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Abstract

We present a new mesh decimation framework

which is based on the probabilistic optimization

technique of Multiple-Choice algorithms. While

producing the same expected quality of the out-

put meshes, the Multiple-Choice approach leads

to a significant speed-up compared to the well-

established standard framework for mesh decima-

tion as a greedy optimization scheme. More-

over, Multiple-Choice decimation does not require

a global priority queue data structure which reduces

the memory overhead and simplifies the algorithmic

structure. We explain why and how the Multiple-

Choice optimization works well for the mesh dec-

imation problem and give a detailed CPU pro-

file analysis to explain where the speed-up comes

from.

1 Introduction

Since the complexity of polygon mesh datasets

(emerging, e.g., from 3D scanning or iso-surface

extraction) is increasing much faster than the ren-

dering performance of graphics hardware, mesh

decimation techniques have been an active research

area over at least the last decade [5, 7]. After

many different approaches have been investigated

and compared, today two basic concepts can be con-

sidered as the standard solutions: One concept is

vertex clustering and the other is incremental deci-

mation.

While vertex clustering [17, 13] is very fast and

effective, the quality of the resulting meshes is of-

ten not satisfying. The major drawbacks of this

approach are that it usually leads to a vertex dis-

tribution which does not adapt to the local curva-

ture of the surface and that it cannot guarantee a

proper manifold topology of the resulting mesh. On

the other hand, incremental decimation [8, 6, 20],

where one atomic decimation step is executed after

the other, typically leads to superior mesh quality in

terms of approximation error for a prescribed trian-

gle count as well as triangle count for a prescribed

approximation error. In addition, incremental deci-

mation can guarantee the preservation of the initial

topology.

Although there are many different incremental

decimation schemes in the literature, they all follow

the same basic principle that each possible atomic

decimation operation (candidate) is rated according

to some quality criterion. Then in every step the

“best” candidate is decimated which triggers new

evaluations of the quality criterion in its vicinity.

As observed in [10], the decimation problem can be

understood as an instance of the knapsack-problem

with the number of decimation operations being the

objective function and the geometric approximation

error being the capacity function.

Obviously, finding the optimal decimation se-

quence is a very complex problem [1] and conse-

quently one has to find solutions with approximate

optimality. The above best-first strategy is, in fact,

a greedy strategy to find a decimation sequence that

is close to optimal.

In this paper, we are using a different optimiza-

tion strategy to address the mesh decimation prob-

lem. Instead of doing greedy optimization (which

requires to find the best choice among all candi-

dates) we are using a Multiple-Choice paradigm

(which requires to find the best choice only among

a small subset of the candidates).

The motivation for using this probabilistic opti-

mization strategy is the fact that when decimating

high resolution meshes, most of the vertices will be

removed anyway – usually 90% to 99% of the orig-

inal data. Hence it is not necessary to look at all

possible candidates in every decimation step.
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Let us e.g. assume that we decimate a given 3D

model down to 5% of the original complexity. The

basic idea of Multiple-Choice techniques is to pick

a small random subset of candidates, say 8 possible

edge collapses, and then perform the best of them.

This strategy leads to a wrong decision only in the

rare case when all 8 collapses do not belong to the

95% majority of candidates that are supposed to be

removed. The probability for a wrong decision is

hence
( 5

100

)8

≈ 10−11
,

which implies that a reliable decision if a certain

atomic decimation step is part of the optimal dec-

imation sequence or not can be based on a small

subset of candidates. Notice that for the above esti-

mate we exploit the fact the most atomic operations

are independent from each other and the exact or-

der of the decimation steps matters only for direct

neighbors.

The major benefit of the Multiple-Choice opti-

mization compared to the greedy optimization is

that the algorithmic structure is much simpler. An

implementation of the greedy strategy usually re-

quires a priority queue data structure for the candi-

dates that has to be initialized and updated during

the decimation (whenever the priorities/qualities of

the candidates are re-evaluated). For the Multiple-

Choice optimization we do not need a priority

queue and consequently we save memory space and

computation time. Our experiments show that the

Multiple-Choice decimation is more than a factor of

2.5 times faster than a highly optimized greedy im-

plementation (both using the QEM quality criterion

[6]). While producing the same quality of the out-

put meshes as the QEM-based greedy optimization,

our multiple choice approach can run at decimation

rates of more than 70K triangles per second on a

standard PC.

2 Multiple-Choice Techniques

Multiple-Choice algorithms (MCA) are a prob-

abilistic optimization technique that has been

investigated thoroughly in the fields of tele-

communication, distributed systems, and theoreti-

cal computer science. The fundamental idea be-

hind MCA is quite simple and intuitive and can be

explained best using the well-established bins-and-

balls model [2, 18] (cf. Fig. 1).

multiple-choice d = 3multiple-choice d = 3multiple-choice d = 3multiple-choice d = 3

random choicerandom choicerandom choicerandom choice

Figure 1: Bins-and-balls model. Top: random ball

insertion; Bottom: multiple-choice ball insertion.

Consider we have n balls to be uniformly dis-

tributed over n bins, i.e., each ball is put into a ran-

dom bin and for each ball, the destination bin is se-

lected independently from earlier choices (cf. Fig. 1

Top). Obviously, the expected number of balls in

each bin would be one. Moreover, a more detailed

probability analysis of this random allocation pro-

cedure shows that the maximum load, i.e., the ex-

pected number of balls in the fullest bin, will be

(1 + o(1))
ln(n)

ln(ln(n))
,

with high probability [12].

Instead of putting each ball into an independently

selected bin, the idea of MCA is to choose a small

random subset of d bins and then put the ball into

that bin with the least number of balls already in it

[18] (cf. Fig. 1 Bottom). By this MCA strategy, we

can guarantee that the maximum load is

ln(ln(n))

ln(d)
+ O(1),

(see [2] for detailed proof) which is an exponen-

tial improvement compared to the pure random ap-

proach.

After their discovery, MCA have been used as

an optimization tool in many different applications.

For example, Karp et al [9] used them for efficient

hashing in the context of shared memory computer

simulation. In this application, the balls are just the

hash-keys and the bins stand for table entries. The

maximum load is the maximum length of the colli-

sion chains in the hash table.
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Another application example is data allocation

and data management [15]. Here the balls represent

data objects and the bins are memory blocks or disk

sectors. The maximum number of requests to the

same storage location corresponds to the maximum

load.

In parallel and distributed systems, MCA have

been adopted to online load balancing [2]: the balls

represent jobs, the bins are online computers, and

the maximum load is the maximum number of jobs

per machine. Other applications include routing in

networks [4], queueing processes [19], etc. A thor-

ough survey of Multiple-Choice optimization tech-

niques can be found in [16].

So far we are not aware of any application of

MCA to optimization problems in the field of com-

puter graphics. In this paper we are using MCA to

find approximately optimal solutions in the context

of mesh decimation.

3 Multiple-Choice Decimation

In order to apply MCA to the mesh decimation

problem we have to map balls, bins, and maximum

load to the corresponding mesh entities. Since the

balls are enumerated in the outer loop (“for each

ball make a MC decision”) they correspond to the

decimation steps. The bins represent the possible

choices in each step and hence they correspond to

the possible candidates. The maximum load finally

is the value that is to be optimized and consequently

we associate it with the quality criterion that is used

to rate the candidates (cf. Table 1).

Table 1: Multiple-Choice decimation correspon-

dence to the balls-and-bins model.

balls-and-bins

model

Multiple-Choice decima-

tion

balls atomic decimation steps

bins candidate operators

maximum load maximum approxiamtion

error

In this setup, the MCA approach to mesh decima-

tion consists of testing a small set of d randomly se-

lected candidates (e.g. edge collapses) in each step

and performing that decimation operation among

this small set that has the best quality value.

The parameter d in the above description con-

trols how good the MCA approximates the stan-

dard greedy approach. In fact, for d = n both al-

gorithms are identical and the priority queue mech-

anism used in the greedy approach has only the pur-

pose of speeding up the algorithm since it allows to

reuse the ordering of the unmodified quality values

from the previous decimation step.

The statistical analysis of MCA (Sect. 2) implies

that even for relatively small values d the approxi-

mation of MCA is very good. As will be demon-

strated in Section 5, the mesh quality that we ob-

tain with MCA is already indistinguishable from the

greedy approach if we choose d = 8. With such

a small number of candidates to be tested in every

step, we do not need a global data structure like a

priority queue to speed up the computation because

the re-computation of the ordering is actually less

expensive than updating the global queue. This re-

duces the memory consumption and makes the al-

gorithm much easier to implement.

4 Decimation Algorithm

Using the above idea of Multiple-Choice decima-

tion, the overall framework of our incremental dec-

imation algorithm is as follows:

1. Read (part of ) the mesh model into the main

memory.

2. Randomly choose d atomic decimation oper-

ators from all candidates, compute their re-

spective decimation costs using a specific er-

ror/quality metric.

3. Select that operator with smallest cost/error

and perform this operator

4. Repeat step 2 and 3, until the user-defined ter-

minating condition is met.

This generic framework is somehow similar with

those previous ones (except the Multiple-Choice

optimization strategy), but it is much easier to im-

plement and it does not put any limitations on the

choice of the atomic decimation operator or on the

error or quality metric.

In our implementation we use the error quadrics

(QEM) introduced in [6] to rate the quality of each

candidate. The atomic decimation operator is the

half-edge collapse that does not introduce new ver-

tex positions but rather sub-samples the original

mesh [10] (see Fig. 2). We prefer half-edge col-

lapses since they make progressive transmission
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more efficient (no intermediate vertex coordinates)

and enable the construction of nested hierarchies on

unstructured meshes [11] that can facilitate further

applications.

Figure 2: Half-edge collapse operator.

Our implementation is based on the OpenMesh

data structure [3] which is a generic edge-based

polygon mesh data structure. We could even in-

crease the performance of our implementation by

switching to a more specialized data structure but

we decided to use OpenMesh for software design

reasons.

In Table 2, we summarize and compare the

greedy and the MCA implementation of the QEM-

based decimation. It is obvious to see that the MCA

decimation does much less work than the greedy

version and it can be expected to be much faster.

Moreover, since both algorithms are using the same

quality criterion, they are producing very similar

decimation results.

Table 2: Multiple-Choice decimation algorithm

compared with greedy simplification.

greedy MCA

Initialize initialize

quadrics,

initialize

quadrics

evaluate quality

for all candidates,

perform global

queue sorting

Select

candidate

top of the queue best out of d ran-

dom choices

Decimate perform operator,

locally recompute

qualities, update

global queue

perform opera-

tor

5 Comparisons and Results

We compare our MCA decimation scheme to a

highly optimized implementation of the greedy dec-

imation scheme. Both implementations are using

the same underlying mesh data structure, the same

routines for the QEM evaluation and the same half-

edge collapse procedure. Hence the differences in

running time and memory allocation are only due

to the different optimization principles.

All experiments were done on a commodity PC

with AMD 1700+ CPU and 1 GB RAM. Since

the MCA is a randomized algorithm (and since the

system performance usually varies slightly due to

background processes competing for CPU time) we

let each experiment run five times and then took the

median of the respective timings to eliminate out-

liers.

The parameter d in the MCA is set to 8 in all ex-

periments. With this value we obtain a very similar

output quality for both approaches and the variance

for the MCA is sufficiently low.

The approximation error is measured by the

Hausdorff-distance between the original mesh and

the decimation result. We chose the maximum er-

ror instead of some average since this value is more

relevant in most technical applications (maximum

tolerance).

The timings (excluding reading from and writing

to disk) and errors for various models are summa-

rized in Table 4. The MCA algorithm is about a

factor of 2.5 times faster than the greedy version.

It reaches a maximum performance of up to 70K

decimated triangles per second. We also depict the

absolute maximum geometric errors for the Bunny

model (Figure 3) and the Max model (Figure 4)

when decimating them to various levels of details

by the two different algorihtms. Whether the mod-

els are drastically decimated or not, the accuracy of

the MCA algorihtm is almost identical to that of the

greedy version.

To obtain a better understanding of which sub-

tasks in the decimation algorithms are using the

most CPU time, we run a detailed profiling on the

greedy and the MCA version when processing the

same model (the bunny). The results are given in

Table 3. It turns out that in the MCA version the

evaluation procedure for the QEM as well as the

procedure that checks if a given candidate collapse

is legal (topological consistency, normal flipping)
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Figure 3: Absolute maximum geometric error for

Bunny model. The diagonal length of bounding box

is 0.25.
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Figure 4: Absolute maximum geometric error for

Max model. The diagonal length of bounding box

is 450.35.

are executed less frequently than in the greedy ver-

sion. This indicates that a certain portion of these

evaluations and tests during the update of the pri-

ority queue are redundant, i.e., the quality rating of

a candidate is updated several times (triggered by

collapses in the vicinity) before it is actually con-

sidered for decimation. Of course, this redundancy

cannot be avoided completely in the MCA version

but it is obviously reduced.

Another observation is that the best-of-d selec-

tion (d=8) takes much less time than the updating of

the priority queue which justifies the claim that re-

computing the ordering in the MCA version is less

expensive than reusing the ordering of the unmodi-

fied part from the previous step as it is done in the

Table 3: Running time profiles of Multiple-Choice

decimation and greedy decimation. Notice that the

total time is higher than in Table 4 because of the

frequent time measurements during runtime.

Stages MCA greedy

t(s) % t(s) %

init. quadrics 0.143 12.0 0.144 5.9

eval. quadrics 0.625 52.6 0.874 35.6

chk. collapse 0.246 20.7 0.408 16.6

update mesh 0.048 4.0 0.050 2.0

best out of d 0.127 10.7 – –

update queue – – 0.980 39.9

total 1.189 100 2.456 100

greedy version.

Analysing the memory usage, we find that for

QEM-based decimation algorithms and a mesh

model with n vertices, we need 10*4*n Bytes for

the quadrics (double precision) and 3*8*n Bytes

for the edge-based priority queue (3n edges, each

has 4 Bytes priority value and 4 Bytes edge pointer)

without considering the storage for the mesh itself.

In total, the greedy implementation requires at least

64n Bytes memory overhead. Our MCA version in-

stead only uses 40n Bytes for the quadrics which re-

duces the memory overhead by 37.5%. Even com-

pared with the well-known memoryless simplifica-

tion method [14], which only needs 24n Bytes for

a priority queue, our approach is still acceptable

with a much faster speed. In addition, since the cur-

rent memory overhead of MCA is just used for can-

didate ordering and the MCA strategy is indepen-

dent of that, we can remove this memory overhead

completely by adopting the cost functions in [14] if

needed.

The Figures 5 to 7 demonstrate that the visual

quality of the decimated meshes generated by the

MCA version are not distinguishable from the re-

sult of the greedy version. In Figure 6, the dragon

model is drastically simplified (99%) but the differ-

ence between both versions is still hardly perceiv-

able. Since both versions are based on the same

quality criterion, they preserve the same amount of

geometric detail (cf. Fig. 7).
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Table 4: Time and error performance of Multiple-Choice decimation algorithm and greedy decimation

method both based on the quadric error metric and half-edge collapses.

models triangles maximum error runing time(s) speed(tri/s)

input output greedy MCA gr/M greedy MCA gr/M MCA

bunny 69666 696 0.0036 0.0040 0.90 2.18 0.97 2.25 71821

sucker 230141 10138 2.5 2.62 0.96 7.27 3.28 2.21 70165

max 398043 5918 7.60 7.25 1.05 15.19 5.97 2.54 66674

dragon 871414 10520 0.0012 0.0011 1.09 37.85 15.03 2.52 57978

buddha 1087469 16412 0.0015 0.0014 1.08 49.37 18.58 2.66 58529

Figure 5: The bunny model decimated to 696 triangles shown with flat shading, hidden-lines and error

distribution. The upper row is generated by the greedy version, the lower row by the MCA version.

6 Conclusion

In this paper we applied the generic probabilis-

tic optimization principle of Multiple-Choice algo-

rithms to the problem of incremental mesh decima-

tion. We compared the resulting algorithm to the

standard mesh decimation algorithm which is based

on the greedy optimization principle. Our results

and their discussion show that the MCA approach

leads to a simpler algorithmic structure (no prior-

ity queue data structure), it runs significantly faster

(fewer redundant computations, no global update)

and it produces much less memory overhead.

Our detailed CPU time profile analysis with dif-

ferent models and on different computers reveals

some interesting observations and directions for fu-

ture research. We let the MCA and the greedy ver-

sion run on two different computers with identical

bus performance (133 MHz SDRAM) but different

CPUs. One CPU is an 866 MHz Intel PIII and the

other one is an ADM 1700+ which is claimed to be

twice as fast as the other one. When decimating the

bunny model down to 700 triangles we obtained the

following average timings:

MCA greedy

Intel 866 1.12s 2.93s

AMD 1700+ 0.97s 2.18s

If we believe that the pure computation is really

twice as fast on the AMD 1700+ and if we take the
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Figure 6: Decimated dragons with 10520 triangles by greedy optimization (left) and by Multiple-Choice

optimization (right).

fact into account that both computers have the same

bus performance then we conclude that the MCA

version spends 0.82 sec with memory accesses and

the greedy version spends 1.53 sec with memory ac-

cesses. Both numbers are computed by linear inter-

polation of the two timings at 866 MHz and 1700

MHz, e.g. if a is the computation time on the AMD

processor and b is the common memory access time

then we have to solve the system,

Intel 866: 2a + b = 1.12

AMD 1700+: a + b = 0.97

which implies that 0.97 - 0.15 = 0.82 sec is the por-

tion of the running time that does not depend on

the processor speed. Hence, from the CPU point

of view, the MCA version is more than four times

faster than the greedy version (0.15 sec vs. 0.65 sec)

but from the memory access point of view it is only

faster by a factor of two (0.82 sec vs. 1.53 sec).

Since the AMD 1700+ computation time (0.15

sec) is more that five times lower than the mem-

ory access time (0.82 sec) in the MCA version, fu-

ture improvements of the decimation performance

should rather aim at reducing the memory accesses

instead of trying to speed up the computation.
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