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Fast Matched Field Processing 
S. Aravindan, N. Ramachandran, and Prabhakar S. Naidu 

Abstruct- Source localization by matched field processing 
(MFP) requires computation of theoretical field over a dense grid 
of source range and depth in the region where the source is likely 
to be present. The computed field at each grid point is then 
correlated with the observed field. In this paper we show how 
the computational burden can significantly be reduced (20 to 30 
times) by expressing the correlation in terms of discrete Fourier 
transform and using the fast Fourier transform (FFT) algorithm. 
A price that one pays to achieve increased speed is in the 
form of quantization phase errors. It is shown through analysis 
and computer simulation that the quantization errors reduce 
the source peak height, depending upon the size of DFT. The 
proposed fast MFP works for range localization only. However, 
the depth estimation is possible by repeated application of above 
algorithm for different depths. 

I. INTRODUCTION 

MATCHED field processor (MFP) estimates the source A location by correlating the acoustic pressure received by 
an array with the replica field, derived from the knowledge 
of the environment, corresponding to a particular trial source 
location. The unique spatial structure of the field permits the 
localization of the source in range, depth, and bearing. 

MFP was proposed by Bucker [ l ]  and later developed by 
Fizell 121 and Baggeroer et al. [3] for different methods. The 
performance of the MFP with respect to the resolution of 
closely spaced sources was reported by Ozard [4]. Hamson et 
al. [5]  have reported extensive simulation results on the effect 
of system parameters like array length, sensor spacing, etc., 
and environmental parameters like water depth, sound-speed 
profile, and frequency, etc., on the MFP. Analytical results for 
the sensitivity of the MFP to mismatch in system parameters 
and environmental parameters were given by Gingras [6]. 

Though a considerable amount of work has been done to 
study the performance of MFP in different environmental 
conditions, the problem of developing a fast and efficient 
algorithm to implement MFP has not been studied. Note that 
source localization using MFP requires N, x N, searches 
in the parameter space, where N,  and N,  are the number of 
search points in range and depth, respectively. In this paper, 
we present a fast algorithm based on the fast Fourier transform 
(FFT) to implement the MFP. We consider an inhomogeneous 
shallow water channel as shown in Fig. 1. A vertical array 
of sensors (Fig. l(a)) or a horizontal array of sensors (Fig. 
1(b)) is used for source localization. In the proposed algorithm 
each trial source location is not processed separately; instead, 
a group of trial source locations are processed together at 
once. This proposed algorithm can be used for the maximum 
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Fig. 1. Shallow water channel and an array of sensors. Channel character- 
istics: depth = I00  m, linear sound speed variation as shown, hardbottom. 
Array: 25 sensors equispaced at 3 m. Vertical array is located at 6 m from 
the surface. Narrow-band source emitting at 170 Hz. (a) Vertical array. (b) 
Horizontal array. 

likelihood (ML) processor [7] as well as for the Bartlett (Lin- 
ear) processor. But, here only the ML processor is considered. 
Computational speed of the order of 20-30 is predicted. This 
has been verified through numerical simulations. (Our attention 
was drawn by one of the referees to a paper on the use of 
an artificial neural network that speeds MFP, as claimed, by 
several orders of magnitude [8].) 

The paper is organized as follows. A brief summary of ML 
processor is given in Section 11. Our algorithm based on FFT is 
described in Section 111. The theoretical analysis of processing 
speed enhancement supported by numerical simulation results 
are shown in Section IV. In the last section a discussion on 
quantization errors is included. 

11. MAXIMUM LIKELIHOOD METHOD 
The ML method is a high-resolution array processing 

method that adaptively constructs the weighting vector 
consistent with the array geometry and the structure of the 
field across the array. The weighting vector W is chosen such 
that any signal from the trial location (RS 1 AR, 2 )  is passed 
with no distortion while the signals from other locations are 
regarded as interference and suppressed in an optimal manner. 
Mathematically, the following function has to be minimized 

W ~ C W  = min 
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subject to the constraint 

WHP(R + 1 AR, 2)  = 1 

where C is the spectral matrix of the received field vector 
and P(R + 1 AR, 2)  is the normalized replica field vector 
and H stands for Hermitian transpose. The solution to this 
optimization problem is obtained using the Lagrange multiplier 
method [3] and is given by 

C-lP(R + 1 AR, 2)  
PH(R + 1 AR, Z ) C - l P ( R  + 1 AR, 2) '  

W =  

The output of the processor for a trial location ( R  + 1 AR, Z )  
is given by 

SML(R + 1 AR, 2) 

( 1 )  
1 

PH(R + 1 AR, Z)C- lP(R + 1 AR, 2)' 
- - 

The location of the source is given by the maximum of 
SML(R + 1 AR, Z ) ,  called here as parameter spectrum. This 
is also known as ambiguity surface, e.g., in [2]. 

111. FAST MFP ALGORITHM 
In the proposed method, the computation of MFP output 

at different trial locations is modeled as a Fourier transform 
problem and the FFT is used to speed up the processing. This 
method is applicable to both horizontal and vertical arrays. 

The acoustic pressure in a lossless waveguide at a sensor 
i, which is at depth Zi, due to a trial source at location 
( R  + 1 AR, 2) is given by [9, p. 911 

where c k  and are the kth mode horizontal wave number 
and eigenfunction function, respectively, and M stands for 
number of modes. The replica field vector at a vertical array 
due to a source at ( R  + 1 AR, 2)  can be written as 

UE 
d i G - i m  P(R+ 1 AR, 2) = 

where U is a L x M matrix whose (ik)* element is given by 

IC = 1, 2 , . . - , M  

where L is the number of sensors, M is the number of 
propagating modes in the channel, and 

E = [,jEilAR . . . , ~ E M ~ A R  T .  
1 ,  1 

Substituting the above expression for the replica field vector 
in the definition of the ML processor (l), we get 

1 
SML(R + 1 AR, 2)  = - 

E ~ C ' E  (3) 

where C' = UHC-lU and C is the covariance matrix of 
the received field. The above expression gives the processor 

output for a trial location ( R  + 1 AR, 2). Since the strength 
of the normalized replica field vector does not depend on the 
trial source range (the normalization was done by dropping 
d m  from the denominator in (2)), the range factor 
has been removed from the above expression. 

Next we shall show that the evaluation of above expres- 
sion for the trial locations (R,  Z), ( R + A R ,  Z ) , . - - , ( R +  
LR AR, 2)  is equivalent to finding the inverse Fourier trans- 
form of a sequence. Let 

G(R + 1 AR, 2) = EHC'E 1 = 0,1,. * - , LR (4) 

where LR is the number of search points in range. Ap- 
proximating the phase terms in E by integral multiples of 
2n/N,  assuming they are less than 2n, if not subtract integral 
multiples of 2n and rearrange the vector E such that the phase 
terms are in ascending order (corresponding changes will have 
to be done to C' also), we get 

where N ,  equal to 2 raised to an integer power, is a large 
integer greater than LR and integers n; 5 N for all i. 

By introducing zero rows and zero columns into C' 
appropriately,G(R + AR, 2)  can be written as 

G(R + 1 AR, 2) = EHctE = E"DE' (6) 

where 
T 

1 J 
and D is a new N * N matrix obtained from C' by introducing 
zero rows and zero columns so that the hermitian form in (6) 
remains unchanged. Consider an example: 

By actual evaluation of the above hermitian forms it can 
be seen that the value remains independent of the term "a" 
introduced in the vector e if we introduce a zero row and a zero 
column as shown. Like C, the new matrix D is also Hermitian. 
Writing (6) in full form we have 

i=lm=l 

For a Hermitian matrix D, performing the summation along 
the diagonals of the matrix, it can be shown [lo], [ l l ]  that 

k=O I 
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where F(  k )  is expressible as a sum of diagonal elements of D.  
For example, F ( 0 )  is the sum of the main diagonal elements 
divided by two, F (  1) is the sum of the elements of the first 
diagonal above the main diagonal, F ( 2 )  is equal to the sum 
of second main diagonal elements, and so on. 

Thus with a single call to the FFT routine, the present 
algorithm is able to compute the parameter spectrum at all lo- 
cations, namely, (R,  Z ) ,  (R+AR. Z ) , . - . . ( R + L R A R ,  Z ) ,  
for a fixed depth. By changing the value of R and 2, and 
repeatedly applying this algorithm the entire region of interest 
can be scanned. 

The above development is also valid for a horizontal array 
with a small change, namely in the computation of replica 
vector. Let Sa be the distance of ith sensor from the refer- 
ence sensor (sensor (#}l, see Fig. (l(b)). Then the acoustic 
pressure at the ith sensor due to a trial source at a distance 
R + 1 AR from the reference sensor and depth Z is given by 

P(R + 1 AR + S,, 2, 2,) 
M U, (Z )UK ( ZJeJEn (R+lAR+Sz) =E Jck(R + 1 AR + sa) 
Uk(Z)Uk(Z,)eJEk(R+lAR+sz) M 

k=l J ~ , ( R  + 1 AR)  

assuming S,<<(R + 1 AR). The replica field vector at the 
horizontal array can be written as 

UE P ( R +  1 AR, 2) M 
d r n  

where U is a matrix whose ( 2 ,  k)th element is given by 

It may be noted that the above algorithm will work for 
range localization and not for depth localization described in 
[ 121. However, two-dimensional scan is possible by repeated 
application of fast MFP. 

IV. PROCESSING SPEED 
In the proposed fast MFP, computation of the processor 

output for a set of trial source locations is modeled as a 
Fourier transform problem. Hence, we expect an improvement 
in the processing speed inherent in all FFT-based processing 
schemes. The ratio of the required number of complex mul- 
tiplications in the conventional method, i.e., computing the 
replica field for each trial location and then computing the 
MRP output, to that infast MFP is given by 

(9) 
(L2 + 3LM + 2L)LR 

Speed Gain M 
3LM + L M 2  + L2M + X L R  log, X L R  

where z = N / L R  is the ratio of the total number of IDFT 
coefficients computed to the number of IDFT coefficients 
actually used by this algorithm. Here, only the basic operations 
are taken into account. In the numerator, a minimum of 3LM 

0 1 0  2 0  30 4 0  

NUMBER OF MODES 

Fig. 2. Speed gain as a function of number of modes (LR = 1000) for 

field. These estimates are based on [2, equations (3), (51, 
and (22)]. Based on these equations a computer program was 
written for evaluating the parameter spectrum. Some saving 
in the number of operations can be made by exploiting the 
structure of matrix P in (2) as a product of two matrices U and 
E ,  of which U is a function of depth alone (and fixed range); 
hence it need be evaluated only once. In the denominator, 
M 2 L  + L2M to evaluate UHCP1U,  XLR log, X L R  for the 
FFT, and 3LM to form the matrix U .  Since the normalization 
was done by simply dropping the denominator term in (2) no 
computation was involved. 

The expected gain in the processing speed is plotted in Fig. 
(2) as a function of the number of propagating modes, M ,  in 
the channel for different values of ~ ( L R  = 1000). The figure 
shows that the expected gain in the processing speed increases 
with the complexity of the field structure and decreases with 
increasing value of 2. The physical significance of the value 
of x will be made clear in the next section. Note that the 
localization accuracy depends on the number of modes and 
hence, the gain is related to the performance of the MFP. 

A numerical simulation was carried out to confirm the pre- 
dicted improvement in the processing speed. For the purpose 
of simulation we have assumed N = 4096, S N R  = 0 dB, 
LR = 1000, and AR = 10 m. The processing speed gain 
was measured by noting the CPU time required on Microvax 
I1 (work station) by the conventional MFP and that required 
by the fast MFT. The ratio of the CPU times is shown 
in Fig. 3 along with the predicted result. The simulation 
results generally agree with the predicted ones. The observed 
differences are probably due to unaccounted operations in the 
actual simulation. The gain in processing speed is generally 
large when the channel is rich in modes, that is, for large M .  

Note that this algorithm uses only the first LR IDFT 
coefficients out of N computed coefficients. Since L R K N  for 
low quantization error, one can make use of a more efficient 
FFT algorithm [ 131 to further improve upon the gain in the 
processing speed. The algorithm does not require any extra 
storage space since only nonzero elements of D and their 
locations need to be stored. 

channel shown in Fig. 1. 

v. EFFECT OF QUANTIZATION ERROR 

In the development offast  MFP an approximation was made 
in ( 5 ) ,  namely, 

(10) 
27r 
N 

(.iAR= -71; +ti 
to compute the replica field vector, ( L2 + L ) L R  to evaluate the 
hermitian form PHC-'P, and LLR to normalize the replica 
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Fig. 3. Simulation results. 

where IciI  5 7r/N is the quantization error. For an arbitrary 
value of 1 the quantization error may be approximated by 

27r 
N 

( i l A R = - l n i + E i l  Z = O ,  1 ,  ~ , . . . , L R  

(1 1) 

From (11) we note that as 1 increases the quantization 
error also increases. To keep the quantization error small the 
maximum value of 1, namely LR, is chosen to be much smaller 
than N .  The quantization error introduces a random phase in 
the expression for the replica field (2). Since in MFP the replica 
field vector for different trial locations are matched with the 
received field, fast MFP output is expected to be sensitive to 
this quantization error. 

The effect of phase quantization on the fast MFP output 
(rather on the inverse of the output) is derived below. In (6) 
we introduce the phase quantization error as modeled in (1 1) 

(12) 

7r 
XIEiEl  5 I - .  N 

G ( R  + 1 A R ,  Z )  = EHCtE 

where the quantization error in E is explicitly shown, 

I.  j j  = [ei(EllAR-E1l) . . . ,i(EMlAR--dMl) , >  
On expanding the hermitian form we obtain 

i=l i=l  k=l 
i#k 

where ai = e j (c i lAR-Et l ) .  Now we model eil as a ran- 
dom variable which is uniformly distributed over a range, 
f l (7r lN) .  Taking the expected operation on both sides of 
(13) we obtain 

E { G ( R  + 1 AR,  2))  

i f k  
M 

= ( 1 - q 2 ) C C l i + v 2 G ( R + 1 A R ,  Z )  (14) 

where ql = ( s i n ( l ( x / N ) ) / ( l ( r / N ) ) ) .  The first term on the 
right-hand side of (14) is the error term caused by phase 

i=l  
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Fig. 4. Comparison of fast MFP (FMFP) and conventional MFP for two 
different channels. (a) and (b) For hard bottom channel as shown in Fig. 1 .  
(c) and (d) For soft bottom, uniform sound speed (Pekeris) channel. 

quantization. For 1<N, that is, LR<N the error term will 
be very small. 

To study the effect of the quantization error on the fast 
MFP output, the several simulations were performed. Two 
uncorrelated sources (SNR = 0.0 dB) at same depth (50 m) 
but at 6 km and 9 km range, respectively, were assumed. 
Other parameters of the channel are as in Fig. 1. We have 
applied both MFP and fast MFP to same covariance matrix 
(assumed to be error free). Fig. 4(a) shows thefast MFP output 
and Fig. 4(b) shows the MFP output. The source peaks are 
correctly located. The source at 9 km appears to be attenuated 
(about 2 dB) on account of quantization errors. However, the 
sidelobe level is noticeably higher in the fast MFP output. 
We have also considered a Pekeris channel (sound speed in 
water = 1500 m/s and in sediment 1620 m/s and density 
of water = 1 gm/cc and of sediment = 1.77 gm/cc) with 
two sources at depth 50 m and range 6000 m and 9000 m, 
respectively. The fast MFP output is shown in Fig. 4(c) and 
that of MFP in Fig. 4(d). The sources are correctly located but 
the character of the background is now totally different. 

Further simulations were carried out to clearly bring out the 
effects of the quantization error on the source peak height. 
A source was successively placed at (3000, 50), (3020, 50) 
(3040, 50), and so on. The power received at the array was 
normalized for each source position so that the source peak 
is expected to be same for all source locations. The fasf MFP 
was used to compute the source peak and the largest sidelobe 
for each position of the source. The results are shown in Fig. 
5(a) for 0.0-dB SNR and in Fig. 5(b) for 10-dB SNR. We 
note that the source peak height decreased with increasing 
souce range, but the largest sidelobe level remained practically 
unchanged. This pehnomenon was further studied in another 
simulation using the same channel (Fig. I) but with positive 
sound speed gradient, 1500 m/s to 1510 m/s. We have found 
a similar behavior. From this one may conclude that the effect 
of the quantization error is to reduce the source peak level; the 
reduction depends on the value of 1 at the true source position. 

From (14) we note that the inverse of the source peak in 
ML spectrum is linearly dependent on { q } 2 .  The verification 
of this prediction is shown in Fig. 6. A least-squares fit is also 
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Fig. 5. The effect of quantization on the source peak height as a 
function1 AR for the channel shown in Fig. I .  SNR=O.OO dB in (a) and 10 dB 
in (b). The height of the largest sidelobe observed in the rangef2500 m from 
the true source position is found to be unaffected by the quantization error. 

Eta + 
Fig. 6. Inverse of source peak height is plotted against 17’ defined in (14). 
The quantization noise model developed here predicts a linear relation (14) 
between the inverse of source peak and 7’. This prediction is verified in the 
above figure. A least-squares linear fit is also shown in the figure. 

shown. Finally, we observe that the reduction of peak height 
appears to be greater at higher SNR (10 dB) than at lower 
SNR (0.0). Such a dependence of sensitivity on the SNR was 
also noted by Gingras [6] for any mismatch between replica 
field and received field. 

The choice of z(= N I L E )  is based on the amount of 
reduction in the source peak height in relation to sidelobe 
height one is prepared to accept, keeping in mind the fact 
that the speed gain depends on the value of z. In practical 
applications, this algorithm should be applied in two steps. 
First, apply this algorithm for a reasonably large value for 
z to estimate the probable source locations. In the second 
step, apply the algorithm selectively near each probable source 
location, to confirm the presence of a source and to estimate 
its power, taking an appropriate value of R such that the 
value of 1 at each potential source location is so small that 
the algorithm will give a reasonably accurate estimate of the 

VI. CONCLUSION 

A fast algorithm based on FFT has been developed to 
implement the matched field algorithm (MFP) for localization 
(range) of a sound source in a shallow water channel. We have 
shown that the processing speed can be considerably improved 
(20 to 30 times) at the expense of a slight reduction of the 
source peak height. We have demonstrated both theoretically 
and through numerical experiments that the effect of quanti- 
zation is largely to reduce the source peak height, depending 
upon the size of DFT. 
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