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ABSTRACT
The industry-wide turn toward chip-multiprocessors (CMPs) pro-
vides an increasing amount of parallel resources for commodity
systems. However, it is still difficult to harness the available paral-
lelism in user applications and system software code.

We propose MShot, a hardware-assisted memory snapshot for
concurrent programming without synchronization code. It sup-
ports atomic multi-word read operations on a large dataset. Since
modern processors support atomic access only to a single word,
programmers should add synchronization code to process a multi-
word dataset concurrently in multithreading environment. With
snapshot, programmers read the dataset atomically and process the
snapshot image without synchronization code. We implement MShot
using hardware resources for transactional memory and reduce the
storage overhead from 2.98% to 0.07%. To demonstrate the use-
fulness of fast snapshot, we use MShot to implement concurrent
versions of garbage collection and call-path profiling. Without the
need for synchronization code, MShot allows such system services
to run in parallel with user applications on spare cores in CMP
systems. As a result, the overhead of these services is minimized,
approaching that of an ideal implementation.

Categories and Subject Descriptors
B.3.0 [Hardware]: MEMORY STRUCTURES—General

General Terms
Design

Keywords
Snapshot, Transactional Memory

1. INTRODUCTION
Chip-multiprocessors (CMPs) bring abundant parallelism to com-

modity systems. However, the lack of concurrency in software
prevents programmers from fully exploiting the additional hard-
ware cores. Ideally, sequential code could be easily changed to use
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multiple cores. However, parallelization is not trivial in practice
because programmers must deal with the complications of concur-
rency management.

To alleviate this problem, it is important to develop architectural
tools that help programmers to exploit parallelism. In search of
such tools, we find memory snapshot particularly useful for im-
proving the concurrency of software systems [1, 2, 15, 22]. The
key benefit of snapshot is to support atomic multi-word read op-
erations that produce a consistent view on a large dataset. Since
modern processors support atomic memory access only to a sin-
gle word, programmers have to deal with complex synchroniza-
tion issues to process a multiple-word dataset concurrently in mul-
tithreading environment. With snapshot, concurrent programs read
a large dataset atomically and work with a consistent snapshot im-
age of the dataset without synchronization code. The basic concept
of snapshots has been used widely in databases, file systems, and
reliable storage [11, 21, 33]. While several algorithms for memory
snapshot have been proposed, their applicability for performance
optimizations is limited due to high runtime overhead since they
rely on pure software techniques [1, 2]. More sophisticated soft-
ware implementations allow for additional gains at the cost of al-
gorithmic complexity for applications [15, 22].

This paper proposes MShot, hardware-assisted memory snap-
shot for concurrent programming without synchronization code.
MShot provides a fast memory snapshot with hardware acceler-
ation. Programmers use a snapshot to read a multi-word dataset
atomically and to process it concurrently in multithreading envi-
ronment. The snapshot image is isolated from further memory up-
dates, shared by multiple threads, and accessed with normal load-
/store instructions. MShot supports multiple memory snapshots of
arbitrary lifetime that consist of multiple disjoint memory regions.
A fast memory snapshot is beneficial for the software systems in
need of atomic multi-word read operations such as fast concurrent
backup, checkpointing, debugging parallel programs, concurrent
garbage collection, dynamic profilers, fast copy-on-write, and in-
memory databases.

We implement MShot using hardware resources available in trans-
actional memory (TM). TM executes a group of instructions in an
atomic and isolated manner [8, 17, 19, 24]. The opportunity for
sharing resources between MShot and hardware TM is understood
intuitively since both systems support some sort of atomic execu-
tion. The key idea is to use the cache as a buffer for snapshot
data and additional bits per cache line for snapshot metadata like
a cache-based hardware TM system does for transactional data and
metadata. Due to resource sharing with hardware TM, the storage
overhead of MShot is reduced from 2.98% to 0.07%.

To evaluate MShot, we prototyped two snapshot-based systems:
garbage collection (GC) and dynamic profiling. Taking advantage



of the fact that “once garbage, always garbage,” the snapshot-based
GC takes a memory snapshot and performs collection without in-
terfering with the application (mutator) threads running in parallel.
The snapshot-based profiler takes a snapshot of the stack for call-
path profiling. Reading data structures atomically and efficiently
without synchronization code, these systems run the tasks concur-
rently with applications and add only a negligible runtime overhead
to the applications.

The rest of the paper is organized as follows. Section 2 presents
the motivation for this work. Section 3 explains the definition, pro-
gramming interface, and hardware implementation of fast memory
snapshot. Section 4 explains MShot implementation with TM hard-
ware resources. Section 5 presents the quantitative evaluation. Sec-
tion 6 discusses related work, and Section 7 concludes the paper.

2. MOTIVATION

2.1 Motivating Example
Modern processors support atomic read and write operations on

single-word data [1,2]. However, if multiple words need to be read
atomically while some of the words are written concurrently, sys-
tems do not provide a consistent view of the words for the read
operation. Let’s consider an example that mimics dynamic mem-
ory profiling where a profiling thread traverses an object reference
graph and an application thread changes the graph concurrently. In
Figure 1(a), the profiling thread has visited node A, determined that
node B was the only child node, and reads node B while the appli-
cation thread has detached node D from node C and is attaching
it to node A. Since node A has already been visited, the profiling
thread fails to visit node D, a new child node of node A, unob-
served before. The problem is that the profiling thread cannot read
the whole graph atomically and may miss visiting some live objects
due to concurrent mutation by the application thread.

There are several solutions to address the problem. The profiling
thread can grab a global lock for the graph, but in doing so it loses
concurrency. The two-phase locking in database literature grabs
per-node locks gradually and releases all locks when the graph
traversal completes. It allows for more parallelism, but introduces
lock acquisition overhead and may cause deadlocks when the pro-
filing thread and the application thread traverse the same link in the
opposite directions as shown in Figure 1(b). Transactional memory
(TM) [17, 19, 24] guarantees the atomic and isolated execution of
the instructions in a transaction. With TM, the profiling thread can
read the whole graph atomically by enclosing all graph access in-
structions within a transaction. However, the transaction is likely to
be much longer than usually expected [10] and may suffer from fre-
quent restarts due to constant conflicts with the application thread
as shown in Figure 1(c). Virtual memory protection [5] and Dy-
namic Binary Translation(DBT) [37] can be used to save old val-
ues of the graph for the profiling thread. However, virtual memory
protection suffers from the page fault exception overhead and DBT
from the instruction instrumentation overhead.

There have been developed algorithms specific to concurrent graph
traversal such as tricolor marking [18] where three colors (i.e.,
white, gray, and black) are used to present the traversal status of
each node. This scheme solves the problem by changing the color
of node A from black (i.e., traversal done) to gray (i.e., traversal on-
going) when node D is attached to node A as shown in Figure 1(d).
Since it takes advantage of knowledge on the data structure such as
pointers to child nodes and the number of child nodes, this scheme
is not easily generalized for atomic multi-word read operations.

2.2 Hardware-assisted Memory Snapshot
Memory snapshot provides support for atomic multi-word read

operations [1,2]. A “snapshot” of m memory elements is created to
provide a consistent view for p processors. Then, the processors are
allowed to execute two operations: update to write a memory ele-
ment in the snapshot and scan to read memory elements. The scan
operation is an atomic read operation on the memory elements and
produces a consistent copy of them at the moment the scan is ex-
ecuted. Memory snapshot solves the race problem easily without
synchronization as shown in Figure 1(e). A memory snapshot is
taken (i.e., scan) on all nodes of the graph. The profiling thread
reads the pointer from node C to node D in the snapshot image
while the application thread modifies the pointer in the up-to-date
image. Unfortunately, despite the great potential as a program-
ming primitive for concurrent programming, memory snapshots
have been implemented in software and have performance issues
such as O(mp) update time [1,2] or O(m) scan time [15,22], which
prevent them from being adopted in a wide range of applications.

We propose fast memory snapshot with hardware assistance for
easy concurrent programming without synchronization code. It ac-
celerates snapshot operations with hardware resources to provide
O(1) update (as fast as a single memory write operation) and O(p)
scan in O(m) space. The O(1) update time enables application
threads to write to the up-to-date image without performance degra-
dation. The O(p) scan time allows snapshots to be used for large
datasets in performance-oriented programs. We use the cache as a
buffer for snapshot data and additional bits per cache line for snap-
shot metadata. A consistent snapshot image is taken with inter-
process communication and maintained with cache coherence pro-
tocol support. Using hardware acceleration, memory snapshot can
be applied to performance-oriented software system, including the
following:

• Fast Concurrent Checkpoint: Process state is checkpointed
for backward recovery with checkpoint in fault tolerance mech-
anisms [5] or for guest OS migration in virtual machines [36].
The fast memory snapshot is used to create the backup mem-
ory image concurrently without slowing down the applica-
tions (due to O(1) update time). Logging threads run in par-
allel with application threads to log the checkpointed image
into disks.

• Concurrent Garbage Collection: Concurrent garbage col-
lection typically incorporates sophisticated algorithms to deal
with races between mutators and collectors and increases
code management cost [12]. With fast memory snapshots,
concurrent garbage collection can be as simple as a stop-the-
world garbage collector by taking a snapshot of part of the
heap and collecting garbage from the snapshot image con-
currently.

• Concurrent Memory Profiling: As shown in the example
in the previous section, concurrent memory profilers [27,28]
benefit from fast memory snapshot by traversing a consistent
object reference graph in the snapshot image.

• Concurrent Call-Path Profiling: Just-In-Time (JIT) com-
pilers in Java virtual machines and the C# runtime system
optimize the application code by finding hot execution paths
with call-path profiling [13]. With fast memory snapshot,
compilers take a snapshot of a thread stack periodically and
analyze the stack in parallel with application threads.

• Fast Copy-On-Write (COW): COW is used for shared virtual-
to-physical page mappings in fast fork() [32] and for disk
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Figure 1: Concurrency Issues and Synchronization Schemes.

block sharing between virtual machines [34]. The perfor-
mance problem with COW is that the thread modifying shared
data is stalled until a safe copy of the data is made. With fast
memory snapshot, the thread takes a snapshot of the data and
modifies the data without being stalled for the copy to be
made. The copy is made in parallel from the snapshot image.

• In-memory Database: Unlike traditional database systems,
in-memory database systems achieve good performance by
loading the whole data schema into main memory [14]. The
snapshot image on the in-memory data schema can be used
to generate reports on data usage, to replicate the data in a
database cluster, and to support the isolation-level necessary
for database transactions.

In summary, fast memory snapshot is useful for applications that
need atomic multi-word read operations to obtain a recent and con-
sistent view of various data structures.

3. FAST MEMORY SNAPSHOT DESIGN
We propose MShot, a hardware-assisted memory snapshot for

atomic multi-word read operations on arbitrary datasets. We first
present the definition and programming interface for fast memory
snapshot and then explain the hardware mechanism.

3.1 Definition and Interface
MShot provides a snapshot of the memory image at a certain

point in time. Multiple disjoint address regions can be part of a
snapshot. Once a snapshot is taken on these regions (i.e., equivalent
to a scan operation of software snapshots), MShot maintains two
memory images: the master image with the up-to-date data and
the snapshot image. To read from the snapshot image, threads first
join the snapshot. Any number of threads can join the snapshot.
Until the user threads leave the snapshot, normal read operations
to the snapshot regions return the snapshot data. The separation of
taking a snapshot from joining the snapshot makes it possible to
take a snapshot in a performance critical section and analyze the
image later using additional cores. A snapshot is destroyed after all
user threads have left the snapshot. A snapshot image in MShot is
read-only like software snapshots [1, 2, 22]. MShot also captures
the associated core register values at the moment the snapshot is
taken. This is useful for analyzing the image later on. There can be
multiple snapshots active at any moment. To simplify the hardware
requirements, MShot does not allow overlapping snapshot regions
and only supports cache-line granularity in specifying regions.

Table 1 shows the programming interface of MShot to take, join,
leave, and destroy a snapshot. A simple data structure called snap-
shot info shown in Figure 2 is used to set up a snapshot. A unique
snapshot ID (SID) is assigned to a newly taken snapshot.

3.2 Implementation
There are three key software and hardware components in MShot

implementation as shown in Figure 3.
The Snapshot Information Table (SIT) shown in Figure 3(a)

is a doubly-indexed hash table for managing all snapshot informa-
tion. This software structure is indexed either by SID or by virtual
address. SIT entries, called Snapshot Information Blocks (SIB), are
similar to the snapshot info structures passed to take snapshot().
join list is a linked list of the threads that joined a snapshot. MShot
increments a simple counter atomically to generate a unique SID.

The Snapshot information Look-aside Buffer (SLB) shown in
Figure 3(b) is a small 64-entry hardware cache for accelerating the
retrieval of snapshot information from the SIT. Each entry encodes
information about a snapshot region. The SLB is accessed in paral-
lel with the TLB. A matching SLB entry returns two fields: the SID
to which the snapshot region belongs and the J (join) bit indicating
if the current thread has joined the snapshot. The SLB maintains an
OV(overflow) bit to indicate that there is a SLB entry evicted due
to capacity issues. If the bit is not set, an SLB miss is ignored since
there is no snapshot region associated with the memory address. If
the bit is set, the miss is handled by a software refill handler that
accesses the SIT. To support the software handler, two SLB instruc-
tions are added: SLBI to invalidate SLB entries and SLBLD to load
them. SLBI and SLBLD are similar to TLBI and TLDLD in Pow-
erPC [30].

Two Snapshot Metadata bits and SID bits are added per cache
line for data versioning. MS (Modified since Snapshot) bit is set
when a cache line in a snapshot region has been modified since the
snapshot is taken. RS (Read from Snapshot) bit is set when a cache
line in a snapshot region is refilled with old data from the snapshot
image. If both bits are not set for a cache line, it implies that the
master image and the snapshot image have the same data for the
line. A 6-bit SID is set when either the MS bit or RS bit is set to
indicate the snapshot for which the bits are set. The SID bits are set
to 0 for the cache lines unrelated to a snapshot.

Take snapshot() initiates the process of taking a snapshot. An
SIB is created for the snapshot by copying snapshot info to the
block and inserting it into the SIT. MShot ensures that all cores
are aware of the snapshot information before the call returns. This
guarantees any write to the snapshot after the snapshot is taken trig-
gers data versioning to build the snapshot image gradually, avoiding
O(m) scan time. The snapshot information is exchanged by using
the three-way handshake shown in Figure 4. First, snapshot request
messages are sent via inter-core signals to the other threads, invok-
ing snapshot signal handlers. The handlers copy the saved regis-
ter values of the threads to a pre-allocated data structure pointed
to by the saved regs field of the snapshot info argument, and load
the snapshot information into the SLB. Next, the handlers send re-



Group Method Function
Snapshot take snapshot (snapshot info*) Take a snapshot on the address regions specified by snapshot info.snapshot regions.
Control New snapshot id (SID) is set at snapshot info.SID.

Saved register values are pointed to by snapshot info.saved regs.
destroy snapshot (SID) Destroy the snapshot of SID.

Snapshot join snapshot (SID) Start using the snapshot of SID.
Sharing leave snapshot (SID) Stop using the snapshot of SID.

Table 1: MShot software interface.

snapshot_info {
short SID; // unique snapshot id
long[][2]* snapshot_regions; // array of (start address, end address) pairs
void* saved_regs; // saved register values
short TID; // optional. Thread id to isolate selectively

}

Figure 2: snapshot info data structure used for take snapshot().

sponse messages back to the thread that initiated the snapshot and
wait for resume messages. On receiving the response messages
from all the handlers, the initiating thread sends a resume message
to terminate the handlers and resume application threads. This pro-
cess has O(p) complexity.

Join snapshot() updates the SIB to remember that the thread is a
new user of the snapshot. The corresponding SLB entry is reloaded
to set the J bit for the thread.

Cache operations with the snapshot metadata bits are summa-
rized in Table 2. If a user thread writes to a snapshot, an exception
is triggered since the user thread is only allowed to read from the
snapshot. The SLB detects this case. A read from the snapshot is a
hit if there is a cache line with a matching address tag and its MS
bit is 0. This indicates that the line has not been modified since the
snapshot was taken. If it is a miss, the SID bit and J bit are piggy-
backed to the refill request to indicate that the refill should come
from the snapshot image. On receiving the refill request, other
caches search for a cache line with matching address tag whose
MS bit is 0. If the MS bit of the cache line with matching address
is 1, the MS bit is attached to the response message to notify the
requester that the master image has deviated from the snapshot for
that address. Finding no matching cache line in other caches, the
request is sent to main memory and the data is refilled. When refill-
ing the cache line, we set the RS bit if the MS bit is piggy-backed.
The RS bit is used later when destroying the snapshot to see if the
line is to be invalidated.

A read from or a write to the snapshot by a thread not using
the snapshot (i.e., J bit is 0) is a hit if there is a cache line with a
matching address tag and the RS bit is 0. This indicates that the
line does not contain the old data from a snapshot. If it is a write
hit, the MS bit is set to indicate that the line no longer belongs
to the snapshot image. This indication is accomplished system-
wide by simply setting the MS bit since the line is exclusive to that
processor. This makes updates O(1). If the write misses, the MS
bit is set after the line is refilled. A cache miss is handled similar
to the case of a thread that has joined the snapshot. The SID and J
bit are piggy-backed on cache line refill requests. The bits are used
by the other caches to find a cache line whose address tag matches
and whose RS bit is 0.

Since the cache capacity is limited, a long-lived snapshot may
cause cache overflow. Snapshot virtualization mechanism is ex-
plained in conjunction with transactional memory in the next sec-
tion.

Leave snapshot() is called to stop using the snapshot. The ID of
the thread is removed from the SIT and the SLB entries are reloaded
to clear the corresponding J bits.

Destroy snapshot() destroys the snapshot. It starts with invali-
dating the SLB entries. Cache lines with the SID of the snapshot
are invalidated if the RS bit is set. All metadata bits of the snapshot
are gang-cleared. It completes by removing the SIB of the snapshot
from the SIT.

4. RESOURCE SHARING WITH
TRANSACTIONAL MEMORY

Some astute readers would have already noticed the similarity
between the MShot implementation and a typical cache-based hard-
ware TM system (HTM). The similarity comes from the fact that
they use essentially the same mechanism for data versioning where
they both use the cache as a buffer for multiple data versions and
add metadata bits per cache line for version information. Expecting
that HTMs will be adopted widely in the near future, we present
the base hardware TM system assumed in this paper and explain
how MShot uses the hardware resources for HTM. At the end of
this section, we calculate the hardware cost shared by MShot and
HTM.

4.1 Baseline Hardware TM System
Hardware TMs use hardware resources to accelerate transactional

execution of a group of instructions [4, 8, 17, 24]. The baseline
hardware TM assumed in this paper records transactional loads and
stores with two TM metadata bits per cache line: R bit for loads and
W bit for stores [17,24]. They are used to distinguish transactional
data and non-transactional data. Transactional data are buffered in
the cache [8,17]. It supports fast context switching of transactional
code using transaction IDs per cache line [23, 25].

HTM systems are limited by the capacity of hardware caches.
The baseline HTM system uses Page-based TM (PTM) [9] to deal
with the cache overflow. PTM supports the features necessary for
MShot such as paging of overflowed pages and has a reasonable
incremental hardware cost as will be shown in Section 4.3. PTM
maintains a software shadow page table with the hardware table ac-
cess logic located next to the memory controller [9]. When a cache-
line with transactional data or metadata is evicted, PTM allocates a
new page (shadow page) to store the last committed version of the
data and uses the old page (home page) to store the overflowed data.
The shadow page table maintains the proper mapping information.
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Figure 5 shows the hardware resources of the base HTM system
in dark gray.

4.2 MShot using TM Hardware Resources
The key idea to support memory snapshot with HTM resources

is to map snapshot read/write operations to transactional read/write
operations properly. We map a memory snapshot to a read-only
transaction that never aborts until the end of the transaction. The
values read from the snapshot image are included in the read-set of
the read-only transaction. Write operations to the snapshot regions
are handled as transactional stores. The conflicts against the read-
only transaction are ignored since the snapshot excludes the new
updates. Moreover, regardless of the conflicts, the cache lines with
the snapshot data are invalidated eventually by aborting the read-
only transaction when the snapshot is destroyed.

To realize this mapping, MShot uses the two TM metadata bits
for the two snapshot metadata bits, the transaction ID field for the
SID, the shadow page table for overflowed snapshot metadata, and
the shadow pages for overflowed snapshot data. Table 3 summa-
rizes the resource mapping between the base HTM and MShot.
MShot maps the MS bit to the W bit and uses it to distinguish
the master image from the snapshot image. Similarly, the RS bit
is mapped to the R bit to mark old data from the snapshot im-
age that is invalidated when the snapshot is destroyed. Additional
combinational logic is used for the bit control as explained in Sec-

tion 3.2. SID is mapped to transaction ID to allow multiple snap-
shots to share the cache. MShot uses the gang-clear logic to reset
the metadata bits when a snapshot is destroyed.

The shadow page table is used to deal with cache overflow of
snapshot data. MShot uses the home pages to store the master im-
age and the shadow pages to buffer the snapshot image. When a
cache line with an MS bit (i.e., up-to-date data) is evicted, the MS
bit and SID of the line are piggy-backed. The shadow page table
perceives the SID as the transaction ID and the MS bit as the W
bit. The snapshot data of the cache line is copied to the shadow
page and the evicted up-to-date data of the master image goes to
the home page. As in PTM, shadow pages are from a pool of pre-
allocated pages. MShot evicts a cache line with the RS bit (i.e.,
snapshot data) silently as it is part of the snapshot image in the
main memory. To reload an overflowed cache line, the hardware
attaches the J bit and SID bits with the refill request. The shadow
page table uses the J bit to select if the home page or the shadow
page is read. If the bit is 1, the shadow page is read. If not, the home
page is read. When a snapshot is destroyed, MShot sends out the
transaction commit message with the SID of the snapshot telling
the shadow page table that it is the end of the read-only transaction.
Then, the shadow page table releases the shadow pages that con-
tain the snapshot image. All in all, Figure 5 shows the hardware
resources shared with HTM in dark gray and the MShot-specific
hardware components in light gray.



Write to snapshot Read from snapshot
Snapshot Trigger exception. Hit if address tag matches and MS bit is not set.

User Threads Set RS bit and SID when refilled with MS bit piggy-backed.
The Rest Hit if address tag matches and RS bit is not set. Hit if address tag matches and RS bit is not set.

Set MS bit and SID when hit or refilled.

Table 2: Memory operations with snapshot.

HTM resource Usage in MShot
Transactional metadata bits per cache line Snapshot metadata bits per cache line

Transaction ID (TID) per cache line Snapshot ID (SID) per cache line
Transactional metadata bit gang clear logic Snapshot metadata bit gang clear logic

Shadow page table in SW, table access logic in HW Providing access to master/snapshot images
Home/Shadow pages Containing Master/Snapshot images separately

Table 3: Hardware resource mapping between HTM and MShot.

4.3 Hardware Cost Saving
The hardware cost for the MShot implementation consists of the

combinational logic for control and the storage overhead for data
and metadata. Since the complexity of the combinational logic is
hard to quantify, we focus on the storage overhead in this paper. As
a baseline system, we assume a 16-core CMP with 64KB 4-way
private L1 cache, 1MB 8-way private L2 cache with 32B line size,
and 16GB main memory. This configuration is used for evaluation
in Section 5 as well. The storage overhead of the additional bits in
cache is about 34 KBytes per core, from (2b for snapshot metadata
+ 6b for SID) * ((64KB + 1MB)/32B). The storage requirements
for SLB per core is about 1 KBytes, from (64b for start address +
64b for end address + 6b for SID + 1b for J bit) * 64 entries. Then,
the storage overhead of the SLB and additional bits in the cache for
16 cores is about 560 KBytes. The majority of the PTM hardware
cost for MShot is from the 2048-entry shadow page table cache
in the hardware table access logic. The shadow page table entry
consists of physical page numbers for a home page and a shadow
page, a valid bit, and read/write summary vectors. As the physical
address length is 34 bits for 16GB main memory, the total storage
overhead of the table is about 75 KBytes, from (2*22b for home-
/shadow physical page number + 1b for valid bit + 2*(4K/32B)b
for read/write summary vectors) * 2048 entries. The storage size
of the cache structure in the baseline system is about 20.8 MBytes
including bits for physical tags (19 bits for L1 and 16 bits for L2),
coherence (3 bits), and ECC (4 Bytes).

Overall, the total storage overhead of the hardware resources
used for MShot is 2.98%, from (560KB + 75KB)/20.8MB. How-
ever, given the baseline HTM, the additional storage overhead is
only 0.07%, from (16 * 1KB SLB)/20.8MB. This shows clearly
the benefits of resource sharing between MShot and HTM. If the
baseline HTM does not have a PTM, the MShot implementation
adds the shadow page table for itself. However, the total storage
overhead goes up only to 0.43% from (16KB + 75KB)/20.8MB.

4.4 System Issues
Like the TLB, the SLB must be reloaded on context-switches

because it is indexed by virtual addresses. The SLB entries do not
need to be saved since the SIT is always more up-to-date than the
SLB. On rescheduling, the SLB can be loaded either eagerly or
lazily. We use the eager approach in our evaluation.

On paging, MShot flushes out the page from the cache to main
memory intentionally. The flush causes PTM to generate the shadow
page if needed. After paging out the home page normally, the OS
checks if there is an associated shadow page by referencing the

Feature Description
CPU 2GHz, single-issue, in-order x86 core
SLB 64 entries

L1 Cache 64 KB, 4-way, 32B line, MESI, write-back
1 cycle hit time, private

L2 Cache 1 MB, 8-way, 32B block, MESI, write back
10 cycle latency, private, 8 banks
bit vector of sharers

Shadow PT 2048 entries
Memory 4 GB, 100 cycle latency

Interconnect Tiled network, 32B links, 3 cycles per hop

Table 4: Parameters for the simulated CMP system.

shadow page table and swaps the shadow page out, too. The two
pages are paged in together when the page is accessed again.

Since our baseline TM system has only two TM metadata bits,
user transactions are not supported once the bits are used up by
MShot. In order to support user transactions together with snap-
shots, the baseline TM system needs to support nested transactions
with at least two pairs of TM metadata bits per cache line [23] to
dedicate a pair to user transactions and the other pair to MShot.

5. EVALUATION

5.1 System and Applications
We implemented MShot on a cycle-accurate simulator and eval-

uated it with the parameters in Table 4. We used nine applications
and one micro benchmark. W3M is a client-side web browser [35].
Pypy is a python interpreter [31]. Gzip is a compression tool [16].
Mpeg2 is a MPEG-2 decoder [3]. Cfrac performs continuous frac-
tion factorization for integers [6]. Nullhttpd is an HTTPD web
server [29] . Vacation mimics an e-commerce system [7]. Mp3d
and Radix are from SPLASH2 [38]. RBtree is a micro benchmark
that adds, searches, and deletes objects into and from a red-black
tree in transactions.

We evaluate MShot with garbage collection and call-path profil-
ing. Snapshot GC takes advantage of the fact that “once garbage,
always garbage.” If a garbage object is found in the snapshot im-
age, it is garbage in the master image as well. It takes a snapshot on
the memory regions to collect and has collectors find garbage from
the snapshot image while application threads modify the master im-
age. Snapshot call-path profiling periodically takes a snapshot of
the thread stack and walks the stack to obtain information on the
call graph of functions in the application code. We compare snap-
shot GC with parallel GC that stops the world and collects garbage
with multiple collectors in parallel [39]. Snapshot call-path profiler
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Figure 5: Resource sharing between HTM and MShot.

is compared with single-threaded call-path profiler that stops the
world and analyzes the stacks [13]. The runtime overheads from
garbage collection and profiling are normalized to the application
execution time without running GC and profiler.

5.2 Snapshot GC
We used seven applications and a micro-benchmark for the GC

tests. To observe meaningful behavior within a reasonable simula-
tion time, a 32MB heap is used. While this is smaller than what
a real environment would use, the applications still exhibit reason-
able ratios of GC time over the total execution time (from 1% for
Cfrac to 18% for Gzip). We also show the result from running
Mpeg2 with a 128MB heap.

Figure 6 presents the runtime overheads added to the application
execution time with and without snapshot. They are normalized
to the execution time when running without GC by using a very
large heap. Lower bars are better. In each bar, Stop is the time
spent for stopping the system to start GC, Mark the time for the
mark phase, Reclaim for the reclaim phase, and Snapshot the time
to initiate a snapshot. App time is the time spent in the application
itself. The MShot bar represents snapshot-based GC while the Para
bar represents the parallel GC (non-concurrent).

For all applications except Nullhttpd and RBtree, snapshot GC
eliminates most of the runtime overhead experienced with paral-
lel GC. Nullhttpd and RBtree show an increase of the application
execution time itself due to the increased memory contention with
GC. On average, snapshot GC reduces the overhead down to 1.5%,
which makes garbage collection essentially cost-free. Snapshot GC
scales well with a 128MB heap for Mpeg2.

Table 5 shows the memory requirements to maintain the over-
flowed data for the snapshot-based GC. PTM uses additional phys-
ical pages for shadow pages even if a single cache line overflows
within each page. In the table, Snapshot Data is for the actual over-
flowed snapshot data at cache line granularity and Shadow Page
is for the number of shadow pages times the 4-KByte page size.
For all applications except Nullhttpd and Mpeg2, the memory re-
quirements for snapshot data is under 1 MByte. The worst case

(Nullhttpd) is still under 7 MBytes for the 16-core CMP. Moreover,
the page mappings for the shadow pages fit completely into the
2048-entry shadow page table.

5.3 Snapshot Call-path Profiler
Figure 7 shows the runtime overhead, due to call-path profiling,

which is normalized to the application execution time without pro-
filing. Prof is the time for running the profiler, App for the execution
of the application itself, and Snap the time to take a snapshot. The
profiler is triggered 50K cycles after the previous profiling has com-
pleted. Gzip, Pypy, and W3M experience the largest performance
improvements with snapshot profiling ranging from 68% (Pypy) to
75% (Gzip) due to the deep call graph (average depth of 14). This
result is important for programs written in object-oriented language
since they typically have deeper call depth. On the contrary, Mp3d,
Radix, and Cfrac have an average depth of 4 to 6. Regardless of the
applications’ call depth, the snapshot call-path profiler adds negli-
gible overhead to applications (less than 3%).

6. RELATED WORK
We have discussed general alternatives to hardware-assisted mem-

ory snapshot in Section 2.1. Beyond that, there are more application-
specific solutions for concurrent programs. Several software im-
plementation schemes have been proposed recently for mostly con-
current and parallel garbage collectors [12, 20, 39]. While they are
competitive to MShot in terms of low runtime overhead, MShot al-
lows for algorithmic simplicity and easy code management as well.
There are recent advances in dynamic profiling such as SuperPin
and Shadow Profiling [26, 37]. However, the SuperPin paper re-
ports overheads of 100% because of heavy-weight cloning, fork-
ing, and DBT overheads. Shadow Profiling shows lower overheads
but does much simpler profiling. (e.g. count basic blocks, rather
than actually scanning through heap and stack).

7. CONCLUSIONS
We propose MShot, hardware-assisted memory snapshot. MShot
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Nullhttpd RBtree Vacation-L Cfrac Gzip Mpeg2 Pypy W3M
Snapshot Data 5.25M 0.02M 0.35M 0.00M 0.59M 6.46M 0.29M 0.79M
Shadow Page 5.38M 0.28M 0.40M 0.04M 0.64M 6.52M 0.38M 0.97M

Table 5: Memory requirement to manage overflowed snapshot data.

allows programmers to read a large dataset atomically and pro-
cess the snapshot image concurrently without synchronization code
in multithreading environment. MShot is implemented in a cost-
effective manner by using TM hardware resources. The evaluation
result shows that MShot allows garbage collectors and call-path
profilers to run in parallel with user applications on spare cores
with negligible interference.
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