
Fast maximum a posteriori inference in Monte Carlo state spaces

Mike Klaas Dustin Lang Nando de Freitas

Computer Science Department
University of British Columbia
{klaas,dalang,nando}@cs.ubc.ca

Abstract

Many important algorithms for statistical in-
ference can be expressed as a weighted max-
kernel search problem. This is the case
with the Viterbi algorithm for HMMs, mes-
sage construction in maximum a posteriori

BP (max-BP), as well as certain particle-
smoothing algorithms. Previous work has
focused on reducing the cost of this proce-
dure in discrete regular grids [4]. Monte-
Carlo state spaces, which are vital for high-
dimensional inference, cannot be handled by
these techniques. We present a novel dual-
tree based algorithm that is appliable to a
wide range of kernels and shows substantial
performance gains over näıve computation.

Introduction

Max-kernel problems arise at the heart of many pow-
erful and widely-used statistical inference algorithms.
Examples include the message computation in max
belief propagation, sequence recursion in the Viterbi
algorithm, and classes of maximum a posteriori se-
quence estimation algorithms based on particle meth-
ods. This operation is expensive—requiringO(N2) op-
erations, where N is the size of the state space of a ran-
dom variable. As a result, applications with large state
spaces either must artificially coarsen the state space
or simply choose to use less powerful inference tech-
niques. Recent work by Felzenszwalb et al. addresses
the computational burden when the state space can be
embedded in a regular discrete grid [4, 5]. This tech-
nique, based on the distance transform, is extremely
powerful in its domain, but has two major limitations:

• It is limited to kernels of the form K(x, y) =
exp

{
1

σ2 ‖x− y‖
}

or exp
{

1
σ2 ‖x− y‖2

}

• It is only applicable to state spaces embedded in
a regular grid of parameters.

Monte Carlo methods, such as MCMC and particle
filters, have been shown to effectively adapt to ex-
amine interesting regions of the state space, and can
achieve better results than regular discretizations us-
ing fewer support points [1, 13]. Problems requir-
ing high-dimensional inference are ubiquitous in ma-
chine learning, and are best attacked with Monte Carlo
techniques as regular discretizations grow exponen-
tially and quickly become intractable. In this pa-
per, we address the need of fast algorithms for com-
puting weighted max-kernel on Monte Carlo grids by
demonstrating how the quadratic cost can be reduced
to N logN by adopting and extending powerful algo-
rithms proposed for N -body simulation [7, 8].1

In particular, we develop a new efficient dual-tree re-
cursion to exactly solve the max-kernel problem. We
derive the method in the context of kernels parameter-
ized by a distance function,2 which represent a broad
class of frequently used kernel functions, including
Gaussians, Epanechnikov, spherical, and linear ker-
nels, as well as thresholded versions of the same. Our
method can also be used to accelerate other spatial-
based kernels (such as K(x, y) = x · y), and problems
that have multiple kernels over different regions of the
state space, but we restrict our attention to the simpler
and more common case in this paper.

Our empirical results show that our algorithm provides
a speedup of several orders of magnitude over the näıve
method, becoming more efficient after as little as 10ms
of compute time. The dual-tree algorithm still com-
pares favorably to näıve computation on discrete grids
where the distance transform can be applied, but we

1We note that there are techniques for dealing with
KDE on Monte Carlo grids (fast Gauss Transform), but
these are inapplicable in the max-kernel setting.

2By distance functions we mean functions that are sim-
ilar to a metric but need not obey the triangle inequality.

find that the latter algorithm is superior in this case.

The performance of algorithms based on dual-tree re-
cursion as N grows is relatively well-understood; see
Gray and Moore [8] and Ihler [9]. However, we have
found that the performance of this family of techniques
also depends heavily on other variables, such as the
data distribution, the dimensionality of the problem,
and the choice of spatial index and kernel. We present
several experiments to investigate these effects, and
we believe that the conclusions can be generalized to
other pruning-based dual-tree algorithms.

1 Problem setting

The algorithms we discuss in this paper are designed
to solve the following problem: We are given points
(which we will call particles) X , {xj} and Y , {yi},
and weights {wj} corresponding to the X particles.
The source (X) particles exert an influence on the tar-
get (Y) particles given by infl(xj , yi) = wjK(xj , yi),
where K(·) is an affinity kernel. We wish to compute,
for each y, the maximum influence attained and the x
particle corresponding to it,3 ie.

fi =
N

max
j=1

wjK(yi, xj) i = 1, 2, . . . ,M (1)

This procedure’s O(MN) cost dominates the runtime
of many important algorithms such as max-BP and
MAP sequence estimation, which limits their use to
settings of small order (correponding to a coarse dis-
cretization of a continuous state space or choosing a
small number of particles).

In the following section, we detail how the max-kernel
algorithm arises in common inference methods.

1.1 Maximum a posteriori belief propagation

Given a graphical model with latent variables u1:n
4,

observations z1:n, and potentials ψkl, φk, a joint prob-
ability distribution is admitted:

p(u1:n, z1:n) =
1

Z

∏

k,l

ψkl(uk,ul)
∏

k

φk(uk, zk)

We are interested in computing the maximum a poste-

riori estimate, uMAP
1:n = arg maxu1:n

p(u1:n|z1:n). We
can use the standard max-product belief propagation
equations for message passing and marginal (belief)

3We will subsequently refer to this procedure as
weighted maximum-kernel, or simply max-kernel.

4In describing these algorithms, we use u and z rather
than the traditional x and y to highlight the distinction
between the variables in the inference algorithms and the
variables in the max-kernel computation.

computation [12]. The message from node l to node k
is given by:

mlk(uki) =
|ul|
max
j=1

φ(ulj , zl)ψ(uki, ulj)
∏

r∈N (l)−k

mrl(ulj)

(2)
where N (l)−k denotes the neighbours of node l exclud-
ing k. We can re-write equation (2) as a max-kernel
problem by setting

{xj} = {ulj},

{yi} = {uki},

wj = φ(ulj , zl)
∏

r∈N (l)−k

mrl(ulj),

K(yi, xj) = ψ(uki, ulj)

1.2 MAP sequence estimation using particle

methods

Consider the Markovian time-series model with latent
state ut and observations zt given by

ut ∼ p(ut|ut−1)

zt ∼ p(zt|ut)

In standard particle filtering [3], we draw a

set of samples
{
u

(i)
1:n

}N

i=1
using sequential impor-

tance sampling in order to approximate the fil-
tering distribution with a Monte Carlo estimator
p̂(un|z1:n) = 1

N

∑N

i=1 δu(i)
n

(dun), where δ
u

(i)
n

(dun) de-

notes the delta Dirac function. This is typically done
in a chain (or tree) with n nodes, at a cost of O(nN).
However, our goal is to obtain an estimate of the max-
imum a posteriori sequence

uMAP
1:n (n) , arg max

u1:n

p(u1:n|z1:n). (3)

As introduced by Godsill et al. in [6], equation (3) can
be estimated by performing a Viterbi-like algorithm
on the Monte Carlo state space induced by the filtered
particles at time t. At the heart of this algorithm lies
the following recursion:

δk(j) = log p
(
zk|u

(j)
k

)

+ max
i

[
δk−1(i) + log p

(
u

(j)
k |u

(i)
k

)]
(4)

This must be computed for each particle, thus incur-
ring a O(N2) cost. It is straightforward to show that
the maximization in (4) is equivalent to the max-kernel
problem in equation (1) transformed to log space.

Figure 1: Example of pruning the max-kernel algo-
rithm (for a single y particle). The candidate (dark)
and non-candidate (light) nodes are shown. In the
bottom-right plot, a close-up of the six final candidate
nodes is shown (dashed). The single box whose par-
ticles are examined is shown in black. The subset of
the particles that are examined individually is shown
in black. There were 2000 particles in X, of which six
nodes (containing 94 particles total) were candidate
leaf nodes. Of these, only six particles from the first
node were examined individually.

2 Fast methods for computing

max-kernel

2.1 The distance transform

In [4], Felzenszwalb and Huttenlocher derive a fast
algorithm for a class of max-kernel problems by ob-
serving that the maximization in equation (1) is solv-
able by applying the distance transform. This achieves
O(N) cost and is very efficient in practice. Addition-
ally, the problem is separable in dimensionality, so a
d-dimensional transform of Nd points costs O(dNd).

2.1.1 Extension to Monte Carlo grids in 1-D

While the distance transform was designed to work ex-
clusively on regular grids, it is easily extended to irreg-
ular grids in the one-dimensional case, for a small in-
crease in cost. This observation is novel, to our knowl-
edge, although it represents a rather direct extension
to the original algorithm.

Assume we are given source particles {x1, . . . , xN} and
target particles {y1, . . . , yM}. The first step of the
algorithm is to compute the lower envelope of the

L
o
g

In
fl
u
en

ce

0

−50

−100

Candidate Boxesxes

L
o
g

In
fl
u
en

ce

0

−1

−2

−3

−4

Objects

Examined Boxes
Examined Particles
Skipped Particles
Skipped Boxes

Figure 2: Dual-tree max-kernel example. Top: the in-
fluence bounds for the nodes shown in figure 1. The
pruning threshold at each level is shown (dashed line),
along with the bounds for each candidate node. Bot-

tom: pruning at the leaf level: in the example, six
leaf nodes are candidates. We begin examining parti-
cles in the first box. As it happens, the first particle
we examine is the best particle (the correct answer).
Pruning by particle weight (the upper marker) allows
us to ignore all but the first six particles. The pruning
threshold is then sufficiently high that we can prune
the remaining candidate nodes without having to ex-
amine any of their particles.

parabolas anchored at {xi}. This step is unchanged,
save that the x particles need to be pre-sorted at a cost
of O(N logN). The second step is to calculate the
value of the lower envelope at each y particle. This
can be done by either pre-sorting the y particles, or
employing binary search on the lower-envelope, which
costs O(M logM) or O(M logN) respectively.

Unfortunately, this extension only applies to the one-
dimensional case. Other means must be used to
compute higher-dimensional max-kernel problems on
Monte Carlo grids.

inputs: root nodes of X and Y trees: Xr, Yr.
algorithm:

leaves = {}, candidates = {Xr}
max recursive(Yr, leaves, candidates,−∞)

function max recursive(Y, leaves, candidates, τ)
if (leaf (Y) and candidates = {})

// Base Case: reached leaves (see figure 4).
max base case(Y, leaves)

else // Recursive case: recurse on each Y child.
foreach y ∈ children∗(Y)

τy = τ, valid = {}
foreach p ∈ candidates

// Check if we can prune parent node p.
if

`

w (p) K
`

dl (p, y)
´

< τy

´

continue
foreach x ∈ children (p)

// Compute child bounds.

f{u,l} (x) = w (x) K
“

d{l,u} (x, y)
”

// Set pruning threshold.

τy = max
“

τy , max
x

“

f
l(x)

””

valid = valid ∪ {x ∈ children (p) : fu (x) ≥ τy}
valid = {x ∈ valid : fu (x) ≥ τy}
leavesy = {x ∈ valid : leaf (x)}
candidatesy = {x ∈ valid : not (leaf (x))}
sort(leavesy by f l)
max recursive (y, leavesy, candidatesy, τy)

Figure 3: Dual-tree max-kernel algorithm, part 1.

2.2 Dual-tree max-kernel

In this section we present a novel dual-tree algorithm
for solving the weighted max-kernel problem. Our al-
gorithm is based on bounding the distance and weight,
hence the influence, of subtrees of X particles upon
subtrees of Y particles. We begin by constructing
space-partitioning trees for the X particles and Y

points (see Section 2.3). The leaf nodes of these trees
can contain multiple points. We also cache at each
node in the X tree the maximum particle weight in
the node (w(X)). At leaf nodes, we sort the particles
in order of decreasing weight.

The algorithm proceeds by doing a depth-first recur-
sion down the Y tree. For each node, we maintain
a list of X nodes that could contain the best parti-
cle (candidates). We know the particle of maximum
weight in a given node X. Thus, we can bound the
influence of X by considering the cases when that par-
ticle is as close (or far) from Y as possible.

For each X node we compute the lower and upper
bounds of the influence of the maximum particle in
the node on all points in the Y node (f{l,u}) by evalu-
ating the kernel at the upper and lower bound on the
distances to particles in the node (d{i, l}). The largest
lower bound on influence is the pruning threshold (τ):
any candidate node whose upper bound is less than
this threshold cannot possibly contain the best parti-

function max base case(Y, leaves)
foreach x ∈ leaves

f{u,l} (x) = w (x) K
“

d{l,u} (x, Y)
”

τ = max
x

“

f
l (x)

”

leaves = {x ∈ leaves : fu (x) ≥ τ}
sort

`

leaves by f l
´

// Examine individual y points.
foreach y ∈ Y

τy = τ
foreach x ∈ leaves

// Prune nodes by Y (cached), then by y.
if

`

fu(x) < τy or w (x) K
`

dl (x, y)
´

< τy

´

continue
// Examine individual x particles.
foreach i ∈ x

// Prune by weight.

if

„

fu (x)
w (i)

w (x)
< τy

«

break
f (i) = w (i) K (d (i, y))
if (f (i) > τy)

// i is the new best particle.
τy = f (i) , x∗ (y) = i

Figure 4: Dual-tree max-kernel algorithm, part 2.

cle, and hence need not be considered. See Figures 1
and 2 for an example.

In each recursive step, we choose one Y child on which
to recurse. Initially, the set of X candidates is the set
of candidates of the parent. We sort the candidates
by lower bound, which allows us to explore the most
promising nodes first. For each of the candidates’ chil-
dren, we compute the lower bound on distance and
hence the upper bound on influence. Any candidates
that have upper bound less than the pruning threshold
are pruned. For those that are kept, the lower influence
bound is computed; these nodes have the potential to
become the new best candidate.

The influence bounds tighten as we descend the tree,
allowing an increasingly number of nodes to be pruned.
Once we reach the leaf nodes, we begin looking at in-
dividual particles. The candidate nodes are sorted by
lower influence bound, and the particles are sorted by
weight, so we examine the most promising particles
first and minimize the number of individual particles
examined. In many cases, we only have to examine
the first few particles in the first node, since the prun-
ing threshold often increases sufficiently to prune the
remaining candidate nodes. Figures 3 and 4 contain
pseudo-code for the algorithm.

For a given node in the Y tree, the list of candidate
nodes in the X tree is valid for all the points within
the Y node, which is the secret behind the efficiency
of dual-tree recursion. In this way, pruning decisions
are shared among Y points when possible.

2.3 Spatial indices

Spatial indices (sometimes called spatial access meth-

ods) intelligently subdivide a set into regions of high
locality given some concept of distance. We briefly
review two commonly-used spatial indices.

2.3.1 Kd-trees

A kd-tree operates on a vector field, and recursively
chooses a dimension and split point to localize parti-
cles The dimension of largest spread is typically chosen
as splitting dimension. Kd-trees are effective in low di-
mensional settings; a 2-D example is given in figure 1
(not all levels are shown).

2.3.2 Anchors hierarchy and metric trees

Metric trees are more relaxed in their requirements
than kd-trees; they need only a defined distance met-
ric. Nodes in a metric tree consist of a pivot (a point
lying at the centre of the node), and radius. All points
belonging to the node must have a distance to the
pivot smaller than the radius of the node.5 The An-

chors hierarchy was introduced by Moore in [11] and is
an efficient means of constructing a metric tree. Unlike
kd-trees, metric tree construction and access costs do
not have factors that explicitly depend on dimension.

−25

−20

−15

−10

−5

0

5

10

15

20

25 0

20

40

60

80

100

0

0.1

0.2

0.3

0.4

Time (t)u
t

p
(u

t|z
1

:t
)

Figure 5: Filtered distribution p(ut|z1:t)

3 Performance in N

We turn to empirical evaluation of the dual-tree algo-
rithm. In this section, we focus on performance in syn-
thetic and real-world settings as N grows; comparisons
are made both in settings where the distance transform
is applicable and where it is not. We present results
in terms of both CPU time and number of distance
computations (kernel evaluations) performed. This is

5Note: it is not the case that all points within the radius
of the pivot belong to the node.

important as in some applications the kernel evalua-
tion is extremely expensive and thus dominates the
runtime of the algorithm.

3.1 Multi-modal non-linear time series

Consider the following standard reference model [3, 6]:

ut+1 =
1

2
ut + 25

ut

1 + u2
t

+ 8 cos 1.2t+ vt+1

zt+1 =
u2

t+1

20
+ wt+1

where vt ∼ N (0, σv) and wt ∼ N (0, σw). The fil-
tered distribution is bimodal and highly non-linear
(figure 5), meaning the standard particle filter pro-
duces significant error even with a high particle count.
After running a standard SIR particle filter, we im-

0 5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

25

time step

Noisy obs.
True x
PF estimate
MAP estimate

Figure 6: Particle filter and MAP estimates of the
latent state in the 1-D time series experiment. Mean
error for the particle filter was 4.05, while the MAP
solution achieved a mean error of 1.74.

plemented the MAP sequence estimation described
in Section 1.2. Figure 6 demonstrates the accuracy
gained by calculating the MAP solution. We chose
a one-dimensional setting so that the dual-tree al-
gorithm could be directly compared against the dis-
tance transform (using the modified algorithm from
Section 2.1.1). Figures 7 and 8 summarize the results.
It is clear that the distance transform is superior in
this setting, although the dual-tree algorithm is still
quite usable, being several orders of magnitude faster
than the näıve method.

3.2 Beat-tracking

Beat-tracking is the process of determining the time
slices in a raw song file that correspond to musical
beats. This is a challenging problem: both the tempo
and phase of the beats must be estimated throughout

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

Particles

T
im

e
 (

s
)

naive

dual−tree

dist. transform

Figure 7: 1-D time series results. The dual-tree al-
gorithm became more efficient than näıve computa-
tion after approximately 70ms of compute time. Both
dual-tree and distance transform methods show similar
asymptotic growth, although the constants in the dis-
tance transform are approximately three times smaller.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Particles

D
is

ta
n

c
e

 c
o

m
p

u
ta

ti
o

n
s

naive

dual−tree

dist. transform

Figure 8: 1-D time series results: distance computa-
tions v. particle count.

the song. MAP sequence estimation after particle fil-
tering has achieved impressive results in the literature.
We omit the details of the probability model for the
sake of brevity, but a full explanation is found in [10].
The algorithm used was the forward pass particle fil-
ter, backward pass Viterbi algorithm described in Sec-
tion 1.2. Since the state space of this model is a three-
dimensional Monte Carlo grid, the distance transform
cannot be used. Figures 9 and 10 summarize the re-
sults: songs can be processed in seconds rather than
hours with this method. Using the fast method also
enables more particles to be used, which results in a
better solution: the probability of the MAP sequence
with 50000 particles was p = 0.87, while using 1000
particles resulted in a MAP sequence of probability
p = 0.53.

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Particles

T
im

e
 (

s
)

naive

dual−tree

Figure 9: Beat-tracking results: time v. particle
count. The dual-tree method becomes more efficient at
t = 10ms, and thereafter dominates the näıve method.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Particles

D
is

ta
n
c
e
 c

o
m

p
u
ta

ti
o
n
s

naive

dual−tree

Figure 10: Beat-tracking results: distance computa-
tions v. particle count.

4 The effect of other parameters

4.1 Distribution and dimensionality

To examine the effects of other parameters on the
behaviour of the dual-tree algorithm, we ran several
experiments varying dimensionality, distribution, and
spatial index while keeping N constant. We used two
spatial indices: kd-trees and metric trees (built us-
ing the Anchors hierarchy) as described in Section 2.3.
We generated synthetic data by drawing points from a
mixture of Gaussians distributed evenly in the space.
Figure 11 shows a typical clustered data distribution.
In all runs the number of particles was held constant
at N = 20, 000, and the dimension was varied to a
maximum of d = 40. Figures 12 and 13 show the
results for CPU time and distance computations, re-
spectively. In these figures, the solid line represents a
uniform distribution of particles, the dashed line rep-
resents a 4-cluster distribution, the dash-dot line has

20 clusters, and the dotted line has 100. We ex-

Figure 11: Synthetic data set with c = 20 clusters.

1 10 40
10

−1

10
0

10
1

10
2

Dimension

T
im

e
 (

s
)

naive

anchors

kd−tree

Figure 12: Time v. dimensionality. For clarity, only
the uniform distribution and one level of clustered data
are shown. This experiment demonstrates that some
structure is required to accelerate max-kernel in high
dimensions.

1 10 40

10
6

10
7

10
8

Dimension

D
is

ta
n

c
e

 c
o

m
p

u
ta

ti
o

n
s

naive

anchors

kd−tree

Figure 13: Distance computations v. dimensionality.
The level of clustering shown is less than in figure 12.
For kd-trees, clustering hurts performance when d ≤ 8.

pect methods based on spatial indexing to fare poorly
given uniform data since the average distance between
points quickly becomes a very peaked distribution in
high dimension, reducing the value of distance as a
measure of contrast. The results are consistent with
this expectation: for uniform data, both the kd-tree
and anchors methods exceeded O(N2) distance com-
putations when d ≥ 12. More surprising is that the
kd-tree method consistently outperformed the anchors
method on uniform data even up to d = 40. The depth
of a balanced binary kd-tree of 20000 particles and leaf
size 25 is ten, so for d > 10 there are many dimensions
that are not split even a single time!

1

anchors

kd−tree

1

anchors

kd−tree

1

anchors

kd−tree

1 10 40

1

Dimension

R
e
la

ti
v
e
 t
im

e
 (

s
)

anchors

kd−tree

Figure 14: Time v. dimensionality; ratio to
kd-tree = 1. Metric trees are better able to properly
index clusters: the more clustered the data, the smaller
dimensionality required for the anchors method to out-
perform kd-trees (d = 30 for somewhat-clustered data,
d = 15 for moderately-clustered data, and d = 6 for
significantly-clustered data).

Of more practical interest are the results for clustered
data. It is clear that the distribution vastly affects the
runtime of dual-tree algorithms; at d = 20, perform-
ing max-kernel with the anchors method was six times
faster on clustered data compared to uniform. We ex-
pect this effect to be even greater on real data sets, as
the clustering should exist on many scales rather than

simply on the top level as is the case with our synthetic
data. It is also interesting to note the different effect
that clustering had on kd-trees compared to metric
trees. For the anchors method, clustering always im-
proved the runtime, albeit by a marginal amount in
low dimensions. For kd-trees, clustering hurt perfor-
mance in low dimensions, only providing gains after
about d = 8. The difference in the two methods is
shown in figure 14.

4.2 Effect of kernel width

To measure the effect of different kernels, we test both
methods on a 1-D uniform distribution of 200, 000
points, and use a Gaussian kernel with bandwidth (σ)
varying over several orders of magnitude. The number
of distance computations required was reduced by an
order of magnitude over this range (figure 15). Wider
kernels allow the weights to have more contrast, hence
affording more opportunities for pruning.

10
−6

10
−4

10
−2

10
0

10
2

0

2

4

6

8

10

12

x 10
6

σ

D
is

ta
n
c
e
 c

o
m

p
u
ta

ti
o
n
s

dual−tree

dist. Transform

Figure 15: Effect of kernel choice: distance computa-
tions v. bandwidth of a Gaussian kernel.

5 Conclusion

Weighted maximum-kernel problems are common in
statistical inference, being used, for instance, in be-
lief propagation and MAP particle filter sequence es-
timation. We develop an exact algorithm based on
dual-tree recursion that substantially reduces the com-
putational burden of this procedure for a wide vari-
ety of kernels. It is particularly important when the
state space lies on a multi-dimensional Monte Carlo
grid, where, to our knowledge, no existing accelera-
tion methods can be applied.

The method we present speeds up the inner loop of be-
lief propagation, which means that it can be combined
with other acceleration methods such as node pruning

and dynamic quantization [2] to achieve even faster re-
sults, albeit at the expense of the loss of accuracy that
those methods entail. The techniques we present could
also be integrated seamlessly into hierarchical BP [4].

We also look at the other variables that affect the per-
formance of dual-tree recursion, such as dimensional-
ity, data distribution, spatial index, and kernel. These
parameters have dramatic effects on the runtime of
the algorithm, and our results suggest that more ex-
ploration is warranted into these effects—behaviour as
N varies is only a small part of the story.

References

[1] N Bergman, Recursive Bayesian estimation: Naviga-
tion and tracking applications, Ph.D. thesis, Depart-
ment of Electrical Engineering, Linköping University,
Sweeden, 1999.

[2] J M Coughlan and H Shen, Shape matching with belief
propagation: Using dynamic quantization to accomo-
date occlusion and clutter, GMBV, 2004.

[3] A Doucet, N de Freitas, and N J Gordon (eds.), Se-
quential Monte Carlo methods in practice, Springer-
Verlag, 2001.

[4] P Felzenszwalb and D Huttenlocher, Efficient belief
propagation for early vision, CVPR, 2004.

[5] P Felzenszwalb, D Huttenlocher, and J Kleinberg,
Fast algorithms for large-state-space HMMs with ap-
plications to web usage analysis, NIPS (2003).

[6] S J Godsill, A Doucet, and M West, Maximum a pos-
teriori sequence estimation using Monte Carlo particle
filters, Ann. Inst. Stat. Math. 53 (2001), no. 1, 82–96.

[7] A Gray and A Moore, ‘N-Body’ problems in statistical
learning, NIPS, 2000, pp. 521–527.

[8] A Gray and A Moore, Rapid evaluation of multiple
density models, AISTATS, 2003.

[9] A T Ihler, E B Sudderth, W T Freeman, and A S
Willsky, Efficient multiscale sampling from products
of Gaussian mixtures, NIPS 16, 2003.

[10] D Lang and N de Freitas, Beat tracking the graphical
model way, NIPS 17, 2004.

[11] A Moore, The Anchors Hierarchy: Using the triangle
inequality to survive high dimensional data, UAI 12,
2000, pp. 397–405.

[12] J Pearl, Probabilistic reasoning in intelligent systems:
networks of plausible inference, Morgan-Kaufmann,
1988.

[13] C P Robert and G Casella, Monte Carlo statistical
methods, Springer-Verlag, New York, 1999.

