, Ibánez S,Martinez-Garaot S,ModugnoM, del CampoA,Guéry-OdelinD, Ruschhaupt A, ChenX andMuga JG 2013

Adv. At.Mol. Opt. Phys. 62 117

[20] AminMHS, Truncik C J S andAverinDV2009Phys. Rev.A 80 022303

[21] RoyR,Condylis P C, PrakashV, SahagunD andHessmoB2017 Sci. Rep. 7 13660

[22] Peirce A P,DahlehMAandRabitzH 1988Phys. Rev.A 37 4950

[23] HohenesterU, Rekdal PK, Borzì A and Schmiedmayer J 2007Phys. Rev.A 75 023602

[24] DemirplakMandRice S A 2003 J. Phys. Chem.A 107 9937

[25] del CampoA2013Phys. Rev. Lett. 111 100502

[26] Torrontegui E, Ibáñez S, ChenX, Ruschhaupt A, Guéry-OdelinD andMuga JG 2011 Phys. Rev.A 83 013415

[27] Masuda S 2012Phys. Rev.A 86 063624

[28] Deffner S, Jarzynski C and del CampoA2014Phys. Rev.X 4 021013

[29] PalmeroM, Torrontegui E, Guéry-OdelinD andMuga JG 2013Phys. Rev.A 88 053423

[30] ZhangQ,ChenX andGuéry-OdelinD2015Phys. Rev.A 92 043410

[31] ZhangQ,Muga JG, Guéry-OdelinD andChenX 2016 J. Phys. B: At.Mol. Opt. Phys. 49 125503

[32] Guéry-OdelinD andMuga JG 2014Phys. Rev.A 90 063425

[33] RohringerW, FischerD, Steiner F,Mazets I E, Schmiedmayer J andTrupkeM2015 Sci. Rep. 5 9820

[34] An S, LvD, del CampoA andKimK2016Nat. Commun. 7 12999

[35] Pitaevskii L 1961 Sov. Phys.—JETP 13 451

[36] Gross E P 1963 J.Math. Phys. 4 195

[37] Chu S, Bjorkholm J E, AshkinA, Gordon J P andHollberg LW1986Opt. Lett. 11 73

[38] AmmannH andChristensenN 1997Phys. Rev. Lett. 78 2088

[39] MüntingaH et al 2013Phys. Rev. Lett. 110 093602

[40] Kovachy T,Hogan JM, Sugarbaker A,Dickerson SM,Donnelly CA,Overstreet C andKasevichMA2015 Phys. Rev. Lett. 114 143004

[41] FolmanR,Krüger P, Schmiedmayer J, Denschlag J andHenkel C 2002Adv. At.Mol. Opt. Phys. 48 263

[42] Fortágh J andZimmermannC 2007Rev.Mod. Phys. 79 235

[43] Reichel J andVuletic V 2011AtomChips (NewYork:Wiley)

[44] Nirrengarten T,Qarry A, RouxC, Emmert A,NoguesG, BruneM, Raimond JMandHaroche S 2006 Phys. Rev. Lett. 97 200405

[45] PadéH1892Ann. Sci. ENS 9 3

[46] Foot C 2005Atomic Physics OxfordMaster Series in Physics (Oxford:OxfordUniversity Press)

[47] PethickC and SmithH2002Bose–Einstein Condensation inDilute Gases (Cambridge: CambridgeUniversity Press)

[48] FeitMD, Fleck J A Jr and Steiger A 1982 J. Comput. Phys. 47 412

16

New J. Phys. 20 (2018) 055002 RCorgier et al

https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.3254/978-1-61499-448-0-657
https://doi.org/10.3254/978-1-61499-448-0-657
https://doi.org/10.3254/978-1-61499-448-0-657
https://doi.org/10.1088/1367-2630/17/3/035011
https://doi.org/10.1088/1367-2630/17/3/035011
https://doi.org/10.1016/j.asr.2014.07.014
https://doi.org/10.1103/PhysRevLett.118.183602
https://doi.org/10.1126/science.1189164
https://doi.org/10.1088/1367-2630/17/6/065001
https://doi.org/10.1103/PhysRevLett.86.608
https://doi.org/10.1088/1367-2630/8/12/309
https://doi.org/10.1209/0295-5075/83/13001
https://doi.org/10.1038/35097032
https://doi.org/10.1103/PhysRevA.71.063619
https://doi.org/10.1007/s003400100722
https://doi.org/10.1103/PhysRevLett.91.213002
https://doi.org/10.1103/PhysRevLett.109.080502
https://doi.org/10.1103/PhysRevLett.109.080501
https://doi.org/10.1103/PhysRevLett.109.080501
https://doi.org/10.1098/rspa.2009.0446
https://doi.org/10.1016/B978-0-12-408090-4.00002-5
https://doi.org/10.1103/PhysRevA.80.022303
https://doi.org/10.1038/s41598-017-13959-z
https://doi.org/10.1103/PhysRevA.37.4950
https://doi.org/10.1103/PhysRevA.75.023602
https://doi.org/10.1021/jp030708a
https://doi.org/10.1103/PhysRevLett.111.100502
https://doi.org/10.1103/PhysRevA.83.013415
https://doi.org/10.1103/PhysRevA.86.063624
https://doi.org/10.1103/PhysRevX.4.021013
https://doi.org/10.1103/PhysRevA.88.053423
https://doi.org/10.1103/PhysRevA.92.043410
https://doi.org/10.1088/0953-4075/49/12/125503
https://doi.org/10.1103/PhysRevA.90.063425
https://doi.org/10.1038/srep09820
https://doi.org/10.1038/ncomms12999
https://doi.org/10.1063/1.1703944
https://doi.org/10.1364/OL.11.000073
https://doi.org/10.1103/PhysRevLett.78.2088
https://doi.org/10.1103/PhysRevLett.110.093602
https://doi.org/10.1103/PhysRevLett.114.143004
https://doi.org/10.1016/S1049-250X(02)80011-8
https://doi.org/10.1103/RevModPhys.79.235
https://doi.org/10.1103/PhysRevLett.97.200405
https://doi.org/10.1016/0021-9991(82)90091-2


[49] Lehtovaara L, Toivanen J and Eloranta J 2007 J. Comput. Phys. 221 148

[50] Takagi S 1991Prog. Theor. Phys. 85 463

[51] GaaloulN, Jaouadi A, Pruvost L, TelminiM andCharronE 2009Eur. Phys. J.D 53 343

[52] MeisterM, Arnold S,Moll D, EckartM,Kajari E, EfremovMA,Walser R and SchleichWP2017Adv. At.Mol. Opt. Phys. 66 375

[53] Ehrenfest P 1927Z. Phys. 45 455

[54] Castin Y andDumR1996Phys. Rev. Lett. 77 5315

[55] KaganY, Surkov E L and ShlyapnikovGV1997Phys. Rev.A 55R18

[56] Stringari S 1996Phys. Rev. Lett. 77 2360

[57] MewesMO,AndrewsMR, vanDrutenN J, KurnDM,DurfeeD S, TownsendCG andKetterleW1996 Phys. Rev. Lett. 77 988

[58] Guéry-OdelinD and Stringari S 1999Phys. Rev. Lett. 83 4452

[59] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999Rev.Mod. Phys. 71 463

[60] Dubessy R, Rossi CD, Badr T, Longchambon L and PerrinH2014New J. Phys. 16 122001

[61] Rossi CD,Dubessy R,Merloti K, deGoër deHerveM, Badr T, Perrin A, Longchambon L and PerrinH2017 J. Phys.: Conf. Ser. 793

012023

[62] Schaff J F, Song XL, Capuzzi P, Vignolo P and Labeyrie G 2011Europhys. Lett. 93 23001

[63] Schaff J F, Capuzzi P, Labeyrie G andVignolo P 2011New J. Phys. 13 113017

[64] TinoG andKasevichM2014Atom Interferometry EBL-Schweitzer (Amsterdam: IOSPress)

[65] BermanP 1997Atom Interferometry (Amsterdam: Elsevier)

[66] Rudolph J et al 2011Microgravity Sci. Technol. 23 287

[67] Geiger R et al 2011Nat. Commun. 2 474

[68] http://dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-20337/#/gallery/25194 (Accessed: 24April, 2018)

[69] AguileraDN et al 2014Class. QuantumGrav. 31 115010

[70] https://coldatomlab.jpl.nasa.gov (Accessed: 24April, 2018)

[71] Zhou L et al 2015Phys. Rev. Lett. 115 013004

[72] Rudolph J 2016Matter-wave optics with Bose–Einstein condensates inmicrogravity PhDThesis Leibniz University ofHanover

[73] Abend S et al 2016Phys. Rev. Lett. 117 203003

[74] HendersonK, RyuC,MacCormickC andBoshierMG2009New J. Phys. 11 043030

[75] CampoAD andBoshierMG2012 Sci. Rep. 2 648

[76] GaaloulN, Suzor-Weiner A, Pruvost L, TelminiM andCharron E 2006Phys. Rev.A 74 023620

17

New J. Phys. 20 (2018) 055002 RCorgier et al

https://doi.org/10.1016/j.jcp.2006.06.006
https://doi.org/10.1143/ptp/85.3.463
https://doi.org/10.1140/epjd/e2009-00130-9
https://doi.org/10.1016/bs.aamop.2017.03.006
https://doi.org/10.1007/BF01329203
https://doi.org/10.1103/PhysRevLett.77.5315
https://doi.org/10.1103/PhysRevA.55.R18
https://doi.org/10.1103/PhysRevLett.77.2360
https://doi.org/10.1103/PhysRevLett.77.988
https://doi.org/10.1103/PhysRevLett.83.4452
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1088/1367-2630/16/12/122001
https://doi.org/10.1088/1742-6596/793/1/012023
https://doi.org/10.1088/1742-6596/793/1/012023
https://doi.org/10.1209/0295-5075/93/23001
https://doi.org/10.1088/1367-2630/13/11/113017
https://doi.org/10.1007/s12217-010-9247-0
https://doi.org/10.1038/ncomms1479
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-20337/#/gallery/25194
https://doi.org/10.1088/0264-9381/31/11/115010
https://coldatomlab.jpl.nasa.gov
https://doi.org/10.1103/PhysRevLett.115.013004
https://doi.org/10.1103/PhysRevLett.117.203003
https://doi.org/10.1088/1367-2630/11/4/043030
https://doi.org/10.1038/srep00648
https://doi.org/10.1103/PhysRevA.74.023620

	1. Introduction
	2. Scheme and atom chip model
	2.1. Scheme
	2.2. Chip model

	3. Theoretical model
	3.1. BEC dynamics
	3.1.1. Mean-field approach
	3.1.2. Scaling laws
	3.1.3. Collective excitation modes

	3.2. Reverse engineering protocols

	4. Results
	4.1. Control of the BEC position dynamics
	4.2. Robustness of the STA protocol
	4.3. Dynamics of the atomic cloud size
	4.4. Collective excitations and optimization of the expansion dynamics
	4.4.1. Collective excitations in the holding trap
	4.4.2. Optimization of the expansion dynamics


	5. Conclusion and outlook
	Acknowledgments
	Appendix A.
	Appendix B.
	References

