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Fast Matching Pursuit with a Multiscale Dictionary
of Gaussian Chirps

Rémi Gribonval

Abstract—We introduce a modified matching pursuitalgorithm, — of a large family (thechirp dictionary D1), which is an ex-
called fast ridge pursuit, to approximate IN-dimensional signals tension of the Gabor multiscale time—frequency dictionBry
with M Gaussian chirps at a computational cos© (M IN) instead [9], [10]. These atoms are characterized by their sealéme

of the expectedO (M N? log IN). At each iteration of the pursuit, £ dchi ter. Their instant ;
the best Gabor atom is first selected, and then, its scale and chirp %' requency, andchirp ratec. Their instantaneous frequency

rate are locally optimized so as to get a “good” chirp atomj.e.,one w(t) = & + ¢(t — w) varies linearly with time.
for which the correlation with the residual is locally maximized. In an orthonormal basis of chirp atoms [12], a given signal can

A ridge theorem of the Gaussian chirp dictionary is proved, from  pe efficiently decomposed into elementary chirps. However, the
which an estimate of the locally optimal scale and chirp is built. elementary atoms are somehow too “rigid” for many applica-

The procedure is restricted to a sub-dictionary of local maxima of fi thei t 1 d 1/62 tind
the Gaussian Gabor dictionary to accelerate the pursuit further, 1ONS, 8S tNEIrparame eS¢ oc 1/s ande o 1/ are notinde-

The efficiency and speed of the method is demonstrated on a soundPendent one from another. On the other hand, the chirplet trans-
signal. form is very redundant and does not have this intrinsic rigidity.

Index Terms—Adaptive signal processing, approximation It. can t.hus providg a large yariety of viewpo!nt; to look at the
methods, chirp modulation, complexity theory, frequency estima- Signal in order to find meaningful structures in it. However, its
tion, redundant systems, signal representations, time—frequency redundancy is also its weakness as it makes the computational
analysis. complexity of the chirplet transform very large.

Bultan [14] suggested the use of the matching pursuit algo-
I. INTRODUCTION rithm of Ma!lat and Zhang [15] to decomposg a signal int.o ele-
mentary chirp atoms. He demonstrated the interest of this tech-
T HERE has been a considerable interest in the last deczf.g@.,e, but its practical use was limited by the large computa-
in developing analysis techniques to decompose nonsigna| complexity?(MN?log N) needed to get ah/-term ap-
tionary signals into elementary components, cadleains that proximation of an/V-sample signal. In order to limit the com-
characterize their salient features. As many signals display b%ﬁ@xity, Bultan suggested to reduce the size of the dictionary by
oscillatory phenomena, which time—frequency methods can fniting the resolution of the chirp rate.
tract, and transients or singularities to which time-scale tech- this work, we show that it is possible to get rid of such a
niques [1]{3] are better adapted [4]-[6], adaptive decompoginitation andget a low complexity?(M N) by modifying the
tions were developed, usimgdundantfamilies of atoms that underlying “matching pursuit” algorithm and usingsaussian
can characterize independently scale and frequency (local BRirp dictionary. To get such a low complexity, we introduce a
sine [7], wavelet packets [8], and Gabor multiscale diCtiO”a@ubstantially) modified pursuit algorithm by using soridge
(9], [10)). techniques and thecal maximaof the Gabor dictionary.

Chirp atomswere introduced to deal with the nonstationary Tpe paper is organized as follows. In the next section, we re-
behavior of the instantaneous frequency of some signals [1{fy the definition of the multiscale time—frequency chirp dic-
Baraniuk and Jones [12] built orthonormal bases and fl’an’l%aryp+ and show the numerical complexity implied by its
of such chirp atoms, whereas Mann and Haykin [13] definggry |arge size. In Section 111, the definition and basic proper-
a “chirplet transform.” Roughly speaking, this transform comyes of the matching pursuit are recalled. Section IV is devoted
pares a signatk(t) with each chirp atom to the detailed study of the ridges of the Gaussian multiscale

Gabor dictionary. We use those results to analyze the selection
Iisuee)t) = ig <t — ”) exp [L (g(t —u) + f(t — u)2)} of th_elocally optimal c_hirp at_omln Section V, we _sumrna_lrize
Vs S 2 the ridge pursuit algorithm with the real-valued chirp dictionary
@ and show how it can be further accelerated with a sub-dictionary
technique. Finally, in Section VI, we analyze the numerical re-
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AMPLITUDE discrete N point signal, one also has to consider the limita-
036 tions of the sampling rate and the signal size. The saale
0.16 can thus only vary between 1 add, which makes a total of
-g-gj: O(log N) scales. At each scale, there &€V ) sampled values
0441 of (u, &) € [0, N — 1] x [-m, w]. Because of the Nyquist condi-

6 02 038 tion, the instantaneous frequency is constraingdito(t —u) €
[, 7], Vte€[u—a’/2,u+a’/2],ie.|ca’ /2 < 7 —]|¢|. For
TIME (SECONDS) givena’ and¢, the chirp rate: can takeO((r — |¢])a’) values.
FREQUENCY (HERTZ) On the average, at sca_cté, it thus.take@(aj ) distinct values.
500 The total number of chirp atoms in the discrete chirp dictionary
400 Dt isthus onthe order oz:;(’_foj\‘ O(N/a?)xO(a?)x O(a?) =
E / O(N?).
200
100
oL , , , . [Il. STANDARD MATCHING PURSUIT WITH Dt
0 02 04 06 038

The matching pursuit [15] is a greedy strategy to decompose
TIME (SECONDS) a signalz into a linear combination of atoms chosen among a

dictionaryD = I'}, i.e., a redundant family of unit
Fig. 1. (Top) Gaussian chirp atom and (bottom) its Wigner—Ville distribution. y {gA” V€ } Y

The energy density is grey-coded from (white) the smallest values to (black) M%Ctors in a Hilbert spack. It iteratively defines amnth-order

largest values. residualR™ 'z (starting withRz = ) in the following way.

1) Computel(R™ 1z, g.)|* forall v € I".
domain. As a resully, . ¢ ., is localized at time, with atem- ~ 2) Selectthe best atom of the dictionary
poral dispersion proportional to its scale The Wigner—Ville _— 9
distribution WV [g(; v ¢.)](t, w) [16], [17] of a chirp atom de- I = arglygg |<R $a9w>| : ®3)
fines a quadratic time—frequency energy distribution. It is lo-
calized around the line of instantaneous frequen@y = ¢ + 3) Compute the new residual by removing the component
o(t —w). Its dispersion is proportional ty s in thew direction. along the selected atom
A Gaussian chier atom is built from the unit Gaussian window
g(t) = #~1/*¢=*/2, Such an atom is displayed on Fig. 1 with R"z =R" ‘'z — (R" ‘2,g,.) 9,.- (4)

its Wigner-Ville distribution.
After M iterations, one gets anl/-term approximation
A. Sampling the Dictionary zy = v — RMz = Zf‘,Ll(Rm*la:,gw)gw. The energy

H H M
The set{g(...c.0), (s, u,£) € Rt x R x R} of chirp atoms is spllt1 amonthhe sjewlecthd compone;nts”ag2 = Ern:l
with chirp ratec = 0 is exactly the multiscale Gabor dictio-[{F" " %> 9..)|"+|[E*«||". The matching pursuitis very sim-

nary [9], [10], [15]. The discrete Gabor dictionaByis the col- ilar to the projection pursuit principle fjiscussed in statistics by
lection of atomgy(, . ¢ o) [denoted, for short, by, ., ¢)] such Huber [20], whose strong convergenie® o || 2"z|| = 0
that (s, u.€) = (a7, nal Au, ka=I AE), j,n, k € Z, whereAu was proved_by Jones [21] whenever the dictionBrys com-
and A¢ are some constants. Watson and Gilholm [18] showdfte. I-€.5paiD) = H. _ _ .

that this sampling of the scale, time, and frequency parameteré‘et us note that the matching pursuit daex provide the

is uniform with respect to the natural Riemannian metric of tHSt @pproximation ta by a linear combination of/ atoms
continuous dictionary induced B, g-,) = 1— (g, » g5 )], from D. Actually, getting such a bes¥/-term approximant is

where (z(£), y()) = f_mx(t)y(t)dt is the standard inner &" NP-hard problem [22]. In finite d|men.S|dM, gt mostNV

5 o0 . . . atoms should be needed to represent a signalit in general,
product onL"(R). The same point of view leads to sampllnqhe matching pursuit goes on forever without ever giving an
the chirp rate ag = la=%Ac, | € Z. The discrete chirp

dictionary D+ is thus the familv of atom such that exact decomposition. This can be fixed with a variant: the or-
y n y ECRIERD thonormal matching pursuit [23]. However, as the orthonormal
(s,u,&,¢) € I't, where

matching pursuit performs a Gram—Schmidt orthonormalization
of the family { g, }m»>1, its computational cost is significantly
higher than that of the “pure” matching pursuit.

With the chirp dictionaryD* and anN-point signal, the
computation of(R™ 'z,g,),¢, € D% can be done with
O(N?%log N) operations, using FFT-based algorithms with
appropriate windows [14], [18]. The search for the “best” atom
(3) costsO(N?), and the update of the residual (4) only costs
O(N); hence, we get the total complexi€y(M N?log N) of
M iterations of pursuit with the chirp dictionary. Such a “brute

The size of the discrete chirp dictionafy* is a function force” chirp matching pursuit is thus limited to the analysis of
of the sampling stepsa, Au, A¢ and Ac. When analyzing a small signals with only a few iterations.

r+= {(aj,najAu, ka I AE la" % Ac), j,n, k1 € Z} . (2

As the set of atoms at a given scagleand chirp rate is a
Weyl-Heisenberg frame, it can only SpBA(R) if Au x A¢ <
27[19]. WhenAuw x A¢ < 2x, D is complete [15], and thus,
Dt O Dis also complete.

B. Size of the Discrete Chirp Dictionary
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IV. RIDGE PURSUIT instantaneous frequeney(t) and chirp-rateJs’(¢). From now

on, we consider the mod&™ 1z (t) = a(t)c'*), where these
quantitiesv(t) = ¢'(¢) andc(t) = ¢’ (t) are easily defined. Our
rtrqsults can be extended to the case of a superposition of finitely
many such continuous signals, provided a sufficient separation
8f their instantaneous frequencies is granted.

The goal of the following ridge theorem (which is proved
in Appendix A) is to show that under certain regularity con-
ditions, the residuaR™ 'z, seen “through” a Gaussian chirp
atomg, . ¢ ), looks like another Gaussian chirp atgm (., €

Because of the large sizeDf", one cannot afford to compute
the correlation(R™ 'z, g(, . ¢ )) of the residual withevery
atom of DT. As a consequence, the choice of the “best” ato
Gt Em ey MUSE bE done in ampproximateway. In other
words, one needs to “guess” where a “good” chirp atom is |
cated, without scanning the whole dictionary.

One can notice that the chirp dictionaByt is only an ex-
tension of the Gabor dictionarf. As D is complete, the set
of inner products Rz, g.), g, € D contains all the in- ' Dl
formation availagle abouR"jzla:.wlt is thus theoretically suf- e, (R lx’cq(s?uyf:clﬁ ~ Au)e'™ )‘<9¥+(u)’9(syu,f,c)>-
ficient to compute these inner products to select the best chjrp! "€orem 1: LetmRm— a(t) = “(t)‘i:fb( ). Suppose that
atom. We will actually show, with Theorem 1, that the behavicua”mA < 00, [[¢7]lse < oo, and [|b ”00 < oo, with
of (R™~1z,g,) in the neighborhood of the best Gabor atorfi(t) = —loga(t). Letu be a time wheré”(u) > 0, and let
contains enough information to select a “locally optimal” chir(s:u.¢.) D& aGaussiarchirp atom. Then
atom. A “good” chirp atony, . ... ¢...c..) iS selected with a

two-step pursuit. First, one selects the best Gabor atom (B, 900 u,e)) =A(u)e’
X (<g'y+(u)a g(s,u,f,c)> + C(Sa U, Sa C))
Gt ur £5) £ arg max |<Rm_1x,g(5 u 5)>|- ) (7)
T 9(s,u,6)ED T

Then, one explores its neighborhoodr to find a good chirp Where
atom

. a(w (V' (w))?
s et A =y fyi7a P [ 20 () ®)
98 Ul ,Cm) — MNE max |<R Z, g(s,ujn,f:n,c)>| 2
oty 0) o V) () (b (u)
©) B =0(w) — ¢(w)es+ 5 (g ©)

by selecting locally optimal chirp rate and scale parametgrs
andc,,. The time and frequency parametefs and¢?, are kept +(u) = 1 _ <D) &' (u) — ¢ (w) V' (u) " (1)
constant. Generally speaking, we could allow for reoptimizg— A\ V(W) V' (u)’ V' (u)’
tion of the time and frequency parameters as well. However, we (10)

chose not to re-estimate them because the re-optimized values
are very close to the initial ones in practice. On the contrary, tgﬁdk(s u, £, ¢)| is bounded by
reoptimized values of,,, andc,, can be substantially different R

from the initial ones. (b//(u))1/431/2
One can see that after selecting the best Gabor atom (5), theax(s, ) Ry
second step (6) implies axhaustive scanningf the neighbor- K303 4 Kg3)1/3
hood of this atom. However, this scanning is still very costly. We <%el/6 + H?”;"’ E(KS 3))2/3/2]>
alu) exp S

replace it by dast estimatiorO(1) of s,,, ande,,, using again
Theorem 1, which helps us extract the information we need from
the local behavior ofs,u, &, ¢) — (R™ 'z, g( uee)) inthe A 3 A 5
neighborhood of the best Gabor atom. We hereby defiidge  With & = 11" llec + |,|,¢m”°° andog = [ [t°g(t)dt.

pursuit whose complexity?(M N log? N) is identical to that  1he hypothesist”(u) > ~ 0 simply corresponds  to

5 . : ;
of the standard matching pursuit with the Gabor dictior@ry a"(u)/a(u) < (a'(u)/a(u))®. For instance, it holds in
Let us outline one step of the ridge pursuit. the neighborhood of smooth local extrema ), where

a’(u)/a(uw) < 0. In particular, this is the case when
1) Select the best Gab_or a@@?ﬂf”%:fﬁnﬁ' . w is the time-location of the best Gabor atom because
2) Use the local behavior @f — [(R™ ™ 2, g5 ur ¢))] N

. : : (s,u,€) — [(R™ 12, g(5 u 6)) | is locally maximum. Moreover,
x 2oy
the neighborhood of?, to estimate the chirp parameterfor such au, ¥/(u) is very small; hencey*(u) is almost

¢ and get a better estimate of the scale paramsgter S NTTIRY / i
3) Compute the new residual using the chirp ator%l/ Vi), u, ¢ (w), ¢ ().

(s u, Eh0m)

(11)

From this theorem, one can observe that if

. ' . o . % 3/2 and |l B! 3/2 12
A. Ridges of the Gaussian Chirp Dictionary 17 oo < 107 Cu)] 167 oo < 167 ) (12)
Discrete signals € R™ are obtained by sampling bandlim-then e,,,...(1/+1/0”(u),u) < 1 so that the best chirp atom at
ited continuous-tim](\g slignalﬁ(t), and the discrete inner prod-time w is close tog.+(,). The locally optimal parametees¢, ¢
ucts (za,va) = > n_o *a[n]ya[n] are close to their contin- can thus be obtained by estimating the indéXu). Let us now

e o}

uous counterparts:,y) = [ x(t)7(t)dt. Chirplets are most study how much information the location of the best Gabor atom
useful for the representation of signals that contain well-defingiles abouty™ (u).
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B. Scale and Frequency of the Best Gabor Atom Moreover, the following bounds hold:
In the following, we suppose that,.,. can be ne- )
glected. As the best Gabor atom (5) is the absolute |¢//(£)|<(an) 17)
maximum of [(R™ 'z, g, .¢)l, it is a local max- - 2
imum along s and & If we additionally suppose that 0> log A”(¢) = — (s},)°. (18)

b'(v) <« 1, then the right-hand side in (7) becomes

a(u)e ™) (expli(¢/ (w)(t — u) + ¢ (W)t — u)?/2)], 9. ue)). ONE can easily estimatglog A)”(§) and ¢”(£) (which

As the dictionary is Gaussian, the inner product thare independent of) using only the local behavior of
appears in this approximant is the Fourier transforéi— (R™ ', 9. . ¢)) around the best Gabor atom. Then,
G(s,0,0,07 () (€ — ¢'(w)) of a Gaussian chirp atom, whose(17) and (18) are used testthe validity of the approximation
analytic expression is known [24]. For a given its max- €max < 1. Whenever the test is negative, the ridge pursuit is
imum (or ridge) alongs and¢ is located at = ¢/(u), and conservative. It does not try to find a better chirp atom than

s = 1/+/|¢"(w)]. Thus, one has the best Gabor atom but, instead, keeps it as its “good chirp
atom” and steps forward to the next iteration. In the case of a
*xf(ur,) ands?, & 1 (13) positive test, we wilassumehat the model is valid. Thanks to

VI (us)] (15) and (16), the estimates @bg A)”’(¢) and®” (&) provide

estimates oft” (wx,) andb”(wy,), i.e., an estimate of ™ (w).

m m

Bounds on the error of these estimates can be found in [25]7His estimate is now obtained without costly “scanning.”

windowed Fourier transform give the instantaneous frequengyowing how to efficiently estimat@og A)” (£) and®”(¢).
[17], [26]; this result shows that the ridges of the Gabor dictio-

nary additionally provide the instantaneous chirp rate. Now,['g Numerical Estimation by Linear Interpolation
is sufficient that o ] _
In order to get as local an estimation as possible, we estimate

15" [|oe < |¢" (w)]*? and||¢"” || oo < |¢" (w)[>/? (14) (log A)”(£) and ”(¢) through a parabolic interpolation. We
use three Gaussian Gabor atomIS= g(s+ s s +ene/ss )

t0 getemax(1/v/¢”(u),u) < 1 and control the location (13) € € {—1,0,+1}, of the discrete Gabor dictiona#y, and their
of the best Gabor atom, which gives information on the localipner productg R™ 'z, g.) = A.c¢’®. These inner products
optimal chirp ratéc,,,| = |¢"(uZ,)| = (s%,)~2. Unfortunately, were already computed for the selection of the best Gabor atom.
the estimates,, = +(s%,)2 is far from the ideal one. First, The numerical parabolic interpolation tifg A. (resp.®.),
one has to determine its sign by computing the two inner proi@king into account the frequency bin si2&€/s?, , leads to the
UCES(R™ 1, g(ss ur er 4(s2 )-2)) bUL, in addition, mainly be- estimates
cause it is a very poor estimate when, as usual, the scal@’

is coarsely quantized. Thus, this estimate is not sufficient to y - s sk,
avoid the costlyO(V?) “scanning” of the possible chirp atoms (8 = ((I)—l — 2%+ (1)1) AL (19)
9(s,ux &x c)- A A X\ 2
(log A)"(€) mlog 22t ((Zm ) (20)
. . . A2 A£
C. Fast Local Estimation of the Best Chirp Atom 0

i m—1 H -

The local behavior of & — (R™™2,06; u:,0) N As ¢, is defined modulo2r, the estimate of®”(¢) is
t_he neighborhood of¢7, conveys F““Ch more mforma-only defined modulo 27 (s%, /A&)?. However, thanks to
tlr(])nlabo_ut th‘i Io::all)*/ op]EImr?l Eh"p Gat%n%ﬂu) thdan (17), its only admissible value(s) lie within the interval
T 3 ogat!?n (Sma*“mvfm) 0 tle hGSt fa orTﬁ\tom Ois'[—(s,*n)Q/z+(s,*n)2/2]. In order to eliminate the ambiguity,
r;znefl, i cmax(sm,umi <<C » then from eorer:n " it is necessary and sufficient to impose that the length of
{ T Gp ) R OlGyru ) Gr un, ) WNETE ol is strictly less tha@r (s, /A¢)?, i.e., to choose
C ¢ C is some constant independent &riJsing the analytic A¢ < /27 in the definition of D and D+ (see (2)). Thuss,,
expression of the inner product between two Gaussian ch de,, are estimated at a co€(1) from the inner produéts
atoms [24], one can get the following spectral estimation [27§‘Rm"fx g.)

[28] of the parameters af,+ (.,), which is proved in [25]. ' e

Proposition 1: If eya(sh,,uf,) < 1, then (R~
Gisr ur ) = Ac'®, wheref — log A(¢) and¢ — ®(¢) are V. FAST RIDGE PURSUIT
second-order polynomials fiwith For the analysis of real-valued signal, we do not make use
3" () of complex-valued atoms (1) but of real-valued ones. They are
¢ () = — (15) defined [14], [15] as
) =~ og APQ7 + @ Q)P
t—u
and 9(57“’7576745) :K(s7“'7f7cz¢)g < S )
1 —log A”(¢)

V) Gy T ey e 00 o (&t =)+ 50— 9) @D

m
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with some normalizing constant{(, ,¢.q). Obviously, 9B
9(s,uc.c,0) lies in the two-dimensional subspacdé. . .. g
= Spar{g(s,u,f,c)vg(s,u,f,c)}! and -101
-151
R0 g = Pone g B el @) 22

. 1000 2000 3000 4000
where P, denotes the orthogonal projector onto the sub-

spaceV. We show in Appendix B that the right-hand side of m
(22), as well as the corresponding optimal phase v, &, ¢)

= argmaxe |<Rm_1x,g(5 wé e, can be computed i9(1)  Fig. 2. Decay (in decibels) of the relative enety™ || / ||«||* of the
f m—1 T residual with the number: of iterations. Plain: Gabor matching pursuit. Bold:
rom (R™ 71, Gs ue,c))-

/ . . . ) Fast ridge pursuit with chirp dictionary. One needs fewer chirp atoms than
Let us now summarize the ridge pursuit algorithm with reakabor atoms to get the same approximation quality.

valued Gaussian chirp atoms and compute its numerical com-

plexity. Each iteration is decomposed into a few steps. . . .
matching pursuit was not likely to decompose sparsely. The

: . . signal duration was approximately5 seconds at a sampling
A. Ridge Pursuit Algorithm rate of 11,025 Hertz; therefore, the signal length was about
1) Compute{R™ 'z, g, .¢)) for each complex Gaussian y ~ 30000 samples. A Gabor matching pursuit and a fast ridge
Gabor ator{O(N log” N)]. pursuit were computed with/ = 5000 iterations.
2) Compute [|Py,, , ,R™ x|, and select the location One needs first to realize how high the complexity of
(Sps U, &) Of the best real-valued Gaussian Gabog “prute force” matching pursuit with the chirp dictio-

atom[O(Nlog N)]. ~ nary [14] would have been. With an (optimistic) average
3) Estimate the locally optimal parametes ande,, with  of 100 MFlops to 1 GFlops for todays computers, the
a parabolic interpolatiofO(1)]. 5000 x (30000)21og, 30000 ~ 6 x 10'3 operations would

4) Compute (R™7'%,g(,,, ur, &1 ) @Nd  determine have requireds x 10% to 6 x 10° s of computation, that is
the best real-valued chirp atoms,, uz, ¢1,.c.6..) N to say between 16 and 1600 h of computation. This estimate
Vismit, x ey [OWV)] - does not take into account the limitations of the memory; at

5) Update the residual](V)]. each step, the storage in the computer memoryO¢iV?)

The overall complexity of one iteration of real-valuednner products as floating-point numbers (four bytes each)
ridge pursuit isO(Nlog? N); hence, we have the total costwould require at least30000)? x 4 bytes (that is to say about
O(MNlog® N) of M iterations. An accelerating technique3.6 Gbytes). Without a super computer, this implies using
was introduced by Bergeaud and Mallat [29], [30] for thextensively the hard-drive for caching purposes, and this makes
matching pursuit analysis of images. It can be used to get a fds# computations much slower. One could indeed expect a
ridge pursuit algorithm. The overall algorithm is described ibouple of months of computations, which should be compared
full detail in [25], and here, we give its main features. We usgith the 2.5 s duration of the signal. On the other hand, the fast
local maximaof the Gabor dictionary>, that is, Gabor atoms ridge pursuit was run on a consumer PC running at 300 MHz
9(s,u,e), Where eithen — [(z,9¢;.u.6))| O § = [{T,90:,ue))| and equipped with 128 Mbytes of memory. It only took 200 s
has a local maximum. A numbé is fixed arbitrarily, and the to get the result.

following steps are done iteratively. Fig. 2 displays the decrease, in decibels, of the energy of the
residual. It is faster with the fast ridge pursuit than with the
B. Fast Ridge Pursuit Algorithm standard Gabor matching pursuit. This is not a trivial fact de-
1) Build a subdictionar{p,,, of P local maxima of the Gabor spite the chirp dictionary being more redundant than the Gabor
dictionary D. dictionary. Actually, it is obvious that for a given sparseness (a

2) For each atom ifD,,, use the fast local estimation pro-number}/ of atoms), the chirp dictionary should give a better

cedure to get a good chirp atom. The collection of thegPProximation qualityf we have at hand an algorithm to find
chirp atoms is a subdictiona®- of the chirp dictionary the besti/-atom approximationHowever, the pursuit strategy
D+, ’ that we are following is suboptimal, and there are examples [34]

3) Run a “normal” pursuit D7 until it is empty. where choosing “better” atoms in a more redundant dictionary
at each step yields worse approximations. It is thus important to
observe that both Bultan’s algorithm [14] and our fast ridge pur-
suit with chirp atomslo provide a better approximation quality
for a given sparseness than the matching pursuit with Gabor
atoms. However, the price paid for this is the increased number
The ridge pursuit and fast ridge pursuit algorithms were inof bits needed to describe the location,, wm, &m, ¢m) Of the

plemented using the matching pursuit package of the LastWatems. This is analogous to the situation where a codebook size
program [31]. We used them to analyze a sound recording witha vector quantizer is increased to allow better approximation;
sung voice and orchestra [32]. It is well known that a charaa-clever encoding of the location of the vectors used in a given
teristic of the sung voice is its vibrato [33], which the Gaboexpansion is needed before using it for signal compression.

By choosinglog? N < P < N, the overall complexity
becomesO(M N) [25].

VI. APPLICATIONS
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FREQUENCY (HERTZ) VIl. COMMENTS
— - "l We checked numerically that the fast estimate given by
ahic] | 1" "% : f Propc_)smop 1 fails fpr pon-Gaussmn windows (even fqr
| ' -_ B-spline windows, which in some sense are close to Gaussian
36404 | windows). Even if an analogy of Theorem 1 can be derived for
: 1 am . i:m im such windows, the lack of analytic tools makes it difficult to
derive an analogy of the fast and simple estimation procedure. It
TIME (SECONDS]  may be possible, however, to get fast estimates usigssion
FREQUENCY (HERTZ) [35] instead of linear interpolation to fit the local behavior of
= = the spectrum around the best Gabor atom.
440 = ‘l In this paper, we do not cover the theoretical question of the
1E40 ,.-"'r \/ convergence of the ridge pursuit. One should notice that the con-
t-mmi vergence is, in general, not guaranteed by the fact thastefs
| o T i o wise more greedfthe chosen chirp atom grabs more energy than
212 132 2.3 242 the best Gabor atom) than the Gabor matching pursuit.

TIME (SECONDS)
VIIl. CONCLUSION

Fig. 3. Time-frequency distributions of a sound recording of size . . . . .
N & 30000 (total duration 2.5 s, sampling rate 11025 Hertz). Top: with 1he fast ridge pursuit algorithm iteratively decomposes an

M = 5000 iterations of Gabor matching pursuit. Bottom: With = 5000 N-sample acoustic signal inth/ Gaussian chirp atoms with

iterations of fast ridge pursuit. The energy density is grey-coded relatively ; ; -
its largest value from (white}-45 dB to (black)0 dB . The display is focused éPcomputanonaI COQ(MN)' Thanks to its low computational

on a time—frequency region wherein the vibrato occurs visibly, whereas tﬁQmPIeXitYa the sparse StrUCtU_red repre'sentation of 'Signajs thatit
whole time—frequency distribution would be for < ¢ < 2.5 second and provides can become the basis for the implementation of a large
0 < w/2% < 5500 Hertz. Vertical lines (e.g., at time = 2.1) correspond Vv iety of new processing tools
to short scale atoms that represent transients. Horizontal lines, associated W?tg . . . T . .
large scale constant frequency atoms, represent the resonance of the not es_'des 'ts_ potential use er Slgnal compression, one (_)f its
of the instruments of the orchestra. The vibrato is decomposed into sevarabst interesting features is its ability to decompose a signal
constant frequency atoms by the Gabor matching pursuit. On the contrary. figg superimposed structures with different scale, frequency,
fast ridge pursuit decomposes it into only a few chirp atoms (see text). . .. . T !
and chirp characteristics. Thanks to this decomposition prop-
o ) ~_erty, it is possible to process separately the different parts
One can compare, in Fig. 3, the time—frequency distributiogs g transients and steady parts) of a signal. Source sepa-
[14], [15] associated with the Gabor matching pursuit and fagition can be achieved for sounds that have very different
ridge pursuit decompositions of the signal. The display COIM&hirp behavior,” such as a singer (with a strong vibrato)

sponds to a weighted linear combination

Eyle](t,w) = D> {R™ 2, gn) PWV[gn](t w)

(23)

and an orchestra. Additionally, considering time-stretching
or pitch-shifting applications, it is possible to keep the fine
structure of transients while processing the harmonic part of a
sound. Because they respect the structure of the transients and

m=1

as the chirp parameter enables them to fit more finely the phase

of the Wigner—Ville distribution of the atoms in the decomposif the signal, such pitch shifting schemes will generate less
tion “pipe noise” than standard windowed Fourier transform-based
M technigues. Moreover, their implementation using the chirplet

x(t) = Z (R™ Y2, g gm (t) + RM (1), (24) decomposition is straightforward.

m=1

APPENDIX A

It is focused on a time—frequency area wherein the vibrato oc-
PROOF OF THERIDGE THEOREM

curs. The Gabor matching pursuit needs several constant-fre-

quency atoms, located on the “path” of the instantaneous fre4n this appendix, we give a proof of Theorem 1. Building
quency, to decompose thibrato. On the contrary, the fastridge Taylor expansions ofb(t) and ¢(¢) near ¢ = u, one
pursuit decomposes itinto only a few chirp atoms, whose instagan find 6, (¢).6,(t) € [u,u + t] such thata(u + ¢)
taneous frequency is alternatively increasing and decreasing.q(v) exp[—b'(u)t — (b'(w)/2)t2 — (V" (6:(t))/6)t*], and
Actually, both algorithms iterate 5000 times; at first, both als(, 4 ) = ¢(u) + ¢/ (w)t + (¢ (w)/2)t2 + (¢ (62(t)/6)t3.
gorithms select atoms that fit signal structures, and the enegy changing variables and using the definition of the Gaussian
of the residual decreases quite qucikly (see Fig. 2); then, @dow g(t) = = /472, we eXPresss, g(s u.¢.c)) S

the residual starts behaving like a random noise [22] with no
emerging structure, the chosen atoms no longer reflect signal
structures but simply decrease the energy of the residual as wel
as they can. What we observe is that the Gabor matching pufd”’/)
suit needs more atoms to represent signal structures than the fast
ridge pursuit.

(b/)2 +oo
172 &P { 207 } /_oo 9157w 191,0.0) ()
t3 ,
X G(s,0,6—¢',0—g) (t) €xp [g(—bm(ﬂ) +i¢"(62)) ] dt.

Iae
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Note that in this proof, we do not express the dependency Kfiowing thatvz € C, |¢* — 1] < el*l — 1 < |z|el*!, we can

a7¢7¢/7"'

rewritten as

<g(1/\/ﬁ7_b//b”7070) 3 g(s,O,f—é’,c—¢”)> + 6(37 u, 57 C) (25)

where the error term(s, u, £, ¢) is

+oo
/_ 9(1/ V07— /6/7),0,0) (B)9(5,0,6—o",e—s) (1)

x <exp [%(-b’”(el) + id)”’(%))} - 1) dt.

Let us now bound the error term, again using the expression of
the Gaussian window and splitting the integral with a parameter

n.

(b//)1/4
rl/241/2

oo t2 B I 2
<f e ‘ﬁ‘?(”ﬁ)
3
(1" (6) +z¢'"<92>>} - 1\ d

b// 1/4
nif2si/2 /|f|>n9 /|f|<n9

The first part of the split integral is bounded by

/ —(/257)],
|t|>ns

3
X exp | —b't — EtQ - %b”/(&)}

le(s,u,€,0) <

X

x|

= ()7 /26")

X exp it—d)’”(ﬁg)}

B! B 2
_ / =225 | AU )y oy
|t]|>ns CL(U)
t3
X exp [igff)m(%)}
dt

b// B 2
— exp 5 <t+ b”)

S/ e (t7/257) <||a||oo —|—1>d
|t|>ns |CL(U,)|

2||a|oo

< llall o= (7/25%) gy
@) Jis> s

2[|aflo 2

a(w)| 7 |a(u)| 7

b

<s

We denoteK = ||b""']|oo

2~y < Gllalloo 4~ y2).

on w, nor that ofé;, 6, on¢. The integral can be bound the second part with

2 2 t 3
[ I o))+ 1070201
[tI<ns

X exp P . (™ (6] + |¢"(82)]) | dt

o e e
- 6
773 3 17 "
X exp[—— (11" lloo + 1" [lsc)]s% 3.

+ [|¢" ||l and get, from these two
bounds, that for alh > 0

(b//)1/481/2
le(s,u,€,0) < Tz

<||a||oo4e—<"2/2>
X

a(u) 7

Ks?o2 -3 3
+ 36 93 C(ISS /6)n ) ) (26)

Choosing;? = K152 gives (11). To conclude the proof, we
rewrite the first term of (25) as

v v
exp | =i iy <b_>

X <g(1/\/b7,u—(b’/b”),q&’—qb”(b’/b”),qb”)79(5:'u:fzc)> :

APPENDIX B
REAL-VALUED ATOMS

Let g, = (9v — (9+:57)97)/(1 _K%’Q’YHQ) andV, =
Sparg,, g). One can check thdly,, g } is the dual basis of
{9~,G+}. Thus, for allz € H

Py @ = (2, 9y} gy + (2, 97) 5
2(J (@) P - Ry 7) (@.9)")
B 1—] <mv 9”/) |2

12, |

where R(z) denotes the real part of € C. For z
real-valued andy = (s,u,&,c¢), the first equality can be
rewritten Py, T = (T, 9(su6e0)) 95 u 6,00 With
(o cr) = 1Pzl ande® = (z,,)/|(z,4)]. The
value(ge ue o) g(57u7576)> can be computed up to an arbitrary
precision with a cost)(1) thanks to an analytic expression
[14], [24]. Once(z, g~} is known, so is its complex conjugate
(7, g7); thus,¢(s, u, &, ¢) and(z, gs,u.¢.c,4)) Can be computed
in O(1).
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numerical computations and figures were obtained using Last21]
Wave [31], a freely available software under the GPL license.
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