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Abstract .  Message authentication codes (MACs) using polynomial eval- 

uation have the advantage of requiring a very short key even for very large 

messages. We describe a low complexity software polynomial evaluation 
procedure, that for large message sizes gives a MAC that has about the 

same low software complexity as for bucket hashing but requires only 

small keys and has better security characteristics. 
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1 I n t r o d u c t i o n  

The verification of the authenticity of a text document or a datafile is one of 

the main applications of cryptographic techniques. A common used technique 

for this purpose is the application of a message authentication code (MAC). 

Basically we have two users called the sender S (or signer) and the verifier V. S 

and V share a secret random key string and a publicly known MAC. The MAC 

maps a message string to a shorter, so called, tag string. The sender calculates 

the tag corresponding to the message string and the shared secret key string and 

sends the message to V together with the tag. V accepts a received message if 

the received tag is the same as the tag for the received message and the secret 

key. A good MAC is designed to make it hard for an adversary to send own 

messages or substitute observed messages by new ones, without being detected 

by the receiver. 

Usually one distinguishes between so called unconditionally secure, compu- 

tationally secure, and provable secure authentication codes, [1, page 392]. Codes 

belonging to the first category are codes for which the security of the MAC is inde- 

pendent of the computational power of the adversary. The security of these codes 

is expressed in the probability of success of an deception attack. A MAC is called 

computationally secure if the adversary is faced with the difficulty that all known 
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computational methods to perform an attack require a infeasible amount of com- 

putation. MACs for which it can be shown that an successful attack implies that 

some other, usually well-known and presumed hard, problem can be solved are 

called provably secure. Traditionally computational and provably secure codes 

have been considered to be more of practical interest. However, unconditionally 

secure codes can easily be turned into practical provable secure codes by using 

a finite pseudo random function as was shown in [2], [3]. Usually the MAC com- 

putation has to be done in software. This is no problem when the message is of 

small size. Designing good efficient MACs for large message sizes is a challenging 

problem. 

Carter and Wegman [4] introduced the concept of universal families of hash 

functions. They can be used to construct unconditionally secure MACs as shown 

in, for example, [4] and [5]. They also have numerous applications outside cryp- 

tography. In this paper we study how to construct a good family of universal 

hash functions that have a low complexity and which are suitable for software 

implementation. This problem was also the subject of the paper by Rogaway [2] 

where he introduced bucket hashing. Bucket hashing is a clever way to construct 

a family of universal hash function. Using bucket hashing the authentication of a 

long message requires only about 9-13 machine instructions per message word. 

Thus bucket hashing leads to very fast MACs. However it requires a key string 

of about the same size as the message string. Even if this string will be computed 

from a main key by some strong random number generator it is desirable to keep 

the string short. In [6] constructions were given of universal families of hash func- 

tions based on a relation between authentication codes and error correcting codes. 

These constructions require very small key size even for long messages and small 

probabilities of deception (there exist multi-round authentication constructions 

with smaller key size [7], [8], [9]). The constructions in [6] require polynomial 

evaluation in a finite field. 

OUR CONTRIBUTION: This paper describes an efficient procedure for evaluat- 

ing polynomials over a finite field to be used in the construction of a fast MAC. 

We obtain a MAC that can authenticate messages in about 7-13 instructions 

per word. Furthermore, the random (key) string that is required is much smaller 

than for the bucket hashing construction. Moreover, the probability of deception 

in our construction is uniformly (for all keys) bounded, where as this probability 

is given as an average for bucket hashing. 

We begin with describing the construction of a universal family of hash func- 

tions that we are going to investigate. In Section 3 we propose fast procedures for 

polynomial evaluation in large fields. We calculate the complexity of the proposed 

procedures. Finally we give examples of MAC computations and investigate how 

fast they can be done in software. We compare the evaluation procedures with 

bucket hashing. 
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2 U n i v e r s a l  h a s h  f u n c t i o n s  b a s e d  o n  p o l y n o m i a l  

e v a l u a t i o n  

2.1 M A C  c o n s t r u c t i o n  

A family  o f  hash funct ions is a finite multi-set H of  functions, each h �9 H having 

the same nonempty  domain  set A and range set B. In what  follows we will assume 

A and B to be sets over binary a lphabet  {0, 1). We recall the following definitions. 

D e f i n i t i o n  1 [5]. Let e > 0. A multi-set  H of  n functions f rom a set A to a q 

-set B is e-almost universals (c - AUs) if for every pair  a l ,  a2 �9 A, a l r  a2 the 

number  dH(a t ,a2)  = I{h �9 H ; h ( a l )  = h(as)}l <: c . n .  

D e f i n i t i o n 2  [5]. Let e > 0. A multi-set H of  n functions f rom a set A to a q 

-set B is e-almost s trongly universals (e - ASUs ) if: 

1. for every a �9 A and y �9 B, the number  of elements of  H mapping  a ~4 y 

is n/q ,  

2. for every pair a t , a s  �9 A, al ~ as , and every pair  Yl,Y2 �9 B the number  of 

elements of  H that map  al ~-~ Yt and a2 ~-4 Y2 is <: e �9 n/q .  

Given a family  of  hash functions H we can directly construct  an uncondit ion- 

ally secure MAC [4], [5] or a complexity-theoret ic  var iant  when used together 

with a pseudo r andom function [2]. 

We investigate a construct ion of  e - ASU2 family  based on a concatenat ion 

of  an el - AUs family  and an es - ASUs family. For such a concatenat ion the 

following can be shown. 

T h e o r e m 3  [5]. Let H1 be and el - AUs f rom A1 to B1 and let hs be an e2 - 

ASUs  f rom B1 to B2. Then H = H1 x Hs is an c - ASUs  f rom A1 to B2 with 

e <_ el  + es - e le2 .  

We also need the following lemma.  

L e m m a 4  [6]. Let lr be some IFqo-linear map f rom ]FQ onto lFq, where Q = 

q~,  q = q[) and qo a pr ime  power. Then the following fami ly  o f  hash funct ions 

g = {ha,b;ha,b(X) = ~r(ax) + b), where a , x  �9 IFc2,b �9 ]Fq is e - ASU2, with 

e = 1/q. 

For large message sizes the following construct ion realizes an e - ASU2 family 

which maps  elements f rom a large set A to a relative small set B for given e 

requiring a small value of  IHI. 

C o n s t r u c t i o n  [6]: Let q = 2 r , Q  = 2"* = 2r+S,n  = 1 + 2 s and ~r be the 

same as in L e m m a  4. Let 

x ,y ,  ao, a l , . . . , a n _ l  E ]FQ, 

H = {h~,y,z :hx,u,z 

fa (x)  = ao + a l x  + a2x s + . . .  + a n _ l x  '~-1, where 

z E lFq and 

(a) - h~,y ,z (ao , . . . ,  a n - l )  = 7r(yfa(x)) + z}.  

T h e o r e m  5 [6]. H in the construction above is e - ASU2 with e < 2/2  r, ]AI : 
Qn = 2(r+s)(l+S,) and IHI = Q2q. 
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The construction is a concatenation of a 1/2 r - AUs family of hash functions 

obtained from a Reed Solomon code and a 1/2 r - ASUs family of Lemma 4. 

The construction above also gives us directly an unconditionally secure MAC. 

Considering the vector a = a0 , . . . ,  a . - 1  as a message where a0, a l , . . . ,  a~- i  E 

IFQ and x, y E IFQ, z E IFq as the key parts gives us the corresponding MAC. This 

means that for the unconditionally secure MAC we have a key size of log s [H I = 

logs(QSq) = 2m + r and a tag size of log s [B[ = log s q = r bits. The probability 

of deception is less than e < 2/2 ~. 

The following construction is also useful if for given message size parameters 

the realized bound on e is too large. 

T h e o r e m 6 .  Let H be a c - ASUs  with n functions,  domain set A ,  and range 

set  B .  Then the fami ly  H s with domain set A and range set  B x B defined by 

H S = { h = ( h l , h s )  E H x H ; h : A g a ~ - + ( h l ( a ) , h 2 ( a ) ) E B •  (1) 

is an e s - ASUs .  Furthermore,  IH 2] = n s. 

Proof. The domain and range sets of H 2 as well as ]H 2 ] follow from the definition 

of H 2. Furthermore, it also follows from the definition that condition 1) of Defin- 

ition 2 is satisfied for H 2 . Since the component functions hi and hs of h E H s 

can be chosen independently there will be at most (c. n/ IB])  s. But u s = IH s] 

and the range set of H s has cardinality IBI s. Thus H 2 is an e s - ASUs. 

2.2 A m u l t i p l e  m e s s a g e  M A C  

Assume we want to authenticate 1 messages. Let al ,  �9 �9 at be a message sequence 

of I messages. For 1 < i < l let 

Hi = {h=,y,~, : h~,y,z(ai) = h=,y,z,(aio, . . . ,  aid_l) = ~r(yfa, ( z ) ) +  zi},  

where ai0, . . . ,a i~=l  E IFQ and x , y  E IFQ, zi E ]Fq, be the hash function of 

the i-th message. It was shown in [4], [10] that this gives us an unconditionally 

secure multiple message MAC. The key parts z and y may in this construction 

be considered as "hidden" key parts and they can remain unchanged for all 

messages in the sequence. Only the part zi has to be refreshed for each message. 

A complexity-theoretical secure MAC for multiple use can easily be obtained 

from the unconditionally secure by changing the key part zi by the output of a 

pseudo random function, see for example [2]. 

Recently, in [11] a new method for multiple authentication was proposed. 

This method does not use a refreshed key part and, hence, it does not require 

the z~ (called counter in [11]) for multiple authentication. Consequently there is 

no problem if one or several messages are lost during transmission. However this 

method exhibits a growth of the key size which is quadratic in the number of 

messages to be authenticated! Our method can easily be extended to handle lost 

messages or synchronization loss by adding the index i to the message ai to be 

authenticated. 
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We consider multiple message MAC as a way of balancing between the com- 

plexity of pre-calculations and the complexity of a MAC calculation. In the next 

section we propose an efficient method for the evaluation of a polynomial of a 

large degree over a large finite field. 

3 Polynomial evaluation 

3.1 T h e  bas ic  p r o c e d u r e s  a n d  t h e i r  c o m p l e x i t y  

The main step in the MAC construction is the evaluation of a polynomial 

n--1  

fa(x) = E aixi where ai �9 {0, 1} z~ 

i = 0  

in some point of a finite field IFQ. Let Q = 2 m, w < m and n < Q. As the 

measure of computational complexity we will use the binary complexity and the 

multiplicative complexity. 

D e f i n i t i o n 7 .  The b i n a r y  c o m p l e x i t y  Cb(4) of the calculation [12] of some 

function 4 is defined as the total (minimal) number of elementary bit (Boolean 

or bit-level) operations from the set {V, A, ~}  used in the calculation of 4.  

The m u l t i p l i c a t i v e  c o m p l e x i t y  C,~ (4) is defined as the total (minimal) num- 

ber of multiplications over the finite field used in the calculation 4 .  

We also can use the binary complexity reduced to a subset of {V, A, •}, for 

example, the number of modulo 2 additions C e ( 4  ). 

L e m m a 8 .  For any pair of elements of a finite field lFq, Q = 2 m, the binary 

complexity of addition is Cb(+) = C e ( + )  = m and an upper estimate of the 

binary complexity of multiplication is Cb(*) = 0 (m2). 

Remark: This lemma has been proven in several variants. The bound Cb(+) = 

C a ( +  ) = m is trivial. The bound Cb(*) = O (m 2) has been obtained for bit- 

serial structures of multipliers over finite fields as the product of m clock-cycles 

and m functional gates (@ , for example) for a dual basis [13], for a standard 

basis [14] and for an optimal normal basis [15]. It is known as an estimate of 

the number of functional elements for bit-parallel structures over the standard 

basis [16], [17]. It is also known for systolic arrays and other structures. The 

lowest asymptotic upper bound O (m log 1+C m), e > 0 can be obtained through 

fast convolution that uses a F F T  over a finite or a surrogate field. However, it 

becomes less complex only for very large m (more than 1000). A modification of 

Karatsuba's method (or recursive double length multiplication formula [21]) for 

fast polynomial multiplication [16] gives another upper bound, O (ml~ that is 

applicable for the range approximately from 50 to 1000. So, for the most practical 

range of finite fields ( < 100) we have to use a quadratic bound. It can be shown 

that Cb(*) _< 4m 2 and C a ( ,)  < 2m 2 for a multiplier with a parallel structure 

[16]. 

A well known procedure for the calculation of f a (a )  for any element a of IFQ 

is 
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Horner~s p r o c e d u r e :  

For given a E IF2,, and message f (x) : 

Ul = an-1 ;u i+ l  = u i * o l q - a n - i ;  i =  1 , . . . , n ;  Un = fa(Ol). 

This procedure takes at most n additions and exactly n multiplications in 

IFQ. So, the upper estimate for binary complexity of Horner's procedure over 

IFQ is Cb(Horner )  < nCb (*) + urn = nO (m2) .  

We will consider the M i n P o l  p r o c e d u r e  that has a minimal multiplicative 

complexity. But, first we have to recall the definition of minimal polynomials [15] 

in a finite field. The minimal polynomial #~ (x) of any element c~ E IFQ/{0), 

Q = 2 "~, is 

where the integer t --- m or t I m is the minimal solution of c~ = (~2'. If  t I m ,  then 

is an element of a subfield of IF2-~. A minimal polynomial is clearly irreducible 

over the ground field IF2 [15]. 

The following procedure for the computation of fa((~) has the minimal mul- 

tiplicative complexity over IF2m : 

M i n P o l  p r o c e d u r e :  

For given a E IF~.~ and message f (x) : 

1. Calculate the minimal polynomial tta (z) of a. 

2. Calculate r•(x) = f a ( x )  rood # .  (x) 

3. Calculate fa(a)  = r~, (a) 

The first step of the MinPol procedure takes t - 1 squarings in lF2-~ for the 

calculation of the conjugated elements of c~ and < t (t - 1) /2  multiplications 

and additions in IF2-~ for the polynomial product calculation. The second step 

(step 2) takes < (u - t) t additions in lF2-~ and the last step (Hornet procedure) 

takes t additions and t multiplications in IF2,~. Total multiplicative complexity 

in IF2,~ (steps 1 through 3) is _< 2t + t2/2.  Thus the multiplicative complexity is 

independent of the degree of the polynomial fa(x) �9 

The following upper estimate is valid for the binary complexity over IF2m of 

the MinPol procedure 

m 3 

C b ( M i n P o l )  < n m  2 - ~ -  + m~O (ra2) . 

We see that it has the same main term, i.e., n m  ~, but in the MinPol procedure 

this is a strong upper estimate while for the Hornet procedure this term depends 

on the multiplication complexity for the field lF2-,. Now we can formulate a new 

problem: f ind an evaluation procedure with the main term of  order n m  instead 

of  n m  2. We will see that for some nontrivial subsets of elements in IF2,~ this 

estimate is achievable. 
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3.2 A n e w  l o w  c o m p l e x i t y  p r o c e d u r e  fo r  p o l y n o m i a l  e v a l u a t i o n  

D e f i n i t i o n 9 .  The Minimal W - n o m i a l  r~,~ (x), c~ E IF2-,, is the solution with 

respect to ni and t of the equation 

min x t + x '~' + 1 = 0 mod p~ (x , t > ni > O, w < W. 
t i=l  

By definition ra,~ (a) = 0 and v~,~ (x) = #~ (x) if and only if the weight of 

/~q (x) is < W. If there is a multiple solution for different w < W then we have 

an optimization problem for the complexity estimate. For the moment  our choice 

is for minimal t. 

Now we give a construction of a new low complexity procedure based on 

Minimal W-nomia l s .  

M i n W a l  p r o c e d u r e :  

For given a E lF2~ and message f (x) : 

1. Calculate the MinPol #a (x) 

2. Search for MinWal v~,~ (x) = 0 mod #~ (x) 

3. Calculate  r(x) = f (x)  mod 

4. Calculate rg (x) = rr  (x) mod #a (x) 

5. Calculate fa(C~) -- rf, (~) 

To estimate the expected complexity we assume that a MinWal of degree 

t < n exists (Step 2 is successful). Then Step 3 takes _< (w - 1) (n - t) additions 

and Step 4 takes < (t - m) m additions in FQ. So if t < n / ( m  - w + 1) then we 

can expect that the main term of the binary complexity to be of order < n w m .  

The complexity of Step 2 and the search procedure depend both on w. 

T h e  e x i s t e n c e  o f  M i n W a l s  is a consequence of the existence of Hamming 

and other cyclic codes of minimal distance < w when /za (x) is the factor of a 

generating polynomial of the code. We call an e lement  a bad i f  it has no cor- 

responding W - n o m i a l .  If a is an element of a subfield IFQ, of IFQ then there 

exists a binomial of degree QI < x / ~  which can be used instead of 3-nomial. As 

we will show later, the maximal degree of a W - n o m i a l  is of order Q1/~-1 .  If a 

is an element from the multiplicative subgroup of order L, then a is a root of 

a binomial of degree L. This binomial can be used instead of the W - n o m i a l  if 

L < Q1/W-1. So the only open question is the existence o f  irreducible polynomi- 

als o f  weight > w and degree m (and m - 1 for  4 or 5-nomials) such that they 

generate a cyclic code of  minimal  distance > w and length L > Q1/W-1. 

The class of irreducible shortened cyclic codes, i.e., generated by an irreducible 

polynomial, has been considered in [18], and other papers. It has been proven that 

the codes in this subclass satisfy the Gilbert bound. This result was generalized 

to the class of shortened cyclic codes in [19]. Taking into account these results we 

can expect that the irreducible shortened cyclic code related with a bad element 

a should be very short in comparison with the threshold Q1/~-1 .  We are not able 

to prove a more exact statement about bad elements in IF O. However because 
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the codes related to the bad elements are short with high probability, we expect, 

provided L > Q1/W-1, that the probabili ty to choose a bad element is extremely 

low for large Q. 

As a demonstrat ion of the fact that the search of W - n o m i a l s  is not a too 

complicated problem we give the description of 

MinTrinSearch procedure: 

For a given minimal polynomial  #a (x) and ri (x) = x ~, i = 0 . . .  m - 1, 

Calculate for i = m, m + 1, .... 

1. ri (x) = x*  ri-1 (x) mod Pa (x) and 

2. Find first j < i with rj (x) + 1 = ri (x). 

It is clear that i _< T, where T is the degree (minimal) of a MinTrin we expect 

to find in the search. If the storage of r~ (x) is organized as a dichotomous (binary) 

tree then the complexity of the M i n T r i n S e a r c h  procedure is linear in the degree 

t3 _< T of the Minimal Trinomial  (if it exists). In fact its binary complexity is 

O (t3m). A similar search procedure could be used with other polynomials of a 

limited weight. The main trick is to organize the residues in a tree structure. 

However, the search procedure for 4 or 5 -  nomials has complexity O (t2rn) or 

o(qm). 

3.3 N e w  e s t i m a t e s  fo r  t he  c o m p l e x i t y  o f  polynomial evaluation 

In this section we will give arguments to obtain a simple lower and upper estim- 

ates for the maximal  degree of MinWal. 

D e f i n i t i o n l 0 .  The maximal  degree T~ of the Minimal W - n o m i a l  (MinWal) 

r~,~ (x) over IFQ (cf. Definition 9), is 

Tw = max (deg Va,w (x ) :  va,w (x) = 0 mod #~ (x)) ,  
~,(*) 

where a E IFQ and #~ (x) is the MinPol of c~. 

Proposi t ionl l .  Lower and upper estimates for the maximal degree Tw of Min- 

Wal ra,w (x) over ]FQ, Q = 2 m, are 

Lw,m = ((w - 1)! 2Q) 1/(w-D < ~  Tw < ~  Lw,m~l ~-~ = Uw,m, 

where ~ = 2m/  log m. 

Proof. Let T~ = T. A W - n o m i a l  of degree t is normal if it is written as 
~-~w- 2 Xn ' Xt 

1 + L_,i=l + with 1 _< ... < ni-1 < ni < ... < t. The number D~,T of 

normal W - n o m i a l s  of degree t ~ T is 

D~,T= Z w - 2  w - 1  , , ~ - . !  
t = w - 1  
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We are going to estimate L~,m as the necessary T such that this set of normal 

W-nomia l s  includes all MinWals over lFq and only partially their multiples by 

squaring and other MinWals over IF2-~ for m < n < T. The estimate U~,m will 

be given as the sufficient T for the same condition. 

Let Mm be the number of MinWals for the field IFQ. Clearly each MinWal 

can be squared less than m times if T < 2 m. Assuming that one MinWal is 

related to one of the irreducible polynomials of degree < m we have an estimate 

Mm ~ ~--]k<,~ Ik where Ik is the number of irreducible polynomials of degree k. 

Taking into-account that ~-]~<,~ Ik <:<: ~k<T Ik for T > 2m we can estimate L~,m 
as the solution of D~,T > r~Mrn with respect to T. A well known asymptotic 

estimate for Ik is 2k/k [15] and for ~k<m Ik is 2 m + l / m .  So we can write 

T > Lw,m = ( (w - 1)!2Q) 1/('~-1) . 

Now we assume that each reducible MinWal of degree t over lFQ has one factor 

of degree < m and the others of degree > m. We can expect that any binary 

polynomial of degree t < T has _< ~ different irreducible factors of degree < 

T. This holds for W-nomia l s  and MinWals as well. Now we can declare that 

~Dw,T is less than the number of normal W-n o m ia l s  of degree t < T and is 

less than total number of their different irreducible factors. Taking into account 

that Mm ~, ~k<_m Ik <~<~ Ek<_T Ik for T > 2m we can estimate the total number 

1 D 2Q and of different irreducible factors as yMm �9 Thus we have ~ tv,T < ~  m 

T < U~,,~ = (2 (w - 1)! Q~)1/(,~-1). 

The exact upper bound for the number of different monic divisors of a binary 

polynomial of degree T < 2 m is proved in [19] in the form ~/_< ~ (1 + o (1)). 

For our purposes we can simplify a little this bound to the form T] < 2,n 
- -  logm 

The last proposition is more a hypothetical than a strong result because 

we have to rely on some reasonable but unproven assumptions. Let us consider 

another upper estimates for Tw. The total number of W - n o m i a l s  can be es- 

timated as the number of codewords A~ of weight w of a Hamming code (ex- 

cluding their cyclic shifts) times the number of different codes. So, the estimate 

,,w,'(Tz~'~ A2_.Qm <~ ~(T3"}2Q,~I ,n leads to an upper bound T3 <: 2_._.Qm . Because each cyclic 

code of the distance _< w gives only one MinWal (of weight w) we can estimate 

the number of MinWals through the number of cyclic codes of that distance. If 

we estimate the number of codes through all pairs of irreducible polynomials of 

degree m or less we have for 5-nomials T5 < (4Sm-~-)1 
/4. 

T h e  e s t i m a t i o n  o f  t he  c o m p l e x i t y  o f  a p o l y n o m i a l  e v a l u a t i o n  con- 

cludes this section. It is evident that the calculation o f /~ (a )  modulo the W - n o m i a l  

needs < (w - 1) (n-T,~) additions in IF@, where Tw is the degree of the W -n o m ia l .  

Returning to the M i n W a l  and M i n P o l  procedures we can estimate the binary 

complexity of the M i n W a l  procedure for evaluation of a polynomial of degree 

n < Q - 2 in a point of the finite field IFQ, Q = 2 m, as 

Cb <_ m(n (w-- 1) + (m- -  w + 1) Uw,m) + O (m3).  
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field size I 
Q 
2 ~ 
2 lo 

211 

212 

213 

214 

real values 

mean max 

29 61 

40 83 

64 143 

85 217 

128 i337 

181 473 

257 801 

409 1285 

bounds (max): 

45 107 

64 157 

90 227 

128 331 

L81 480 

256 694 

362 1003 

512 1448 

Table 1. Complete statistics for the degree of trinomials compared with lower and 

upper bounds for maximal degree of trinomials for some small fields. 

/~--w+l This estimate is of order nm~ when U~,m ~ c~n, c~ = ,~-~+1 < 1, and ~ is a 

constant w - 1 < ~ < m. 

A hash procedure that uses a new evaluation point for each message, would 

demand a message length of order of the square of the minimal 4 -nomia l  or 5 -  

nomial. In contrast, when using the evaluation for multiple MAC calculations the 

4 -nomia l  or 5 -nomia l  could be considered as part of the "hidden" key. Thus 

they only have to be calculated once and can then be used to authenticate a large 

number of messages. We will discuss these aspects further in Section 4. 

3.4 E x p e r i m e n t a l  results  

As we can see there is a gap between the lower and the upper estimate of the 

maximal degree of the MinWal. Furthermore, they are only estimates. We are 

therefore interested in investigating how tight our estimates are. We continue 

by discussing experimental results for the degree of minimal trinomial, quadro- 

nomial and pentanomial for different field sizes. We have calculated the complete 

statistics for the average and maximum degree of minimal trinomials for field size 

between 29 and 216 . These values together with the corresponding values obtained 

from our lower, L3,m --- x / ~ ,  and upper, U3,m = x/4x/4x/4x/4x/4x/4x~, q = 2m/log m, estim- 

ates on the maximum degree of the minimal trinomial are listed in the Table 1. 

It can be seen from Table 1 that the mean degree of the trinomial is rather close 

to L3,m. 
It is not possible to calculate the complete statistics for fields of large sizes in 

reasonable time. To see how the degree of the minimal 3, 4 and 5 -  nomiMs are 

distributed for larger fields, we have chosen random elements from fields of size 

less or equal 231. We have investigated the distribution of minimal W - n o m i a l  

degree for a logarithmic scale. We tested a log-normal approximation for the 

distribution of the minimal degrees and it turns out to give good agreement in 

X 2 tests. The means of the degrees for the tests are close to our lower bounds 
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W Field # elm. Exper.degree Lower Upper log degree 

size mean max L3,m U3,m mean[STD 

3 2 lb compl. 257 801 362 1003 5.36 0.67 

216 compl. 409 1285 512 1448 5.81 0.68 

219 3200 1049 3517 1448 4331 6.79 [}.64 

225 3200 8399 29505 8437 27684 8.88 [}.64 

231 800 66937 210074 92682 327872 10.9 ).62 

W Field # elm. Exper.degree L4,m U4,m log degree 

4 2 a~ compl. 55 151 73 145 3.940 .39 

218 compl. 70 141 92 185 4.17 .37 

219 ]2400 138 298 185 384 4.85 .40 

225 2400 551 1164 738 1630 6.23 .42 

231 400 2179 4608 2954 6858 7.6 .42 

W Field # elmn. Exper.degree Ls,m Us,,~, log degree 

5 21~ compl. 28 51 35 59 3.29 .266 

216 compl. 33 57 60 104 3.47 .277 

219 3200 56 106 168 304 3.98 .296 

225 2400 156 321 476 895 5.0 .316 

231 400 433 726 566 1066 6.0 .316 

Pr{t>U3,m} 

1.0.10 -~ 

1.5 �9 10 -2 

6.7.10 -3 

1.7.10 -2 

2.2 �9 10 -3 

Pr{t>V4,m} 

3.7.10 -3 

2.5 �9 10 -3 

3.0 �9 10 -3 

3.0 �9 10 -3 

1.8 �9 10 -3 

Pr{t>Us,m} 

1.5 �9 10 -3 

1.1 �9 10 -5 

2.4 �9 10 -9 

6.6" 10 -9 

1.1 �9 1 0  - 3  

Table  2. Minimal degree of W - n o m i a l  ( W = 3, 4, 5) for random elements or complete 

statistics (IF21~ and IF216 ) in different fields, the corresponding bounds for W - n o m i a l  

degree t and the probability for a random element to take a larger degree for the 

W - n o m i a l  than the U,~,m, given a normal distribution with the estimated mean and 

standard deviation for a logarithmic scale. 

for the max imal  degree of the polynomials .  This  can be seen for the examples  in 

Table 2. 

It can be seen in Table  2 that the variance varies a little with field size in 

the three different cases, but  that  it  is about  the same value independent  of the 

field size. The exper imenta l  max imal  value for the tested fields are not  the true 

m a x i m u m  value, but  j u s t  the m a x i m u m  value for the tested elements.  As we can 

see the hypothesis  on 0 has a good exper imenta l  suppor t  . 

To explain the results presented in Table 2 we can use est imates  for the 

average number  ~a~r of different irreducible factors of a po lynomia l  of degree 

_< 2 "~, ~ r  = log m + c  + O (lo__~) [20] where c is some constant .  Thus,  by t 

using y~.~ instead of ~/we can es t imate  Tw,a~r ,~ L~,m (Tla,r) 1/w-1. NOW we can 

est imate the span for the log of the W - n o m i a l  degree as 

log m - 2 log log m 
log Tw - log Tw,.vr = 

w - 1  

Th i s  est imate can be related l inearly to the s tandard  deviat ion of the experi- 

menta l  d i s t r ibu t ion  of the degree of the W - n o m i a l .  As we can see from numeric  
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calculations the last estimate varies very little within a range m < 256 for a fixed 

w. This estimate is more sensitive to w for w < 5. 

4 S o f t w a r e  M A C  c o m p u t a t i o n s  

I t  is often necessary to compute the MACs in software on a workstation or per- 

sonal computer.  In this section we investigate how fast  the previous polynomial  

evaluation procedure would be if it is implemented in software. We make a com- 

parison with the Bucket hashing method. 

The evaluation point or "hidden" key in the polynomial  evaluation MAC 

generation could be unchanged for several messages. For the tr inomial  procedure 

the complexity of the calculation of tr inomial is linear in the degree and would 

not give a main contribution to the overall complexity of the MAC calculation. 

The 4 or 5 - n o m i a l  calculations in our evaluation procedures only depend on the 

evaluation point and can be precomputed and used as part  of the "hidden" key. 

We will in the comparison with Bucket hashing not include the key generation 

in the calculations, but only the message authentication for a message given a 

secret key. As we will show below Bucket hashing demands a much longer key 

than the polynomial  evaluation method and would in general for long messages 

be more complex to generate than the 4-nomial or 5-nomial for the evaluation 

procedure. 

Assume we use a computer with k - b i t  architecture (typical k = 32 or k = 64 

). We also assume that the message is represented as a vector of words of k bits. 

Reducing modulo a W - n o m i a l  and modulo a minimal polynomial  is implemented 

for this k - b i t  architecture with no relation to the given finite field. However at 

the last stage of the M i n W a l  procedure we have to implement the arithmetic of 

the given field. 

The latter has also implications for the cache hit rate when executing the 

algorithm on a usual computer.  After the first reduction by the W - n o m i a l  which 

coincides with reading the message (e.g. from disk), most  of the computations 

occur 'locally' which gives high cache hit rates. 

As we have shown previously the modulo calculations demand w - 1 additions 

for each message word using a W - n o m i a l .  For the typical structure of a CPU 

instruction based on a bank of internal register we have the following approx- 

imations for the number of instructions for the MAC calculations by M i n W a l  

procedure: # = 3w - 2 instructions per word (7, 10 or 13 using the 3, 4 or 5- 

nomial, respectively). If  the CPU XOR instruction includes internal register and 

an address in main memory  and contains the read and write cycle then we have 

the lower approximation: # = 2w - 1. This can be compared with the Bucket 

hashing method, which needs about 9 - 13 instructions per word [2]. 

We have investigated the method for different parameters.  According to the 

experimental results in the previous section the expected W - n o m i a l  degree are 

a little bit below the lower bounds for the maximal  degree. Hence, we have used 

the lower bounds as an estimate for the mean of a log normal distribution for 

the different fields. Assume logt E N(x, cr), i.e., a normal  distribution with mean 
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z and variance c~. Then the mean z ~ of the log normal distribution is given by 

x ~ -- e ~+~ Hence, we would have the following estimate 

z~o = log L~,m - ~ / 2  

for the mean of the normal distribution. According to the experimental results 

the variance for the normal distributions for W - n o m i a l ,  W = 3, 4, 5, are likely 

to be values around 0.4, 0.18 and 0.1 respectively. We have used these values as 

estimates for the normal distribution of the degrees using a logarithmic scale. We 

have calculated parameters for using polynomial evaluation for different message 

lengths n and polynomial degrees T for the different field sizes in Table 3 for 

a probability of deception 2 -3~ 2 -4~ and 2 -6~ respectively. We have assumed 

that the computer word size is 32 bits. The degrees T are chosen to have a small 

estimated probability Pr{t > T}, according to the approximations above. If we 

use the evaluation procedure for fewer number of words, the total complexity 

would of course be less, but the number of instructions per word would increase. 

To lessen the effect that if we require a small e we need large messages to get 

an efficient evaluation procedure we use the result of Theorem 6 to obtain a new 

MAC from a given MAC with e0 that has twice the key size, identical message 

size, and e = e02. Although at first glance this will also double the time to compute 

the tag but it will in fact be less, say 50% only, if properly implemented. For 

some of the examples in the tables we have used this doubling of tag and key size 

to get an efficient MAC with the desired probability of deception. 

In the Table 3 we give examples where we have chosen the minimal field size 

for the given probability of deception. We are able to freely choose a proper 

field for the MAC because the first steps of the evaluation procedure are inde- 

pendent of field size. When we calculated the table we assumed the 4 -  nom- 

inal and 5 -nomina l  to be part of the key and hence the key size is given by 

key size w = 2m + r + (w - 1) logz U~o,m where the last term could be omitted in 

the case of a 3-nomial. The tag size for the polynomial evaluation MAC calcula- 

tion is for all examples much smaller than that for Bucket hashing. In [11] other 

examples with different parameters are given. There is also comparisons with 

other authentication codes. It can be seen in the table that for shorter messages 

the 5 -  nominal is better to use than 3 -nomina l  or 4 -nomina l .  It is not possible 

to have a low number of instructions per word for shorter messages and still 

have a low probability of deception e. The short authentication tag and small key 

size for the evaluation procedure and its suitability for very fast implementation 

makes it much better to use than Bucket hashing for long messages. 

5 C o n c l u s i o n  

We suggested an efficient polynomial evaluation procedure based on calculations 

modulo a 3, 4 or 5 -nomia l  that leads to a fast MAC. The complexity of our 

procedure is closely related to the degree of these low weight polynomials. We 

derived estimates of lower and upper bounds on the degrees of these polynomials 

and compared these bounds with experimental results. 
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e = 2 -a~ W-nomial  method 

n field]Wltag size]key size[T Pr{t  > T} 

225 41 3 2 x 16 2 x 9 8  2 "~ 0.1937 

230 46 3 2 X 16 2 X 108 225 0.0790 

217 33 4 2 X 16 2 X133 213 0.0633 

[223 54 4 31 211 122~ 0.0633 

216 47 5 31 197 214 0.0212 

e ---- 2 -4o W-nomial  method 

n field W tag size!key size T Pr{t  > T} 

2 ~I 52 3 2 x21 2 x125 22s 0.0790 

217 38 4 2 x 21 2 • 154 215 0.0191 

229 70 4 41 271 226[0.0044 

213 34 5 2 x21 2 x 149 211 9.0050 

223 64 5 41 261 218 9.06940 

= 2 -60 W-nomial  method 

n field W tag size key size T Pr{t  > T} 

2 ~' 52 3 3x21  3 x125 22s 0.0790 

217 38 4 3 x 21 3 x 154 215 0.0191 

226 57 4 2 x31 2 x223 221 0.0633 

213 34 5 3 x 21 3 x 149 211 0.0050 

220 51 5 2 x31 2 x209 215 0.0212 

Bucket hashing [2] 

itag size key size 

18784 9.26. l0  s 

595521 3.50.1016 

4256 2.78.106 

11840 2.15. l0  s 

4128 1.38.106 

Bucket hashing [2] 

tag size key size 

75040 7.21.10 TM 

12608 3.40.106 

47296 1.70.10 l~ 

12576 2.24.105 

14400 2.22. l0 s 

Bucket hashing [2] 

tag size key size 

131200 7.73.10 TM 

126752 4.82.106 

126880 2.41 �9 109 

126752 4.20.105 

126752 3.77.107 

T a b l e  3. Construction parameters using polynomial evaluation and Bucket hashing 

with a computer word size of 32 bits for different message lengths for a probability of 

deception less than 2 -30 , 2 -40 , and 2 -60 . Using the MAC more than once is marked 

with x (for example 2 x 21) in the key size column. 

We inves t iga ted  how fast  the eva lua t ion  can be made  in sof tware.  In t e rms  of  

speed  our  p rocedure  can be c o m p a r e d  with bucket  hashing [2]. But ,  our me thod  

requires  much shor ter  key than  those based  on bucket  hashing.  In Bucket  hashing 

a key size of  abou t  the same size as the message  is required.  By us ing p o l y n o m i a l  

eva lua t ion  i t  is poss ible  to reduce the key to a size of abou t  as large as tha t  

of  the tag.  W h e n  4 or 5 -nomia l s  are used for the evalua t ion ,  they have to be 

p r e c o m p u t e d  and should be a p a r t  of the key. The  search for a 4 or 5 -nomia l  

can be of  ra ther  high complexi ty .  However,  the same  4 or 5 -nomia l  can be used  

to  calcula te  M A C ' s  for several  messages.  Loosely  speaking  one can say that  our  

p o l y n o m i a l  eva lua t ion  procedure  is efficient for large messages  and  for mul t ip le  

au thent ica t ion .  

Our  eva lua t ion  me thod  can be used in other  cons t ruc t ions  of  universal  fami l ies  

of  hash funct ions  to get  s imi la r  complex i ty  reduct ions .  
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