
Fast Mencius: Mencius with Low Commit Latency
Wei Wei∗, Harry Tian Gao†, Fengyuan Xu∗, Qun Li∗

The College of William and Mary
∗{wwei, fxu, liqun}@cs.wm.edu, †htgao@email.wm.edu

Abstract—Mencius is a protocol for general state machine
replication that tolerates crash failures. It has high performance
in wide-area networks. However, the commit latency of Mencius
is limited by the slowest replica. This paper presents Fast Men-
cius, a crash fault-tolerant state machine replication protocol,
which enhances Mencius with Active Revoke and Multi-instance
Propose. Active Revoke allows the non-slow replicas to proceed
without being delayed by the slowest replica, while Multi-instance
Propose enables the slow replicas to have their proposals chosen
by the replicated state machine. Our evaluation shows that in
presence of slow replicas, Fast Mencius’s commit latency is
significantly lower than that of Mencius, and it also achieves
high throughput.

I. INTRODUCTION

As the reliance of our society on wide-area computing ser-
vices grows, tolerating faults in these services is increasingly
important. State machine replication [9] is the most general
approach to implementing a highly reliable service. With this
approach, a deterministic service is replicated across a set
of failure-independent replicas, and the replicas consistently
change their states by applying commands from an agreed
sequence. Each command in the sequence is chosen by a
consensus instance. State machine replication has been widely
explored by previous research [3], [12], [17] and used in real
systems [2], [10]. In this paper we consider the problem of
building replicated state machines in wide-area networks that
tolerate crash failures.

It has been proved that under pure asynchronous circum-
stances, no consensus protocol can ensure both safety and
liveness, even when a single replica can fail [8]. However,
the impossibility result can be circumvented by making weak
assumptions about the synchrony of the system. The well-
known Paxos protocol [12] was proposed to build replicated
state machines that tolerate crash failures in an asynchronous
environment, assuming the existence of an eventual leader
election mechanism. The simplicity of Paxos enables it to
achieve good throughput during normal execution. However,
its performance is limited by the single leader. With Paxos,
all the client commands need to be first forwarded to the
leader. In a wide-area network where a client is not co-located
with the leader, this incurs high transmission delay. Moreover,
the leader in Paxos is responsible for proposing all the client
commands. This one-to-many communication pattern leads to
the fact that when the system is network-bound, the throughput
of the system is limited by the bandwidth of the links incident

This work is supported in part by US National Science Foundation grants
CNS-1117412 and CAREER Award CNS-0747108.

upon the leader, and the available bandwidth of other links is
not fully used. Also, since the leader needs to process much
more messages than the other replicas, when the system is
CPU-bound, the throughput of the system is limited by the
leader’s processing power. The variants of Paxos, like Fast
Paxos [15], Generalized Paxos [14], and Hybrid Paxos [7], re-
duce Paxos’s latency when certain conditions are met, but they
still suffer from the weakness that the leader is a bottleneck
of the system.

To address this problem, Mao et al. proposed Mencius [17],
a multi-leader state machine replication protocol. Derived from
Paxos, Mencius is designed to achieve high performance in
wide-area networks. The basic idea of Mencius is to partition
the sequence of consensus instances among all the replicas. By
doing so, each replica proposes the received client commands
using its allotted instances, and the replicas in total can service
more commands. With Mencius, the network resources are
more fully used, and the load of being the leader is amortized
among all the replicas. Besides, clients can use their local
replica to propose commands, and thus the latency for clients
to receive replies is reduced.

Mencius, however, has its own weakness. As it is stated
by the authors: “Mencius’s commit latency is limited by the
slowest server” [17], where commit latency is defined as the
interval between when a replica proposes a command and
when the command is committed by the replica. State machine
replication requires that a replica commit a command only
when it learns the command has been chosen in a consensus
instance, and it has learned and committed the commands
chosen in all the previous instances. With Mencius, to commit
a command chosen in instance i, a replica has to wait for
all the other replicas to skip, by proposing no-op, or to
propose commands in their allotted instances smaller than i.
In wide-area networks where link delays are typically large
and unpredictable, it is with high probability that some slow
replicas, whose transmission delay is larger than the others,
exist in the system. With Mencius, the commits of commands
at the fast replicas are all delayed by the slowest replica.

This paper presents Fast Mencius, a multi-leader state ma-
chine replication protocol that is derived from Mencius. With
Fast Mencius, the commit latency of fast replicas is not limited
by the slowest replica, while the slow replicas can still have
their proposed commands chosen by the replicated state ma-
chine. To achieve this, Fast Mencius enhances Mencius with
two mechanisms, Active Prepare and Multi-instance Propose.
In presence of slow replicas, Active Prepare ensures that a fast
replica does not need to wait for the slow ones to skip or to

propose commands, and Multi-instance Propose gives the slow
replicas opportunities to propose their own commands. The
evaluation results show that with Fast Mencius, the commit
latency of the non-slow replicas is independent of the delay
of the links connecting the slowest replica, and the throughput
of Fast Mencius is significantly larger than that of Paxos even
in presence of slow replicas.

II. SYSTEM MODEL AND ASSUMPTIONS

Like Mencius, we model a system as n sites interconnected
by a wide-area network. The link delays of the wide-area
network are large and may have high variance. Each site
contains a state machine replica and a group of clients, which
communicate through links with high bandwidth and small
delay. The n replicas communicate to implement a crash fault-
tolerant replicated state machine. Replicas can fail by crashing,
and may later recover. They have access to stable storage
to record their states, which will be used after they recover
from a failure. The system is asynchronous, with no bound on
message transmission delay. As a crash fault-tolerant protocol,
Fast Mencius requires 2f + 1 replicas to handle up to f
concurrent faulty replicas, with a quorum size of f + 1.

To use the service, clients send commands to their lo-
cal replica. The replicas establish a total order for all the
commands by running a sequence of consensus instances.
Each command is chosen in one instance. Replicas commit
the commands in the decided order. Once a command is
committed, the reply is sent from the local replica back to
the client generating the command.

Fast Mencius shares the same assumption with Mencius
that the communication channels are FIFO, and messages
between two correct replicas are eventually delivered, but there
is no upper-bound on message delivery time. In practice, the
communication channels can be implemented by UDP with
retransmission and flow control or TCP. To circumvent the
FLP impossibility result [8], we assume that each replica has
access to a failure detector ♦P, which guarantees eventually
all faulty servers and only faulty servers are suspected [4]. Like
Mencius, the failure detector is only used by Fast Mencius to
guarantee liveness. Fast Mencius is safe even if the failure
detector makes an unlimited number of mistakes.

III. MENCIUS REVISITED

Before we describe how Fast Mencius is derived from
Mencius, we first briefly review Mencius.

As a multi-leader state machine replication protocol, Men-
cius [17] is derived directly from Paxos [12], [13]. To order the
commands, Mencius runs an unbounded sequence of simple
consensus instances. Let no-op be a command that leaves the
replica state unchanged and generates no response. In each
simple consensus instance, only one replica, which is called
the coordinator, can propose any command, while the other
replicas can only propose no-op. Simple consensus allows a
coordinator to skip its instance with only one communication
step: other replicas learn that no-op has been chosen in this in-
stance once they receive a Skip message, which is a Propose

message that proposes no-op, from the coordinator. The se-
quence of simple consensus instances is partitioned among all
the replicas. Each replica is the coordinator (default leader)
of an unbounded number of instances. The simplest way to
assign instances to replicas is in a round-robin fashion: the
ith replica coordinates instance cn+ i, where c ∈ {0, 1, 2, ...}
and n is the number of replicas.

In Mencius, simple consensus is implemented by Coordi-
nated Paxos [17]. Coordinated Paxos differs from Paxos in
that each Coordinated Paxos instance starts from the state in
which the coordinator had run the Prepare Phase of Paxos for
some initial round r. This is safe because in each instance all
the replicas agree that the coordinator is the default leader.

Mencius is built upon the following rules.
Rule 1: Each replica p maintains Ip, the sequence number of

the next available simple consensus instance it coordinates. Ip
is also called the index of p. Upon receiving a command from a
local client, p proposes the command in instance Ip with round
r, and updates Ip to the next instance it coordinates. This rule
ensures that a replica proposes a command immediately after
receiving it from a client.

Rule 2: If replica p receives a Propose message in instance
i and i > Ip, before accepting the proposal, p updates Ip such
that the new index I ′p = min{i′ : p coordinates instance i′ ∧
i′ > i}. p also executes skip actions, by proposing no-op,
for each of the instances in range [Ip, I

′
p) it coordinates. With

this rule, the replicas proposing commands less frequently,
e.g., fewer clients in their sites generate commands, skip their
instances.

Rule 3: By accessing the failure detector ♦P, if replica p
suspects replica q has failed, and Cq is the smallest instance
that is coordinated by q and not learned by p, then p revokes
all the instances in range [Cq, Ip] that q coordinates. Note
that revocation is done by running both the Prepare Phase and
Propose Phase of Paxos, as shown in Figure 1. With this rule, a
crashed replica cannot prevent other replicas from committing
their learned commands.

Rule 4: If replica p proposes a command v 6= no-op in
instance i, and p learns that no-op is eventually chosen in
this instance, which means p has been falsely suspected and
instance i has been revoked by another replica, then p proposes
v again in a higher instance it coordinates. This rule allows
a falsely suspected replica to propose a command multiple
times, until false suspicions eventually cease.

These four rules guarantee that any client command sent
to a correct replica is eventually committed, and it takes
the minimal two communication steps (Propose and Accept)
for a proposing replica to learn the outcome of a consensus
instance. However, the message complexity depends on the
rates at which the replicas propose client commands: when
the replicas propose commands at different rates, they need
to execute many skip actions, by sending Skip messages.
Mencius solves this problem with two optimizations.

Optimization 1: If replica p receives a Propose message
from q in instance i and i > Ip, p uses the Accept message
that replies the Propose to promise q that p will not propose

R1(coordinates

instance 1,4,7...)

Instance 1

R2(coordinates

instance 2,5,8...)
R3(coordinates

instance 3,6,9...)

Propose Accept Accept Prepare ReplyPropose

Instance 2

Accept Learn

R3 crashes, R1 revokes Instance 3

Propose

...

...

Learn Learn

Fig. 1. Message pattern of Mencius

any client command in instances smaller than i in the future,
i.e., no-op has been chosen in these instances. In this case, p
does not need to send Skip messages to q. p does not send
Skip messages to other replicas either. Instead, for each of
these replicas, p waits for a future Propose message sent to
that replica, to promise not to propose any client command
in smaller instances. This optimization is valid since Mencius
assumes FIFO channel: before a replica receives an Accept
or Propose message from p, it must have received all the
previous Propose messages from p, so it can safely infer the
instances p skips.

Optimization 2: A replica p propagates Skip messages to
another replica q if the total number of delayed Skip messages
to q is larger than some constant α, or the messages have
been deferred for more than some time t. This rule is used to
limit the delay of the propagation of Skip messages due to
Optimization 1.

IV. FAST MENCIUS

In wide-area networks where the link delays are influenced
by the network traffic and are highly unpredictable, it is with
high probability that the connection speed of a replica drops
below the other replicas, and becomes a slow one. Mencius has
high performance in wide-area networks. However, its commit
latency is limited by the slowest replica. We explain this
through an example. Considering the scenario in Figure 2, the
system consists of 3 replicas, among which A is a slow replica.
Assume at time 0 each replica proposes its first command: A
proposes in instance 1; B proposes in instance 2; C proposes
in instance 3. With Mencius, at 50 ms B and C receive the
Propose message from each other, and reply with an Accept
message. At 100 ms B and C have collected Accepts from a
majority of replicas (including the one from themselves), and
learn that their proposed command has been chosen. However,
at this time, B cannot commit its command chosen in instance
2, because it does not know the outcome of instance 1. Nor
can C commit its command chosen in instance 3. At 500 ms,
B and C receive the Propose from A, and reply with Accept.
At 1000 ms, A learns its command is chosen in instance 1, and
broadcasts the Learn message. A also commits this command.
At 1500 ms, B and C receive the Learn message from A and
learn the outcome of instance 1. Only at this time can B and
C commit their proposed command. As a result, although it
only takes B and C 100 ms to learn their command has been
chosen, their commit latency is 1500 ms, three one-way delays
of the links incident upon A. Ironically, the slow replica A has
a smaller commit latency of 1000 ms.

State machine replication requires that a replica commit a
command only when it learns the command has been chosen

Replica A
(coordinates instances 1,4,7...)

500ms

Replica B
(coordinates instances 2,5,8...)

Replica C
(coordinates instances 3,6,9...)

500ms

50ms

Fig. 2. A system with a slow replica

Replica A
(coordinates instances 1A,2A,3A...)

500ms

Replica B
(coordinates instances 1B,2B,3B...)

Replica C
(coordinates instances 1C,2C,3C...)

500ms

50ms

Fig. 3. Instance assignment scheme of Fast Mencius

in a consensus instance, and it has learned and committed the
commands chosen in all the previous instances. With Mencius,
to commit a command v chosen in instance i, a replica p has
to wait for all the other replicas to propose commands, or
to skip, by proposing no-op, in their allotted instances smaller
than i. Otherwise, there will be gaps in the command sequence
learned by p, and p cannot commit v.

Fast Mencius addresses this problem with two mechanisms,
Active Revoke and Multi-instance Propose. With Active Re-
voke, fast replicas can proceed without being delayed by the
slowest replica, while Multi-instance Propose enables slow
replicas to have their proposed commands chosen by the
replicated state machine, even in presence of Active Revoke
and false failure suspicions.

A. Active Revoke

The intuition behind this mechanism is that, instead of
requiring fast replicas wait for the messages, such as Propose,
Skip, or Learn, from slow replicas to commit their command-
s, we allow them to actively revoke the instances coordinated
by slow replicas, as long as their commit of client commands
has been delayed for a sufficiently long time.

Different from Mencius, an instance number in Fast Men-

cius is of the form counter ‖ id, where id is the identifer
of the coordinator of this instance. The instance numbers are
ordered primarily by counter. For the instance numbers with
the same counter, they are ordered lexicographically by id.
For example, the system in Figure 3 has three replicas A,
B, and C. Then the instance numbers will be ordered as
1A < 1B < 1C < 2A < 2B < 2C.... This assignment
scheme enables dynamically adding and removing replicas.
Besides, given one instance number, all the replicas know
unambiguously who is the coordinator of this instance.

Active Revoke is triggered if Condition 1 is met:
Condition 1 The commit of one of replica p’s proposed

commands has been deferred by an unlearned instance for
more than some time τ , and the failure detector indicates the
coordinator of the unlearned instance is alive.

If this condition is met, we say p is delayed by the coordi-
nator of the unlearned instance. To expedite its advancement,
p will revoke the instances coordinated by the slow replica
that prevent it from committing its commands, by running
both the Prepare Phase and Propose Phase of Paxos. Note that
in Mencius, revocation is done only when a replica suspects
another has failed. In Fast Mencius, revocation is also used
to help the fast replicas speed up their commits. The problem
arises from this design is that if multiple replicas concurrently
revoke the instances coordinated by a slow replica, there will
be competing Prepare messages: a Prepare with a higher
round number will suppress a Prepare with a lower round
number. As a result, only the sender of the Prepare with
the highest round number can finish the revocation process,
and the work done by other replicas is wasted. In fact, when
multiple replicas are delayed by a slow replica, after one of
them finishes revocation, the others can learn the outcome of
the revocation with the broadcasted Learn message. There-
fore, the number of concurrently revoking replicas should be
limited to save resources. This is achieved through the use of
Help messages in our design.
Help messages are small status-checkers the replicas use

to inquire other replicas about a particular piece of missing
information, and determine the appropriateness of sending
the following Prepare message. After a replica p initiates
Active Revoke, it first sends a Help message to all the
other replicas, which contains the instance numbers of the
consensus instances it wants to revoke. Upon receiving the
Help message, another replica q replies with an Ack message,
which includes the following information.

1. If q has learned the outcomes of some of the queried
instances, then Ack includes the learned commands.

2. If q is revoking some of the queried instances, which
means it has sent the Prepare message in these instances,
then Ack includes these instance numbers.
p collects the Acks from bn−1

2 c other replicas. Through
these replies, p learns the commands chosen in some queried
instances directly if they are in the Acks. p also knows which
queried instances are currently being revoked by other replicas,
and p will wait for these replicas to finish revocation and
broadcast the results. Note that since p only waits for the Acks

from a minority of replicas, it is rational for p to assume that
the senders of these Acks are the relatively fast ones, so it
can rely on them to do revocation. p revokes only the queried
instances whose results are still unknown and no Ack indicates
they are currently being revoked.

1) Protocol: The full Active Revoke mechanism is as
follows.

Help. If Condition 1 is met, then p initiates Active Revoke.
Assume the coordinator of the unlearned instance is q. Let
Cq be the smallest instance coordinated by q and not learned
by p, and let Ip be p’s index, i.e., the next available instance
coordinated by p. p sends Help(Cq, C

′
q) to the other replicas,

where C ′q = max{i : q coordinates instance i ∧ i < Ip}.
Upon receiving the Help message, another replica r com-

poses a reply as Ack(instance entries). The message may
include multiple instance entries for the instances within the
range [Cq, C

′
q] that q coordinates. If r has learned the results

of some of these instances, then the corresponding entry is
〈i,‘l’, v〉, where i is the instance number, and v is the learned
command. Else if r is revoking some of these instances, then
the corresponding entry is 〈i,‘r’〉. Otherwise, Ack is empty.

Revoke. p waits for the Acks from bn−1
2 c other replicas.

Assuming set S consists of the sequence numbers of the
queried instances whose results are still unknown and no Ack
indicates they are currently being revoked, p starts revoking
the instances in S by running both the Prepare Phase and
Propose Phase of Paxos, as shown in Figure 4, with an
optimization. The optimization is, if a replica already accepts
a command that is not no-op in an instance, and it starts
revoking this instance, then it broadcasts a special Prepare
message. Another replica’s Reply to this Prepare does not
convey the command it has accepted in this instance, if
any. This optimization reduces the overhead of revocation in
Fast Mencius. It is valid because by the definition of simple
consensus, only the coordinator can propose any command in
an instance, and the other replicas can only propose no-op.
Therefore, if any replica accepts a command that is not no-op
in an instance, it must have been proposed by the coordinator,
and there is no need to let the Reply contain the command if
the revoking replica already knows about it.

During Active Revoke, if p learns the results of all the
queried instances, either from q or from other replicas, then
p stops doing Active Revoke immediately. Also, p performs
Active Revoke for each unlearned instance coordinated by q
only once.

2) Example: Consider the scenario in Figure 3. Assume at
time 0 each replica proposes its first command: A proposes
in instance 1A; B proposes in instance 1B; C proposes in
instance 1C. At 100 ms B and C learn that their proposed
command has been chosen. However, they cannot commit,
because they don’t known the result of instance 1A. Let the
timeout threshold τ be 100 ms. Then at 200 ms both B and
C initiate Active Revoke by broadcasting the Help message.
At 300 ms B and C receive the Ack from each other. Since
neither of them knows the outcome of instance 1A or is
currently revoking 1A, both B and C decide to revoke 1A

Replica A
(slow replica)

Replica B

Replica C

Ack PrepareHelp Reply Propose Accept Learn

Phase 1 of Paxos Phase 2 of PaxosActive Revoke
is triggered at B

Fig. 4. Message flow of Active Revoke

and broadcast the Prepare message. Note that with Paxos,
the round numbers are partitioned among the replicas, e.g.,
in a round-robin fashion, so two replicas will never send
Prepare messages with the same round number. Assuming
the Prepare sent by C has a higher round number than the
one sent by B, C’s Prepare will suppress B’s Prepare, i.e.,
B will respond to C’s Prepare, while C will not respond to
B’s Prepare. At 400 ms C receives the Reply from B. Since
neither B nor C has accepted a command in instance 1A,
C proposes no-op in instance 1A. At 500 ms C receives the
Accept from B, and learns that no-op is chosen in instance 1A.
C sends the Learn message to all the replicas and commits
the command it proposes in instance 1C. At 550 ms B receives
the Learn message from C, and learns the result of instance
1A, so B can commit the command it proposes in instance
1B. As a result, Active Revoke reduces the commit latency of
B and C from 1500 ms to 550 ms and 500 ms, respectively.
This improvement is achieved because Active Revoke enables
the fast replicas to advance without learning from the slow
replicas, and thus their commit latency only depends on the
delay of the links connecting themselves, instead of the delay
of the links incident upon the slowest replica.

B. Multi-instance Propose

Active Revoke speeds up the advancement of the fast
replicas, by allowing the fast replicas to revoke the instances
coordinated by the slow replicas. In the worst case, however,
a slow replica may never be able to commit its proposed
commands. We explain this using the scenario in Figure 3.

Assuming at time 0 each replica proposes its first command,
replica A proposes a command v. With Active Revoke, replica
B and C broadcast their Prepare message at 300 ms. When
A’s Propose message is delivered at B and C at 500 ms, they
will not accept this proposal, because they have responded to a
Prepare with a higher round number. As a result, in instance
1A, A cannot collect Accepts from a majority of replicas.
At 1000 ms, A receives the Learn message from C, which
informs that no-op has been chosen in instance 1A. Then A
knows that instance 1A has been revoked by C. Following
Rule 4 of Mencius, A proposes v again in the next available
instance 2A. However, assuming at this time B or C also
proposes a new command, the commit of this command will
be delayed by A, which triggers Active Revoke again and
results in instance 2A being revoked. In the worst case, this
situation may repeat an unbounded number of times, and A
can never commit v.

Besides Active Revoke, the instances coordinated by slow
replicas may also be revoked because of false failure suspi-

cions. Since we assume the failure detector is unreliable, it
may make mistakes. Compared with fast replicas, the slow
replicas are more likely to be falsely suspected of having
failed. When false suspicions happen, following Rule 3 of
Mencius, the suspecting replicas will revoke the instances
coordinated by the suspected slow replicas, which prevents the
commands proposed by the slow replicas from being chosen
and committed. Mencius’s assumption on the failure detector is
that false suspicions will eventually cease. However, this may
take an unbounded length of time. Therefore, the slow replicas
will suffer from large and unpredictable commit latency if they
are falsely suspected.

To ensure the progress of Fast Mencius, i.e., any client
command sent to a correct replica is eventually committed,
and also to limit the commit latency of the slow replicas in
presence of false suspicions, the slow replicas should be given
opportunities to have their proposals chosen by the replicated
state machine. This is achieved through our Multi-instance
Propose mechanism. The intuition behind this mechanism is
that instead of letting a slow replica, whose instances are being
revoked by others, propose its command in one instance at
a time, we let it propose its command in multiple instances
simultaneously. In this way, even if other replicas revoke
some of these instances, the slow replica can still commit its
command if it is chosen in at least one of these instances.

1) Protocol: Multi-instance Propose is triggered if the
following condition is met:

Condition 2 None of γ consecutive commands proposed
by replica p is chosen by the replicated state machine.

A replica learns that its proposed command is not chosen, by
receiving a Learn message from another replica that informs
no-op has been chosen in the instance in which it proposed the
command. If replica p finds that none of its γ consecutively
proposed commands is chosen, it can deduce that it is slow
relative to others, and other replicas are revoking its instances.
Under this circumstance, p initiates Multi-instance Propose to
ensure that its commands can be successfully committed.

MultiPropose. With Multi-instance Propose, p proposes a
command v in a block of consensus instances simultaneously,
by broadcasting MultiPropose(I1, I2, r, v). This message
means that p proposes v in all the instances within the range
[I1, I2] that it coordinates. Since p is the default leader of
these instances, the round number r is 0. To determine I1
and I2, let Cp be the smallest instance among the γ revoked
instances coordinated by p, and Ip be p’s index. Then I1 = Ip,
and the number of instances coordinated by p within the rage
[I1, I2] is equal to the number of instances coordinated by
p within the range [Cp, Ip). For example, if Cp = 7p, and

Replica A
(slow replica)

Replica B

Replica C

MultiAccept LearnMultiPropose

Multi-instance Propose
is triggered at A

Fig. 5. Multi-instance Propose

Ip = 10p, then I1 = 10p, and I2 = 12p. After sending out the
MultiPropose message, p updates Ip to the next available
instance it coordinates, which is 13p in this case. Following
Optimization 1 of Mencius, p also uses this MultiPropose
message to promise not to propose any client command in
instances smaller than I1 in the future. That is, another replica
learns that the outcomes of all the instances smaller than
I1 and coordinated by p, in which it has not received any
proposal from p, are no-op, immediately after it receives the
MultiPropose message.

MultiAccept. After another replica q receives the
MultiPropose message from p, if its index Iq is
smaller than I1, q updates Iq such that its new index
I ′q = min{i : q coordinates i ∧ i > I1}. This is the
application of Rule 2 of Mencius in our Multi-instance
context. q also checks in which instances within the range
[I1, I2] that p coordinates it can accept v, i.e., it has not
responded to a Prepare message with a higher round number
in these instances. If q finds that it can accept v in at least
one instance coordinated by p within the range [I1, I2], then
q composes a MultiAccept message, which includes the
sequence numbers of all the instances in which it can accept
v, and sends the message back to p. Following Optimization 1
of Mencius, q also uses this MultiAccept to promise p that
it will not propose any client command in instances smaller
than I1 in the future.

Learn. p waits for the MultiAccepts from a majority of
replicas, and broadcasts Learn(i, v), where i is the smallest
instance that appears in all the MultiAccepts from a majority
of replicas. Note that there is at least one instance that
appears in all the MultiAccepts received by p, which is
instance I2. Here is an example. Let the number of repli-
cas be 5, with a quorum size of 3. Assume I1 = 10p,
I2 = 12p, and the first 3 MultiAccepts received by p
are MultiAccept(10p, 11p, 12p), MultiAccept(11p, 12p),
MultiAccept(12p). Then p broadcasts Learn(12p, v). This
Learn message does not mean that v will be definitely
committed at instance 12p, because the results of instances
10p and 11p are still unknown. After sending out Learn(12p,
v), if p receives MultiAccept(11p, 12p) from another replica,
then it broadcasts Learn(11p, v). Otherwise, if p receives
two MultiAccept(10p, 11p, 12p) messages, then it broadcasts
Learn(10p, v).

Commit. All the replicas will commit v at the smallest
possible instance. This means that a replica can make the
decision to commit v at instance i, only after it learns no-
op has been chosen in all the instances smaller than i in the

instance block p uses to propose v. In this case the replica
will commit no-op at all the other instances in the instance
block. Following the previous example, a replica decides to
commit v at instance 12p only after it receives Learn(10p,
no-op), Learn(11p, no-op), and Learn(12p, v); it decides to
commit v at instance 11p only after it receives Learn(10p,
no-op), and Learn(11p, v); it decides to commit v at instance
10p immediately after it receives Learn(10p, v). Note that the
Learn messages that choose no-op come from the replicas
who are revoking instances coordinated by p. The message
flow of Multi-instance Propose is shown in Figure 5.

It is possible that all the instances in the instance block p
uses to propose v are revoked by other replicas. If p receives
the Learn messages from other replicas that indicate no-op
has been chosen in all these instances, then p doubles the size
of the instance block and proposes v again. By increasing the
size of the instance block exponentially, p can quickly get an
opportunity to have its proposal chosen.

A replica initiates Multi-instance Propose once for only one
command, i.e., p proposes v using Multi-instance Propose,
but it proposes the commands after v still following Mencius,
as long as Multi-instance Propose is not triggered again. The
reasoning is that after successfully proposing a command with
Multi-instance Propose, a slow replica catches up with the
advancement of the other replicas, and others’ revocations
will not prevent the commands proposed by the slow replica
from being chosen, assuming the slow replica’s connection
speed is not dropping even more. Therefore, Multi-instance
Propose is designed to provide a one-time boost to the slow
replica, and it will go back to the normal mode of operation
afterwards. When a replica is in the Multi-instance Propose
state, it is not allowed to start Active Revoke. This is rational
because being in the Multi-instance Propose state means this
replica is relatively slow, and it should not revoke the instances
coordinated by others. The replica is allowed to initiate Active
Revoke only after it decides at which instance to commit
the command proposed with its MultiPropose message, i.e.,
when it quits the Multi-instance Propose state.

After a replica q receives the MultiPropose message from
p, and before it decides at which instance to commit v, it
does not update its index following Rule 2 of Mencius when
it receives subsequent Proposes from p. Optimization 1 of
Mencius does not apply here either: q does not use the Accept
that replies a subsequent Propose from p to promise not to
propose any client command in a smaller instance. To let
p know that this Accept has a different semantics, q adds
a flag in the message body. This design gives p priority to
propose v: the other replicas need to revoke all the instances
in the instance block step by step such as to invalidate the
MultiPropose message from p.

2) Example: Consider the system in Figure 3. Assuming
each replica proposes a command every 10 ms, replicas A, B,
and C propose their 1st command at time 0, the 2nd command
at 10 ms, and so on.

At 100 ms B and C learn that their 1st command has been
chosen in instance 1B and 1C, respectively. However, they

cannot commit because the result of instance 1A is unknown.
Assume the threshold τ used to trigger Active Revoke is 100
ms, and the threshold γ to trigger Multi-instance Propose
is 10. Then at 200 ms B and C initiate Active Revoke by
broadcasting Help(1A, 22A). At 500 ms C finishes revocation
and broadcasts the Learn message for instances 1A, ..., 22A,
informing that no-op has been chosen in these instances. The
Learn message is delivered at A at 1000 ms, which triggers
Multi-instance Propose at A, since more than 10 consecutive
commands proposed by A are not chosen. As the smallest
revoked instance is 1A, and A’s current index is 102A, A
sets the size of the instance block to 101 and broadcasts
MultiPropose(102A, 202A, 0, v) to propose a command v
at 1010 ms. The MultiPropose message is delivered at B
and C at 1510 ms. At this time B and C have revoked all
the instances coordinated by A within the range [1A, 132A],
following Active Revoke. Therefore, B and C accept v in all
the instances coordinated by A within the range [133A, 202A],
and their MultiAccepts are delivered at A at 2010 ms, when
A learns that v has been chosen in these instances. A receives
the Learn message from C at 1880 ms that indicates no-op
has been chosen in all the instances it coordinates within the
range [89A, 110A], and the Learn message from C at 2100
ms that informs no-op has been chosen in all the instances
it coordinates within the range [111A, 132A]. Then A can
commit v at instance 133A. All the other instances in the
instance block A uses to propose v are considered no-op. As
a result, the commit latency for v is 1090 ms, slightly larger
than a round-trip delay between A and other replicas.

The commands A proposes after v will not be influenced by
other replicas’ revocations. Following the previous example,
C learns it should commit v at instance 133A when it finishes
revoking the instances coordinated by A within the range
[133A, 154A] at 1820 ms, and B learns the same result when
it receives the Learn message from C at 1870 ms. After that,
when they receive a new Propose message from A, they will
follow Rule 2 of Mencius to make their indices match the
instance number of the Propose, and their future revocations
will not prevent the commands proposed by A from being
chosen, as long as the network conditions stay the same. This
is because when they send out Prepare messages to revoke
some of A’s instances, they already received the proposals
from A for these instances. As a result, they will propose
A’s proposals in these instances.

V. DISCUSSION

A. Correctness of Fast Mencius

To revoke the instances of slow replicas, Active Revoke uses
the Prepare and Propose phases of Paxos, whose correctness
has already been proved [12]. The Help messages are status-
checkers that determine when revocation should be triggered,
and they do not interfere with the revocation mechanism in
each consensus instance. Besides, a replica is allowed to per-
form Active Revoke for each unlearned instance at most once.
Thus, we avoid the liveness problem faced by Paxos when it

has multiple revoking replicas, in which different replicas keep
issuing revocation with increasing round numbers.

The correctness of Multi-instance Propose is guaranteed by
ensuring that all the unfailed replicas will make the same
decision at which instance to commit the command proposed
by Multi-instance Propose. Fast Mencius runs an unbounded
sequence of simple consensus instances. Each instance is
implemented by Coordinated Paxos [17], which is the same
with Paxos except for a different starting state, since in each
simple consensus instance the coordinator is the default leader.
Paxos ensures that in each consensus instance all the correct
replicas learn the same result, so for each instance in the
instance block used by a slow replica to propose a command
v with Multi-instance Propose, all the correct replicas receive
the same Learn message. Also, a replica cannot commit a
command unless it learns the commands chosen in all the
previous instances. Therefore, all the unfailed replicas will
make the same decision at which instance to commit v.

B. Setting parameters

Our Active Revoke and Multi-instance Propose mechanisms
are triggered by two conditions using parameters τ and γ,
respectively. Here we discuss how to set them.
τ determines when a replica delayed by a slow one should

start Active Revoke. In Mencius, the maximum extra latency
caused by delayed commit, which happens when there are
concurrent Proposes, is a round trip delay [17]. Therefore,
the minimal value of τ is a round trip delay between the
non-slow replicas. A replica can estimate the round trip delay
between itself and other non-slow replicas by measuring the
time interval between when it sends out a Propose and when
it collects Accepts from a majority of replicas. Assuming this
delay is d, τ can be set to d. Using a larger τ reduces the
number of times Active Revoke is triggered, while it increases
the commit latency. In the evaluation we set τ to a round trip
delay between the non-slow replicas.
γ determines when a slow replica, whose coordinated

instances are revoked by others, should start Multi-instance
Propose. Since being revoked in a sequence of consecutive
proposed instances happens only when a replica is slow
relative to others, γ can be set to the number of commands a
replica proposes within a short time period. For example, in
our evaluation we set γ to the number of commands a replica
proposes within 100 ms.

VI. EVALUATION

A. Experimental Setup

We implemented Fast Mencius using BFTSim [19], a sim-
ulation framework for state machine replication protocols.
BFTSim couples a high-level protocol specification language
and execution system based on P2 [16] with a network
simulator built upon ns-2. BFTSim was originally proposed
to implement and compare the Byzantine fault-tolerant (BFT)
protocols, including PBFT [3], Q/U [1], and Zyzzyva [11],
and it faithfully predicts the performance of the native protocol

3 replicas 5 replicas 7 replicas
0

500

1000

1500

2000

A
v
e

ra
g

e
 c

o
m

m
it
 l
a

te
n

c
y
 (

m
s
)

Mencius

Fast Mencius

606.1
518.6 480.7

1333.8
1400.9 1429.8

Fig. 6. Average commit latency of all the replicas

3 replicas 5 replicas 7 replicas
0

500

1000

1500

2000

A
v
e

ra
g

e
 c

o
m

m
it
 l
a

te
n

c
y
 (

m
s
)

Mencius

Fast Mencius

1500.5 1500.9 1501.3

358.9 373.3 377.3

Fig. 7. Average commit latency of non-slow replicas

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 300 400 500 600 700 800 900 1000

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
)

One-way delay of links connecting the slow replica (ms)

Mencius (all the replicas)
Fast Mencius (all the replicas)

Mencius (non-slow replicas)
Fast Mencius (non-slow replicas)

Fig. 8. Average commit latency

implementations [19]. Note that the functions needed to imple-
ment BFT protocols are a superset of the functions needed to
implement the crash fault-tolerant consensus protocols, since
the latter do not use the crypto operations required by the
former. Therefore, BFTSim can also be used to implement
and compare the crash fault-tolerant protocols.

For comparison, we also implemented Paxos and Mencius
with BFTSim. To further validate the fidelity of BFTSim, we
measured the throughput and latency of our Paxos and Men-
cius implementations under a range of network conditions, and
reproduced the published results. For example, the evaluation
in the original paper shows that with a three-replica clique
topology, when the payload size of each command is 4000
bytes and the total bandwidth is 99 Mbps, the peak throughput
of Mencius is 1550 operations per sec (ops), and the peak
throughput of Paxos is 540 ops [17]. With our implementations
and under the same network condition, the peak throughput of
Mencius and Paxos is 1550 ops and 550 ops, respectively.

We simulated a star network topology, where the replicas
are connected to each other via a hub node. Each link between
a replica and the hub node is a duplex link, with a bandwidth
of 20 Mbps. The one-way delay between a non-slow replica
and the hub node is 25 ms. This gives an RTT of 100 ms
between any pair of non-slow replicas. The link between the
slow replica and the hub node has a much larger delay.

B. Experimental Results

Commit latency. As stated in the original paper: “Mencius’s
commit latency is limited by the slowest server.” To get this

3 replicas 5 replicas 7 replicas
0

500

1000

1500

2000

2500

p
e
a
k
 t
h
ro

u
g
h
p
u
t
(o

p
s
)

Paxos

Mencius

Fast Mencius

200
300

650

1500

1350

19001900

1500
1350

Fig. 9. Peak throughput without any slow replica

3 replicas 5 replicas 7 replicas
0

500

1000

1500

2000

2500

p
e
a
k
 t
h
ro

u
g
h
p
u
t
(o

p
s
)

Paxos

Mencius

Fast Mencius

1500

1350

1900

200
300

650

1250
1150 1100

Fig. 10. Peak throughput with a slow replica

result, we set the one-way delay between the slow replica
and the hub node to 475 ms, which gives an RTT of 1000
ms between the slow replica and any non-slow replica. Each
replica proposes commands at a rate of 100 ops. The size of
payload in each command is 5 bytes. By varying the number
of replicas, we got the average commit latency of Mencius. For
comparison, we set τ = 100 ms, γ = 10, and got the average
commit latency of Fast Mencius, as shown in Figure 6. The
results illustrate that the commit latency of Fast Mencius is
significantly smaller than that of Mencius. With the increase of
the number of replicas, the average commit latency of Mencius
increases, while the average commit latency of Fast Mencius
decreases. The reason is shown in Figure 7. With Mencius,
the commit latency of the non-slow replicas is about 3 times
of the delay of the links connecting the slow replica, while the
commit latency of the slow replica is 2 times of this delay.
With Fast Mencius, the non-slow replicas have a much lower
commit latency, and the commit latency of the slow replica is
still about 2 times of the delay of the links connecting itself.

We got the commit latency of Mencius and Fast Mencius by
varying the delay of the links connecting the slow replica, from
300 ms to 1000 ms with an interval of 50 ms. The system con-
sists of 5 replicas. Figure 8 shows the average commit latency
of all the replicas and that of the non-slow replicas. The results
show that when we raise the delay of the links connecting
the slow replica, the commit latency of Mencius increases
considerably faster than Fast Mencius. Moreover, with Fast
Mencius, the commit latency of the non-slow replicas is not
influenced by the slow replica. We also measured the commit
latency when a non-slow replica fails. The commit latency of
the remaining replicas is not influenced. This is because both
Active Revoke and Multi-instance Propose only require the
participation of f + 1 replicas.

Throughput. When there is no slow replica in the system,
Fast Mencius behaves the same as Mencius. Figure 9 compares
the peak throughput of Paxos, which has high throughput
due to its simplicity, with that of Fast Mencius, when the
delay between every replica and the hub node is 25 ms, and

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35 40

P
e

a
k
 t

h
ro

u
g

h
p

u
t

(o
p

s
)

Duplex link bandwidth (Mb)

Paxos
Fast Mencius (without failures)

Fast Mencius (with a failure)

Fig. 11. Peak throughput with a slow replica

the bandwidth of each duplex link is 20 Mb. The size of
payload in each command is 2000 bytes. The results show
that, without any slow replica, the peak throughput of Fast
Mencius is about n times of that of Paxos, where n is the
number of replicas. The reason is that Fast Mencius, derived
from Mencius, utilizes available bandwidth in a more balanced
way with the rotating-leader design, while the single leader in
Paxos limits the peak throughput it can achieve.

Figure 10 compares the peak throughput of Fast Mencius
with that of Paxos and Mencius, when there is a slow replica.
The delay between the slow replica and any non-slow replica is
500 ms. The results show that Fast Mencius still outperforms
Paxos significantly. Also, the throughput difference between
Fast Mencius and Mencius, which is the overhead incurred by
our mechanisms, becomes smaller when the number of replicas
increases. This is because the task of revoking the instances
coordinated by the slow replica is done by more replicas.

Figure 11 compares the peak throughput of Fast Mencius
with that of Paxos, when there is a slow replica, by varying
the bandwidth of links from 5 Mbps to 40 Mbps with an
interval of 5 Mbps. The delay between the slow replica and
any non-slow replica is 500 ms. The system consists of 5
replicas. As expected, the peak throughput of both protocols
scales with available bandwidth, while the peak throughput
of Fast Mencius increases much faster than Paxos. Figure 11
also shows the peak throughput of Fast Mencius when a non-
slow replica fails. Compared with the non-failure case, the
throughput of Fast Mencius drops by around 25%. The reason
is in a 5-replica system with a slow one, a failure decreases
the available bandwidth of the non-slow replicas by 25%.

VII. RELATED WORK

Fast Paxos [15] is an extension of Paxos that admits two
execution modes. The fast mode allows clients to directly send
their commands to the acceptors. Fast Paxos suffers from col-
lisions, which happens when acceptors receive the commands
in different orders. When the number of commands is large,
the possibility of collisions is high, and Fast Paxos will have
a higher average latency than Paxos. As for throughput, Fast
Paxos cannot outperform Paxos, since the number of messages
sent/received by each acceptor is the same with Paxos with no
collision, and larger than Paxos when collisions happen.

Several consensus protocols deal with collisions by running
Paxos and Fast Paxos concurrently. The scheme proposed
by Charron-Bost and Schiper achieves the minimum latency
between Paxos and Fast Paxos only in failure-free runs [5],

while Hybrid Paxos [7] has a higher message complexity and
thus lower throughput than Paxos. Besides, these protocols
rely on a single leader. The unbalanced communication pattern
makes them unable to fully utilize the available resources.

The authors of Mencius also applied the rotating-leader
scheme to Byzantine fault tolerance, and proposed RAM [18],
a low latency BFT protocol for wide-area networks. Similarly,
EBAWA [20] is a BFT protocol that adopts the rotating-leader
design. Different from RAM, EBAWA requires 2f+1, instead
of 3f+1, replicas to tolerate f faulty replicas. It uses a trusted
component on the servers to reduce the number of replicas
and communication steps required for reaching agreements.
Besides state machine replication, fault tolerance has also been
widely considered in other areas [6], [21].

VIII. CONCLUSION

In this paper, we present Fast Mencius, a protocol for state
machine replication that tolerates crash failures. Fast Mencius
is derived from Mencius, and it enhances Mencius with Active
Revoke and Multi-instance Propose. The evaluation shows
that in presence of slow replicas, the commit latency of Fast
Mencius is significantly smaller than that of Mencius.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. Reiter, and J. J.
Wylie. Fault-scalable Byzantine fault-tolerant services. In SOSP, 2005.

[2] M. Burrows. The chubby lock service for loosely coupled distributed
systems. In USENIX OSDI, pages 335–350, 2006.

[3] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In USENIX
OSDI, 1999.

[4] T. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, 1996.

[5] B. Charron-Bost and A. Schiper. Improving Fast Paxos: being optimistic
with no overhead. In PRDC, 2006.

[6] M. Ding and X. Cheng. Fault tolerant target tracking in sensor networks.
In MobiHoc, 2009.

[7] D. Dobre, M. Majuntke, M. Serafini, and N. Suri. HP: Hybrid Paxos
for WANs. In EDCC, 2010.

[8] M. J. Fischer, N. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382,
1985.

[9] S. Hemminger. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, pages 299–
319, 1990.

[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free
coordination for Internet-scale systems. In USENIX ATC, 2010.

[11] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
Speculative Byzantine fault tolerance. In SOSP, 2007.

[12] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[13] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25,
2001.

[14] L. Lamport. Generalized consensus and Paxos. Technical Report MSR-
TR-2005-33, Microsoft Research, 2005.

[15] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.
[16] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.

Implementing declarative overlays. In SOSP, 2005.
[17] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building efficient

replicated state machines for WANs. In USENIX OSDI, 2008.
[18] Y. Mao, F. P. Junqueira, and K. Marzullo. Towards low latency state

machine replication for uncivil wide-area networks. In HotDep, 2009.
[19] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. BFT protocols

under fire. In USENIX NSDI, 2008.
[20] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. EBAWA:

Efficient Byzantine agreement for wide-area networks. In HASE, 2010.
[21] W. Wei, F. Xu, C. C. Tan, and Q. Li. Sybildefender: Defend against

sybil attacks in large social networks. In IEEE INFOCOM, 2012.

