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Abstract. Message franking enables cryptographically verifiable report-
ing of abusive messages in end-to-end encrypted messaging. Grubbs,
Lu, and Ristenpart recently formalized the needed underlying primitive,
what they call compactly committing authenticated encryption (AE),
and analyze security of a number of approaches. But all known secure
schemes are still slow compared to the fastest standard AE schemes. For
this reason Facebook Messenger uses AES-GCM for franking of attach-
ments such as images or videos.

We show how to break Facebook’s attachment franking scheme: a
malicious user can send an objectionable image to a recipient but that
recipient cannot report it as abuse. The core problem stems from use
of fast but non-committing AE, and so we build the fastest compactly
committing AE schemes to date. To do so we introduce a new primi-
tive, called encryptment, which captures the essential properties needed.
We prove that, unfortunately, schemes with performance profile similar
to AES-GCM won’t work. Instead, we show how to efficiently transform
Merkle-Damgärd-style hash functions into secure encryptments, and how
to efficiently build compactly committing AE from encryptment. Ulti-
mately our main construction allows franking using just a single com-
putation of SHA-256 or SHA-3. Encryptment proves useful for a variety
of other applications, such as remotely keyed AE and concealments, and
our results imply the first single-pass schemes in these settings as well.

1 Introduction

End-to-end encrypted messaging systems including WhatsApp [40], Signal [38],
and Facebook Messenger [13] have increased in popularity — billions of people
now rely on them for security. In these systems, intermediaries including the mes-
saging service provider should not be able to read or modify messages. Providers
simultaneously want to provide abuse reporting: should one user send another
a harmful message, image, or video, the recipient should be able to report the
content to the service provider. End-to-end encryption would seem to prevent
the provider from verifying that the reported message was the one sent.
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Facebook suggested a way to navigate this tension in the form of message
franking [14,30]. The idea is to enable the recipient to cryptographically prove
to the service provider that the reported message was the one sent. Grubbs, Lu,
and Ristenpart (GLR) [17] provided the first formal treatment of the problem,
and introduced compactly committing authenticated encryption with associated
data (ccAEAD) as the key primitive. A secure ccAEAD scheme is symmetric
encryption for which a short portion of the ciphertext serves as a cryptographic
commitment to the underlying message (and associated data). They detailed
appropriate security notions and security proofs that provide validation of the
main Facebook message franking approach and a faster custom ccAEAD scheme
called Committing Encrypt-and-PRF (CEP).

The Facebook scheme composes HMAC (serving the role of a commitment)
with a standard encrypt-then-MAC AEAD scheme. Their scheme therefore
requires a full three cryptographic passes over messages. The CEP construction
gets this down to two. But even that does not match the fastest standard AE
schemes such as AES-GCM [28] and OCB [32]. These require at most one blockci-
pher call (on the same key) per block of message and some arithmetic operations
in GF(2n), which are faster than a blockcipher invocation. As observed by GLR,
however, these schemes are not compactly committing: one can find two distinct
messages and two encryption keys that lead to the same tag. This violates what
they call receiver binding, and could in theory allow a malicious recipient to
report a message that was never sent.

Existing ccAEAD schemes are not considered fast enough for all applications
of message franking by practitioners [30]. Facebook Messenger does not use the
ccAEAD scheme mentioned above to directly encrypt attachments, rather using
a kind of hybrid encryption combining ccAEAD of a symmetric key that is in
turn used with AES-GCM to encrypt the attachment. Use of AES-GCM does not
necessarily seem problematic despite the GLR results; the latter do not imply
any concrete attack on Facebook’s system.

Breaking Facebook’s attachment franking. Our first contribution is to
show an attack against Facebook’s attachment franking scheme. The attack
enables a malicious sender to transmit an abusive attachment (e.g., an objec-
tionable image or video) to a receiver so that: (1) the recipient receives the
attachment (it decrypts correctly), yet (2) reporting the abusive message fails —
Facebook’s systems essentially “lose” the abusive image, rendering them invisi-
ble from the abuse handling team. Instead what gets reported to Facebook is a
different, innocuous image. See Fig. 3.

Perhaps confusingly, our attack does not violate the primary reason for
requiring receiver binding in committing AE (preventing a malicious recipient
from framing a user as having sent a message they didn’t send). Instead it vio-
lates what GLR call sender binding security: a malicious sender should not be
able to force an abusive message to be received by the recipient, yet that recipi-
ent can’t report it properly. Nevertheless, the root cause of this vulnerability in
Facebook’s case is the use of an AE scheme that is not a binding commitment
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to its message or, equivalently in this context, that is not a robust encryption
scheme [1,15,16].

Briefly, Facebook uses a cryptographic hash of the AES-GCM ciphertext,
along with a randomly-generated value, as an identifier for the attachment. For
a given abusive message, our attack efficiently finds two keys and a ciphertext,
such that the first key decrypts the ciphertext to the abusive attachment while
the other key successfully decrypts the same ciphertext, but to another innocuous
attachment. The malicious sender transmits two messages with the different keys
but the same attachment ciphertext. Facebook’s systems deduplicate the two
attachments, and the report will only include the non-abusive image.

We responsibly disclosed this vulnerability to Facebook, and in fact they
helped us understand how our attack works against their systems (much of the
abuse handling code is server-side and closed source). The severity of the issue led
them to patch their (server-side) systems and to award us a bug bounty. Their
fix is ad hoc and involves deduplicating more carefully. But the vulnerability
would have been avoided in the first place by using a fast ccAEAD scheme that
provided the binding security properties implicitly assumed of, but not actually
provided by, AES-GCM.

Towards faster ccAEAD schemes: encryptment. This message franking
failure motivates the need for faster schemes. As mentioned, the best known
secure ccAEAD scheme from GLR is two pass, requiring computing both HMAC
and AES-CTR mode (or similar) over the message. The fastest standard AE
schemes [22,28,32], however, require just a single pass using a blockcipher with
a single key. Can we build ccAEAD schemes that match this performance?

To tackle this question we first abstract out the core technical challenge
underlying ccAEAD: building a one-time encryption mechanism that simulta-
neously encrypts and compactly commits to the message. We formalize this in
a new primitive that we call encryptment. An encryptment of a message using
a key KEC is a pair (CEC, BEC) where CEC is a ciphertext and BEC is a binding
tag. By compactness we require that |BEC| is independent of the length of the
message. Decryption takes as input KEC, CEC, BEC and returns a message (or
⊥). Finally, there is a verification algorithm that takes a key, a message, and a
binding tag, and determines whether the tag is a commitment to the message.
Encryptment supports associated data also, but we defer the details to the body.

We introduce security notions for encryptment. These include a real-or-
random style confidentiality goal in which the adversary must distinguish
between a single encryptment and an appropriate-length sequence of random
bits. Additionally we require sender binding and receiver binding notions like
those from GLR (but adapted to the encryptment syntax), and finally a strong
correctness property that is easy to meet. Comparatively, GLR require many-
time confidentiality and integrity notions in addition to various binding notions.

Therefore encryptment is substantially simpler than ccAEAD, making anal-
yses easier and, we think, design of constructions more intuitive. At the same
time, we will be able to build ccAEAD from encryptment using simple, efficient
transforms. In the other direction, we show that one can also build encryptment
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from ccAEAD, making the two primitives equivalent from a theoretical per-
spective. Encryptment also turns out to be the “right” primitive for a number of
other applications: robust authenticated-encryption [1,15,16], concealments [12],
remotely keyed authenticated encryption [12], and perhaps even more.

Fast encryptment from fixed-key blockciphers? Given a simpler formula-
tion in hand, we turn to building fast schemes. First, we show a negative result:
encryptment schemes cannot match the efficiency profile of OCB or AES-GCM.
In fact we rule out any scheme that uses just a single blockcipher invocation for
each block of message, with some fixed small set of keys.

The negative result makes use of a connection between encryptment and
collision-resistant (CR) hashing. Because encryptment schemes are determinis-
tic, we can think of the computation of a binding tag BEC as a deterministic
function F (KEC,M) applied to the key and message; verification simply checks
that F (KEC,M) = BEC. Then, receiver binding is achieved if and only if F is
CR: the adversary shouldn’t be able to find (KEC,M) �= (K ′

EC
,M ′) such that

F (KEC,M) = F (K ′
EC

,M ′).
Given this connection, we can exploit previous work on ruling out fixed-

key blockcipher-based CR hashing [34,35,37]. A simple corollary of [35, Theo-
rem1] is that one cannot prove receiver binding security for any rate-1 fixed-key
blockcipher-based encryptment. (Rate-1 meaning one blockcipher call per block
of message.) Since OCB and AES-GCM fall into this category of rate-1, they
don’t work, but neither do other similar blockcipher-based schemes. Our nega-
tive result also rules out rate-1 ccAEAD, due to our aforementioned result that
(fast) ccAEAD implies (fast) encryptment.

One-pass encryptment from hashing. Given the connection just men-
tioned, it is natural to turn to CR hashing as a starting point for building as-fast-
as-possible encryptment. We do so and show how to achieve secure encryptment
using just a single pass of a secure cryptographic hash function. The encrypt-
ment can be viewed as a mode of operation of a fixed-input-length compression
function, such as the one underlying SHA-256 or other Merkle-Damgärd style
constructions.

Let f(x, y) be a compression function on two n-bit inputs and with output
an n-bit string. Then our HFC (hash function chaining) encryptment works as
shown in Fig. 8. Basically one hashes KEC ‖ (M1 ⊕KEC)‖ · · · ‖ (M2 ⊕KEC) using
a standard iteration of f . But, additionally, one uses the intermediate chaining
values as pads to encrypt the message blocks. Decryption simply computes the
hash, recovering message blocks as it goes.

We prove that our HFC scheme is a secure encryptment. Binding is inherited
from the CR of the underlying hash function. We show confidentiality assum-
ing f(x, y ⊕ KEC) is a related-key-attack-secure pseudorandom function (RKA-
PRF) [3] when keyed by KEC. For standard designs, such as the Davies-Meyer
construction f(x, y⊕KEC) = E(y⊕KEC, x)⊕x, we can reduce RKA-PRF security
to RKA-PRP security of the underlying blockcipher E. This property is already
an active target of cryptographic analysis for standard E (such as AES), giving
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us confidence in the assumption. Because SHA-256 uses a DM-style compression
function, this also gives confidence for using SHA-256 (or SHA-384, SHA-512).

From a theoretical perspective, one might want to avoid relying on RKA
security (compared to standard PRF security). We discuss approaches for doing
so in the body, but the resulting constructions are not as fast or elegant as HFC.

HFC has some features in common with the Duplex authenticated-encryption
mode [6] using Keccak (SHA-3) [5]. In fact the Duplex mode gives rise to a secure
encryptment scheme as well. See the full version for a discussion. The way we
key in HFC is also similar to the Halevi-Krawczyk construction for reducing the
assumptions needed on hash functions in digital signature settings [20], but the
keying serves a different role here and their analysis techniques are not applicable.

From encryptment to ccAEAD. We show several efficient transforms for
building a ccAEAD scheme given a secure encryptment. First consider doing
so given also a secure (standard) AE scheme. To encrypt a message M , first
generate a random key KEC and then compute an encryptment (CEC, BEC) for
KEC,M . Encrypt KEC under the long-lived AE key K using as associated data
the binding tag BEC. The resulting ciphertext is the AE ciphertext (including
its authentication tag) along with CEC, BEC. We prove that this transformation
provides the multi-opening confidentiality and integrity goals for ccAEAD of
GLR, assuming the standard security of the AE scheme and the aforementioned
security goals are met for the encryptment scheme.

One can instead use just two additional PRF calls to securely convert an
encryptment scheme to a ccAEAD scheme. One can, for example, instantiate
the PRF with the SHA-256 compression function, to have a total cost of at most
m+4 SHA-256 compression function calls for a message that can be parsed into
m blocks of 256 bits. Another transform uses a single tweakable blockcipher call
in addition to the encryptment. See the full version for details.

Our approach of hashing-based ccAEAD has a number of attractive features.
HFC works with any hash function that iterates a secure compression function,
giving us a wide variety of options for instantiation. Because of our simplified
formalization via encryptment, the security proofs are modular and conceptu-
ally straightforward. As already mentioned it is fast in terms of the number of
underlying primitive calls. If instantiated using SHA-256, one can use the SHA
hardware instructions [18] now supported on some AMD and ARM processors,
and that are likely to be incorporated in future Intel processors. Finally, HFC-
based ccAEAD is simple to implement.

Other applications. Encryptment proves a useful abstraction for other appli-
cations as well. In the full version of this work, we show how it suffices for build-
ing concealments [12] (a conceptually similar, but distinct, primitive) which, in
turn, can be used to build remotely keyed AE [12]. Previous constructions of
these required two passes over the message. Our new encryptment-based app-
roach gives the first single-pass concealments and remotely keyed AE. Finally,
encryptment schemes give rise to robust AE [15] via some of our transforms
mentioned above. We expect that encryptment will find further applications in
the future.
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2 Definitions and Preliminaries

Preliminaries. For an alphabet Σ, we let Σ∗ denote the set of all strings of
symbols from that alphabet, and let Σn denote the set of all such strings of
length n. For a string x ∈ Σ∗, we write |x| to denote the length of the string x.
We let ε denote the empty string, and ⊥ denote the distinguished error symbol.
We write x ←$ X to denote choosing an element at random from the set X .

We define the XOR of two strings of different lengths to return the XOR of the
shorter string and the truncation of the longer string to the length of the shorter
string. Our proofs assume a RAM model of computation where most operations
are unit cost. We use big-O notation O(·) to hide small constants related to the
internal data structures (e.g., tables of queries) used by reductions.

For a deterministic algorithm A, we write y ← A(x1, . . . ) to denote running
A on inputs x1, . . . to produce output y. For a probabilistic algorithm A with
associated coin space C, we write y ←$ A(x1, . . . ) to denote choosing coins c ←$ C
and returning y ← A(x1, . . . ; c), where y ← A(x1, . . . ; c) denotes running A on
the given inputs with coins c fixed, to deterministically produce output y.

Collision-resistant functions. Let H : Dom → {0, 1}n be a function on some
domain Dom ⊂ {0, 1}∗. The collision resistance game CR has A run and output
a pair of messages X,X ′. If analysis is with respect to an ideal primitive such
as an ideal cipher, then A is given oracle access to this primitive also. The game
outputs true if H(X) = H(X ′) and X �= X ′. The CR advantage of an adversary
A against H is defined Advcr

H(A) = Pr
[

CRA
H ⇒ true

]

, where the probability is
over the coins of A and those of any ideal primitive. We measure the efficiency
of the attacker in terms of their resources, e.g. run time or number of queries
made to some underlying primitive.

For space reasons, we direct the reader to [33] for syntax and correctness
notions for AEAD. We require that AEAD schemes offer both real-or-random
confidentiality and ciphertext integrity. These will be formalized in Sect. 7.

3 Invisible Salamanders: Breaking Facebook’s Franking

In this section we demonstrate an attack against Facebook’s message franking.
Facebook uses AES-GCM to encrypt attachments sent via Secret Conversations.
The attack creates a “colliding” GCM ciphertext which decrypts to an abusive
attachment via one key and an innocuous attachment via the other. This com-
bined with the behavior of Facebook’s server-side abuse report generation code
prevents abusive messages from being reported to Facebook. Since messages in
Secret Conversations are called “salamanders” by Facebook (perhaps inspired by
the Axolotl ratchet used in Signal, named for an endangered salamander), ensur-
ing Facebook does not see a message essentially makes it an invisible salamander.
We responsibly disclosed the vulnerability to Facebook. They have remediated
it and have given us a bug bounty for reporting the issue.
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Facebook’s attachment franking. A diagram of Facebook’s franking proto-
col for attachments (e.g., images and videos) is in Fig. 1. The protocol uses CtE2,
Facebook’s ccAEAD scheme for chat messages described in [14,30] and analyzed
in [17], as a subroutine. Some encryption and HMAC keys, as well as some other
details like headers and associated data not important to the presentation of the
protocol, have been removed for simplicity in the diagram and prose below. Con-
sult [14,17] for additional details. For ease of exposition we divide the protocol
into three phases: the sending phase involving the sender Alice and Facebook,
the receiving phase involving the receiver Bob and Facebook, and the reporting
phase between Bob and Facebook.

Fig. 1. Facebook’s attachment franking protocol [29,30]. The sending phase consists of
everything from the upper-left corner to the message marked (1). The receiving phase
consists of everything strictly after (1) and before (2). The reporting phase is below
the dashed line. The descriptions of Facebook’s behavior during the reporting phase
were paraphrased (with permission) from conversations with Jon Millican, whom the
authors thank profusely.

Sending phase: In the first part of the sending phase, Alice generates a key
Kim and nonce Nim and encrypts Ma using AES-GCM (described in pseudocode
in Fig. 2) to obtain a ciphertext Cim. The sender computes the SHA-256 digest
Dim of Nim ‖Cim and sends Facebook Nim ‖Cim for storage. Facebook generates
a random identifier id and puts Nim ‖Cim in a key-value data structure with key
id. Facebook then sends id to Alice. In the second part of the sending phase,
Alice encrypts the message id ‖ Kim ‖ Dim using CtE2 to obtain the ccAEAD
ciphertext C,CB . Below, we will call a message containing an identifier, key
and digest an “attachment metadata” message. Alice sends C,CB to Facebook,
which runs FBTag on CB (this amounts to HMAC-SHA256 with an internal
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Facebook key and some metadata) as in the standard message franking protocol
to obtain a. Facebook sends C,CB , a to the receiver.

Receiving phase: Upon receiving a message C,CB , a from Alice (via Face-
book), Bob runs CtE2-Dec on C,CB to obtain id‖Kim ‖Dim. Bob then sends id
to Facebook, which gets the value Nim ‖ Cim associated with id in its key-value
store and sends it to Bob. Bob verifies that Dim = SHA-256(Nim ‖ Cim) and
decrypts Cim to obtain the attachment content Ma.

Reporting phase: Bob sends all recent messages to Facebook along with their
commitment openings and a values (not pictured in the diagram). For each mes-
sage, Facebook verifies the commitment using CtE2-Ver and the authentication
tag a using its internal HMAC key. Then, if the commitment verifies correctly
and the message contains attachment metadata, Facebook gets the attachment
ciphertext and nonce Nim ‖ Cim from its key-value store using its identifier id.
Facebook verifies that Dim = SHA-256(Nim ‖ Cim) and decrypts Cim with Kim

and Nim to obtain the attachment content Ma. If no other attachment metadata
message containing identifier id has already been seen, the plaintext Ma is added
to the abuse report R. (Looking ahead, this is the application-level behavior that
enables the attack, which will violate the one-to-one correspondence between id
and plaintext that is assumed here.)

Attack intuition. The threat model of this attack is a malicious Alice who
wants to send an abusive attachment to Bob, but prevent Bob from reporting
it to Facebook. The attachment can be an offensive image (e.g., a picture of
abusive text or of a gun) or video. We focus our discussion below on images.

The attack has two main steps: (1) generating the colliding ciphertext and
(2) sending it twice to Bob. In step (1), Alice creates two GCM keys and a single
GCM ciphertext which decrypts (correctly) to the abusive attachment under one
key and to a different attachment under the other key. In step (2), Alice sends
the ciphertext to Facebook and gets an identifier back. Alice then sends the
identifier to Bob twice, once with each key.

On receiving the two messages, Bob decrypts the image twice and sees both
the abusive attachment and the other one. When Bob reports the conversation to
Facebook, its server-side code verifies both decryptions of the image ciphertext
but only inserts the other decryption into the abuse report—the human making
the abusive-or-not judgment will have no idea Bob saw the abusive attachment.

We will describe two variants of the attack. We will begin with the case where
the second decryption of the colliding ciphertext is junk bytes with no particular
structure. This variant is simple but easily detectable, since the junk bytes will
not display correctly. Then we give a more advanced variant where the second
decryption correctly displays an innocuous attachment, like a picture of a kitten.

Generating the colliding ciphertext—simple variant. Alice begins the
attack with an abusive attachment Mab

a . Alice chooses two distinct 128-bit
GCM keys K1 and K2 and a nonce Nim, then computes a ciphertext Ca via
CTR-Enc(K1, Nim + 2,Mab

a ), where CTR-Enc denotes CTR-mode encryption
with the given key and nonce. The nonce is Nim + 2 to match GCM, see Fig. 2.
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In Facebook’s scheme Alice can choose the keys and the nonce, but this is not
necessary—any combination of two keys and a nonce will work.

The ciphertext Ca is almost, but not quite, the ciphertext Alice will use in the
attack. To ensure GCM decryption is correct for both keys, Alice generates the
colliding GCM tag and final ciphertext block using Collide-GCM(K1,K2, Nim, Ca)
(described in Fig. 2). The function Collide-GCM works by computing the tags for
the two keys then solving a linear equation to find the value of the last ciphertext
block. We use the final ciphertext block as the variable, but a different ciphertext
block or a block of associated data could be used instead. The output Nim‖Cim‖T
correctly decrypts to Mab

a under K1 and to another plaintext Mj under K2.
However, the plaintext Mj will be random bytes with no structure.

Fig. 2. (Left) The Galois/Counter block cipher mode. (Right) The Collide-GCM algo-
rithm. Array indexing is done in terms of 128-bit blocks. We assume all input bit lengths
are multiples of 128 for simplicity, and that the input Ma to Collide-GCM is at least two
blocks in length. The function GHASH is the standard GCM polynomial hash (the lines
which assign to T on the left). The function encode64(·) returns a 64-bit representation
of its input. Arithmetic is in GF(2128). The function Collide-GCM can take arbitrary
headers, but we elide them for simplicity.

Sending the colliding ciphertext. Alice continues the sending phase with
Facebook, obtaining an identifier id for the ciphertext Nim ‖ Cim. Alice then
creates two attachment metadata messages: MD1 = id ‖ K2 ‖ Dim and MD2 =
id ‖ K1 ‖ Dim. Alice completes the remainder of the sending phase twice, first
with MD1 and then with MD2. (The first message sent is associated to the
junk message.) After finishing the receiving phase for MD1, Bob will decrypt
Cim with K2, giving Mj. After finishing the receiving phase with MD2, Bob
will decrypt Cim with K1 and see Mab

a . We emphasize that both attachment
metadata messages are valid, and no security properties of CtE2 are violated.

When Bob reports the recent messages, Facebook will verify both MD1

and MD2 and check the digest Dim matches the value Nim ‖ Cim stored with
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identifier id. However, it will only insert the first decryption, the plain-

text Mj , into the abuse report. The system sees the second ciphertext has
the same SHA-256 hash and identifier, and assumes it’s a duplicate: the human
viewing the report will have no idea Bob ever saw the message Mab

a .

3.1 Advanced Variant and Proof of Concept

Next we will describe the advanced variant of the attack (in which both decryp-
tions correctly display as attachments) and our proof-of-concept implementation.
Ensuring both decryptions are valid attachments is important because the simple
variant (where one decryption is random bytes) may not have sufficed for a prac-
tical exploit if Facebook only inserted valid images into their abuse reports. We
implemented the advanced variant and crafted a colliding ciphertext for which
the “abusive” decryption Mab

a is the image of an Axolotl salamander in Fig. 3.
The innocuous decryption Mj is the image of a kitten in that figure. We verified
both display correctly in Facebook Messenger’s browser client.

Fig. 3. Two images with the same GCM ciphertext Cim ‖ T when encrypted using 16-
byte key K1 = (03)16 or K2 = (02)16, nonce Nim = 10606665379, and associated data
H = (ad)32 (all given in hex where exponentiation indicates repetition). (Left) The
titular invisible salamander, which is the image delivered to the recipient. (Right) An
image of a kitten that is put in the recipient’s abuse report instead of the salamander.

The only difference between the advanced variant and the one described
above is the way Alice generates the ciphertext Ca which is input to
Collide-GCM. Instead of simply encrypting the abusive attachment Mab

a , Alice
first merges Mab

a and another innocuous attachment Mj using a function
Att-Merge(K1,K2,M

ab
a ,Mj) which takes the two keys and attachments and out-

puts a nonce Nim and Ca so that CTR-Dec(K1, Nim + 2, Ca) displays Mab
a and

CTR-Dec(K2, Nim +2, Ca) displays Mj. The exact implementation of Att-Merge



Fast Message Franking: From Invisible Salamanders to Encryptment 165

is file-format-specific, but for most formats Att-Merge has two main steps: (1) a
nonce search yielding a nonce which gives a collision on some region of the cipher-
text, and (2) a plaintext restructuring that expands the plaintexts with random
bytes in locations that are ignored by parsers for their respective file formats.
We implemented Att-Merge for JPEG and BMP images (the salamander image
and the kitten image, respectively), so our discussion will focus on these formats.

Before discussing our implementation of Att-Merge we will briefly describe
the JPEG and BMP file formats. JPEG files must begin with the two-byte
sequence ffd8 and end with ffd9. JPEGs can have comments. They are indi-
cated with the two-byte sequence fffe followed by a big-endian two-byte encod-
ing of the comment length. BMP files must begin with 424d, and the next four
bytes must be the length block. The length block in a BMP file is a four-byte
(little-endian) encoding of the file length. All the BMP parsers we used only read
the number of bytes indicated in the header and ignore trailing bytes.

Fig. 4. Diagram of the JPEG Mab
a (top) and BMP Mj (bottom) plaintexts output

by the plaintext restructuring step, and their ciphertext (middle). The leftmost block
of each file is the first byte. The “BMP ptxt suffix” is the suffix of the original BMP
starting at byte 6. The “JPEG ptxt suffix” is the bytes of the original JPEG starting
at byte 2 and ending before the final two bytes. The region marked “End comment”
begins with the comment header and comment length bytes (which are not randomized
by Collide-GCM), but we do not depict them for simplicity.

Nonce search. Since file formats generally have some internal structure (like
having a fixed byte sequence at the beginning or end) Att-Merge must choose a
nonce so that the keystreams for the two keys respect this structure. JPEG and
BMP files must begin with different fixed two-byte sequences, so the keystreams
XORed with those sequences must result in a collision for the first two bytes.
The plaintext restructuring step will need the JPEG to have a comment header
in the next two bytes, which in the BMP plaintext contain the file length. Thus,
the nonce output by Att-Merge must produce a collision in the first four bytes
of the ciphertext (marked C0 through C4 in Fig. 4), which happens for about
one in 232 nonces. We wrote a simple Python script to search through nonces
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until we found 10606665379, which produces the required collision. Finding that
nonce took roughly three hours on a 3.4 GHz quad-core Intel i7.

Plaintext restructuring. After the nonce search, the two plaintexts can be
restructured. For JPEG and BMP images Att-Merge performs the following
steps: (1) inserting the decryption (under K1) of the BMP ciphertext into a
comment region at the beginning of the JPEG, (2) inserting an additional com-
ment at the end of the JPEG so the bytes randomized by Collide-GCM are ignored
by the JPEG parser, and (3) appending the decryption (under K2) of the JPEG
ciphertext to the end of the BMP plaintext. See Fig. 4 for a diagram of the JPEG
and BMP plaintexts after restructuring.

One important subtlety is that JPEG comments are at most 216 bytes in
length, so the BMP image must be smaller than 216 bytes. In fact, it is advanta-
geous for the BMP to be as small as possible because the comment length bytes
in the JPEG are not fixed by the nonce search. A more detailed explanation of
this issue and plaintext restructuring in general will be given in the full version
of this work.

Implementing Collide-GCM. We implemented Collide-GCM in Python 2.7 and
verified that arbitrary colliding ciphertexts can be generated in roughly 45 s using
an unoptimized implementation of GF(2128) arithmetic. We checked decryption
correctness using cryptography.io, a Python cryptography library which uses
OpenSSL’s GCM implementation. This sufficed as a proof-of-concept exploit for
Facebook’s engineering team.

3.2 Discussion and Mitigation

We chose JPEG and BMP files for our Att-Merge proof of concept because their
formats can tolerate random bytes in different regions of the file (the beginning
and the end, respectively). We did not try to extend the Att-Merge to other
common image formats but it is possible. We did not try to implement Att-Merge
for video file formats. Such formats are substantially more complex than image
formats, but we conjecture it is possible to extend the attack to video files.

Relation to GLR. In [17] GLR proved CtE2 is a ccAEAD scheme, and one
may wonder whether this attack shows their proof is incorrect. Their proof only
applies to CtE2 itself, not to the composition of CtE2 and GCM. Concretely,
GLR analyzed CtE2 as it is used for text chat messages in Messenger, but did
not analyze how it is used for attachments. This attack points to a gap between
GLR’s analysis and what Facebook actually uses, but it does not mean GLR’s
proof is incorrect. Indeed, the fact that the attack works without breaking CtE2’s
binding highlights the surprising subtlety of security notions for this setting.

The Collide-GCM algorithm in Fig. 2 is related to the r-BIND attack against
GCM given by GLR [17]. However, their attack is insufficient to exploit Face-
book’s attachment franking—it only creates ciphertexts with colliding tags, but
not the same ciphertext. Thus using it against Facebook wouldn’t work, because
the SHA-256 hashes of the two images would not collide. The Collide-GCM
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algorithm works even if the entire ciphertext, including any headers and the
nonce, act as the commitment and the only opening is the encryption key.

Mitigating the attack. There are two main ways this attack can be mitigated.
The first is a “server-software-only” patch that ensures abuse reports containing
attachments are not deduplicated by attachment identifier. The second is chang-
ing the Messenger clients to use a ccAEAD scheme instead of GCM to encrypt
attachments. In response to our bug report, Facebook deployed the first miti-
gation, primarily because it did not require patching the Messenger clients (an
expensive and time-consuming process). Despite requiring less engineering effort,
we believe this mitigation has some important drawbacks. Most notably, it leaves
the underlying cryptographic issue intact: attachments are still encrypted using
GCM. This means future changes to either the Messenger client or Facebook’s
server-side code could re-expose the vulnerability. Using a ccAEAD in place of
GCM for attachment encryption would immediately prevent any deduplication
behavior from being exploited, since the binding security of ccAEAD implies
attachment identifiers uniquely identify the attachment plaintexts.

4 A New Primitive: Encryptment

In this section, we introduce a new primitive called an encryptment scheme.
Encryptment schemes allow both encryption of, and commitment to1, a mes-
sage. Moreover, the schemes which we target and ultimately build achieve both
security goals with only a single pass over the underlying data.

While the syntax of encryptment schemes is similar to that of the ccAEAD
schemes we ultimately look to build, the key difference is that we expect far
more minimal security notions from encryptment schemes (see Sect. 7 for a
more detailed discussion). Looking ahead, we shall see that a secure encrypt-
ment scheme is the key building block for more complex primitives such as
ccAEAD schemes, robust encryption [1,15,16], cryptographic concealments [12],
and domain extension for authenticated encryption and remotely keyed AE [12],
facilitating the construction of very efficient instantiations of these primitives. In
Sect. 7.3 we show how to build ccAEAD from encryptment. The other primitives
are deferred to the full version of this work.

Encryptment schemes. Applying the encryptment algorithm to a given key,
header and message tuple (KEC,H,M) returns a pair (CEC, BEC) which we call
an encryptment. We refer to encryptment component CEC as the ciphertext, and
to BEC as the binding tag. Together the ciphertext/binding tag pair (CEC, BEC)
function as an encryption of M under key KEC, so that given (KEC,H,CEC, BEC),
the opening algorithm DO can recover the underlying message M . The binding
tag BEC simultaneously acts as a commitment to the underlying header and
message, with opening KEC; the validity of this commitment to a given pair
(H,M) is checked by the verification algorithm EVer. Looking ahead, we will

1 A secure commitment allows a user to commit to a message without revealing its
content; see [10] for further discussion.
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actually require that BEC acts as a commitment to the opening KEC also, in that
it should be infeasible to find KEC �= K ′

EC
which verify the same BEC.

Formally an encryptment scheme is a tuple EC = (EKg,EC,DO,EVer) defined
as follows. Associated to the scheme is a key space KEC ⊆ Σ∗, header space
HEC ⊆ Σ∗, message space MEC ⊆ Σ∗, ciphertext space CEC ⊆ Σ∗, and binding
tag space TEC ⊆ Σ∗.

• The randomized key generation EKg algorithm takes no input, and outputs
a key KEC ∈ KEC.

• The encryptment algorithm EC is a deterministic algorithm which takes as
input a key KEC ∈ KEC, a header H ∈ HEC, and a message M ∈ MEC, and
outputs an encryptment (CEC, BEC) ∈ CEC × TEC.

• The decryptment algorithm DO is a deterministic algorithm which takes
as input a key KEC ∈ KEC, a header H ∈ HEC, and an encryptment
(CEC, BEC) ∈ CEC × TEC, and outputs a message M ∈ MEC or the error
symbol ⊥. We assume that if (KEC,H,CEC, BEC) /∈ KEC × HEC × CEC × TEC,
then ⊥← DO(KEC,H,CEC, BEC).

• The verification algorithm EVer is a deterministic algorithm which takes
as input a header H ∈ HEC, a message M ∈ MEC, a key KEC ∈ KEC,
and a binding tag BEC ∈ TEC, and returns a bit b. We assume that if
(H,M,KEC, BEC) /∈ HEC ×MEC ×KEC ×TEC then 0 ← EVer(H,M,KEC, BEC).

Length regularity and compactness. We impose two requirements on the
lengths of the encryptments output by encryptment schemes. First, we require
compactness : that the binding tags BEC output by an encryptment scheme are
of constant length btlen regardless of the length of the underlying message, and
that btlen is linear in the key size. Second, we require length regularity : that the
length of ciphertexts CEC depend only on the length of the underlying message.
Formally, we require there exists a function clen : N → N such that for all
(H,M) ∈ HEC×MEC it holds that |CEC| = clen(|M |) with probability one for the
sequence of algorithm executions: KEC ←$ EKg ; (CEC, BEC) ← EC(KEC,H,M).

Fig. 5. Correctness games for
an encryptment scheme EC =
(EKg, EC, DO, EVer).

Correctness. We define two correctness
notions for encryptment schemes, which we for-
malize via the games COR and S-COR shown in
Fig. 5. We require that all encryptment schemes
satisfy our all-in-one correctness notion, which
requires that honestly generated encryptments
both decrypt to the correct underlying message,
and successfully verify, with probability one.
Formally, we say that an encryptment scheme
EC = (EKg,EC,DO,EVer) is correct if for all
header/message pairs (H,M) ∈ HEC × MEC, it
holds that Pr [ COREC(H,M) ⇒ 1 ] = 1, where
the probability is over the coins of EKg.
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We additionally define strong correctness, which requires that for each tuple
(KEC,H,M) ∈ KEC ×HEC ×MEC there is a unique encryptment (CEC, BEC) such
that M ← DO(KEC,H,CEC, BEC). We formalize this in game S-COR, and say
that an encryptment scheme EC = (EKg,EC,DO,EVer) is strongly correct if for
all tuples (KEC,H,CEC, BEC) ∈ KEC × HEC × MEC × CEC × TEC, it holds that
Pr [ S-COREC(KEC,H,CEC, BEC) ⇒ 1 ] = 1. While we only require that encrypt-
ment schemes satisfy correctness, the schemes we build will also possess the
stronger property (which simplifies their security proofs). We note that strong
correctness can be added to any encryptment scheme by making DO recompute
a ciphertext after decrypting, and returning ⊥ if the two do not match; however
for efficiency we target schemes which achieve strong correctness without this.

4.1 Security Goals for Encryptment

We require encryptment schemes to satisfy both one-time real-or-random
(otROR) security, and a variant of one-time ciphertext integrity (SCU) which
requires forging a ciphertext for a given binding tag with a known key; we moti-
vate this variant below. The security games for both notions are shown in Fig. 6.

Fig. 6. One-time real-or-random (otROR), second-ciphertext unforgeability (SCU),
and binding notions for an encryptment scheme EC = (EKg, EC, DO, EVer).

Confidentiality. We define otROR security for an encryptment scheme EC =
(EKg,EC,DO,EVer) in terms of games otROR0 and otROR1. Each game allows
an attacker A to make one query of the form (H,M) to his real-or-random
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encryption oracle; in game otROR0 he receives back the real encryptment
(CEC, BEC) encrypting the input under a secret key, and in game otROR1 he
receives back random bit strings. For an encryptment scheme EC and adversary
A, we define the otROR advantage of A against EC as

Advot-ror
EC (A) =

∣

∣

∣

∣

Pr
[

otROR0A
EC ⇒ 1

]

− Pr
[

otROR1A
EC ⇒ 1

]

∣

∣

∣

∣

,

where the probability is over the coins of EKg and A.

Second-ciphertext unforgeability. We also ask that encryptment schemes
meet an unforgeability goal that we call second-ciphertext unforgeability (SCU).
In this game, the attacker first learns an encryptment (CEC, BEC) correspond-
ing to a chosen header/message pair (H,M) under key KEC. We then require
that the attacker shouldn’t be able to find a distinct header and ciphertext pair
(H ′, C ′

EC
) �= (H,CEC) such that DO(KEC,H ′, C ′

EC
, BEC) does not return an error.

This should hold even if the attacker knows KEC. Looking ahead, this is a nec-
essary and sufficient condition needed from encryptment when using it to build
ccAEAD schemes from fixed domain authenticated encryption.

Formally, the game SCU is shown in Fig. 6. To an encryptment scheme EC and
adversary A, we define the second-ciphertext unforgeability (SCU) advantage to
be Advscu

EC (A) = Pr
[

SCUA
EC ⇒ true

]

, where the probability is again over the
coins of EKg and A.

Binding security. We finally require that encryptment schemes satisfy certain
binding notions. We start by generalizing the receiver binding notion r-BIND
for ccAEAD schemes from [17], and adapting the syntax to the encryptment
setting. r-BIND security requires that no computationally efficient adversary
can find two keys, message, header triples (KEC,H,M),(K ′

EC
,H ′,M ′) and a

binding tag BEC such that (H,M) �= (H ′,M ′) and EVer(H,M,KEC, BEC) =
EVer(H ′,M ′,K ′

EC
, BEC) = 1. A simple strengthening of this notion — which we

denote sr-BIND (for strong receiver binding) — allows the adversary to instead
win if (H,M,KEC) �= (H ′,M ′,K ′

EC
). The pseudocode game sr-BIND is shown in

Fig. 6, where we define the sr-BIND advantage of an adversary A against EC as
Advsr-bind

EC (A) = Pr
[

sr-BINDA
EC ⇒ true

]

. The corresponding game and advan-
tage term for r-BIND security are defined analogously. The stronger receiver
binding notion implies the prior notion, and indeed is strictly stronger. We defer
the details to the full version. For our purposes, it will simplify our negative
results about rate-1 blockcipher-based encryptment.

We additionally define the notion of sender binding. It ensures that a sender
must itself commit to the message underlying an encryptment, by requiring that
it is infeasible to find an encryptment which decrypts correctly but for which
verification fails. Without this requirement, a malicious sender may be able to
send an abusive message to a receiver with a faulty commitment such that a
receiver is unable to report it. We define sender binding security formally via
the game s-BIND in Fig. 6. We define the s-BIND advantage of an adversary A
against an encryptment scheme EC as Advs-bind

EC (A) = Pr
[

s-BINDA
EC ⇒ true

]

.
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Binding notions and the Facebook attack. Looking ahead, the analogous
strong receiver binding notion for ccAEAD schemes is the property that would
have prevented the Facebook attack, had they used a scheme that enjoyed it.
This is because receiver binding implies that it is computationally intractable
for an attacker to find two distinct keys that verify the same binding tag. In the
Facebook attack, the sender was able to exploit this weakness to violate a security
property similar to GLR’s sender binding notion [17], which ensures decryption
can only succeed if the binding tag commits to the underlying plaintext. Canon-
ically, however, receiver binding is modeling the ability of a malicious receiver
to frame the sender as having sent a message they did not, in fact, send. Such
an attack doesn’t work against Facebook’s attachment franking scheme because
the encryption of the AES-GCM key enjoys receiver binding, and prevents the
recipient from forging an abuse report for an image that wasn’t sent.

Relation to ccAEAD. Given the simpler security properties expected of
them, building highly efficient secure encryptment schemes is a more straight-
forward task than constructing a ccAEAD scheme directly. However, as we shall
see, encryptment isolates the core complexity of building ccAEAD schemes with
multi-opening security. In particular, in Sect. 7.3 we give a generic transform
which allows one to build a multi-opening secure ccAEAD schemes from a secure
encryptment scheme and secure AEAD scheme. Armed with this transform,
in Sect. 6 we show how to construct a secure encryptment scheme from cryp-
tographic hash functions. Together, our results will yield the first single-pass,
single-primitive constructions of ccAEAD.

Binding and correctness imply ciphertext integrity. One reason we have
introduced encryptment as a standalone primitive (instead of directly working
with the ccAEAD formulation from GLR) is that it simplifies security analyses.
One useful tool towards this is that we can show the following lemma, which
states that for any encryptment scheme EC that enjoys strong correctness, the
combination of r-BIND and s-BIND security suffice to prove the SCU security.

Lemma 1. Let EC = (EKg, EC, DO, EVer) be a strongly correct encryptment
scheme, and consider an attacker A in the SCU game against EC. Then there
exist attackers B and C such that Advscu

EC (A) ≤ Advs-bind
EC (B) + Advr-bind

EC (C),
and moreover B and C both run in the same time as A.

We give a proof sketch and defer details to the full version. Let ((CEC, BEC),KEC)
be the tuple corresponding to A’s single encryption query (H,M) in the
SCU game, and suppose that A subsequently wins the game with decryption
oracle query (H ′, C ′

EC
), meaning that DO(KEC,H ′, C ′

EC
, BEC) = M ′ �=⊥ and

(H ′, C ′
EC

) �= (H,CEC). The proof first argues that if the scheme is s-BIND-secure,
then any ciphertext which decrypts correctly must also verify correctly. As such,
it follows that if (H,M) �= (H ′,M ′) for the winning query, then this can be used
to construct a winning tuple for an attacker in the r-BIND game against EC; we
bound the probability that this occurs with a reduction to r-BIND security.
On the other hand, if (H,M) = (H ′,M ′), then it must be the case that
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CEC �= C ′
EC

— but this in turn implies that we have found two distinct encrypt-
ments which decrypt to the same header and message under KEC, violating
strong correctness.

A simple encryptment construction. It is straightforward to construct an
encryptment scheme by composing a secure encryption scheme and a commit-
ment scheme. One can just use a simple adaptation of the CtE2 ccAEAD scheme
from [17]. We defer the details to the full version. But such generic compositions
are inherently two pass and we seek faster schemes.

5 On Efficient Fixed-Key Blockcipher-Based

Encryptment

We are interested in building encryptment schemes — and ultimately, more
complex primitives such as ccAEAD schemes — from just a blockcipher used
on a small number of keys and other primitive arithmetic operations (XOR,
finite field arithmetic, etc.). Beyond being an interesting theoretical question,
there is the practical motivation that the current fastest AEAD schemes, such
as OCB [32], fall into this category.

As a simple motivating example illustrating the challenging nature of this
task, we note that OCB does not satisfy r-BIND security (see Sect. 4) when
reframed as an encryptment scheme in the natural way. The high level reason
for this (modulo a number of details), is that in OCB the binding tag is computed
as a function over the XOR of the message blocks. As such, it is straightforward
to construct two distinct messages such that the blocks XOR to the same value
(and thus produce the same binding tag), thereby violating r-BIND security.
Full details of the scheme and attack are given in the full version.

For the remainder of this section, we formally define high-rate encryptment
schemes, and show how prior results on the impossibility of high-rate CR func-
tions can be used to rule out high-rate encryptment schemes as well.

A connection between hashing and encryptment. Towards showing neg-
ative results, we must first define more carefully what we mean by the rate
of encryptment schemes. We are inspired by (and will later exploit connec-
tions to) the definitions of rate from the blockcipher-based hash function lit-
erature [9,34,35]. Consider a compression function H : {0, 1}mn → {0, 1}rn

for m > r ≥ 1 and n ≥ 1, which uses k ≥ 1 calls of a blockcipher
E : {0, 1}κ × {0, 1}n → {0, 1}n (m, r, n, k, κ ∈ N). Then following [35], we may
write H as shown in Fig. 7, where we let K1, . . . , Kk be any fixed strings2, and
fi : {0, 1}(m+(i−1))n → {0, 1}n (i = 1, . . . , k), g : {0, 1}(m+k)n → {0, 1}rn are
functions.

2 One can modify our definitions so keys can be picked from a set as a function of the
current round and messages, what Rogaway and Steinberger refer to as the no-fixed
order model, and as first done in [9]. A negative result based on [9, Theorem5] would
rule out encryptment using any rate-1 no-fixed order verification algorithm.
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Fig. 7. A blockcipher-based
compression function.

The rate of H is defined to be m/k; so a
rate- 1

β function H makes β blockcipher calls per
n-bits of input. For example, a rate-1 H would
achieve a single blockcipher call per n-bit block of
input. A consequence of the more general results
of [35] (see below) is that they rule out rate-1 func-
tions achieving security past 2n/4 queries to E by an
adversary, when modeling E as an ideal cipher. We
would like to exploit their negative results to simi-
larly rule out rate-1 encryptment schemes.

We now focus attention on encryptment schemes that fall into a certain form.
Consider an encryptment scheme EC = (EKg,EC,DO,EVer). Because EC is deter-
ministic, we can view computing the binding tag as a function F (KEC,H,M)
defined by computing (CEC, BEC) = EC(KEC,H,M) and outputting BEC. The
verification algorithm EVer(H,M,KEC, BEC) checks that F (KEC,H,M) = BEC.
(One can generalize this definition by allowing EC and EVer to use different func-
tions F ,F ′ to compute the binding tag; the lower bounds given in this section
on the rate of such functions readily extend to this case also.)

With this in place, we can define the rate of verification for encryptment anal-
ogously to defining the rate of a hash function H, by saying that an encryptment
scheme has rate- 1

β if the associated function F makes β blockcipher calls per

n-bits of header and message data (or equivalently, can process (H,M) of com-
bined length mn-bits using βm blockcipher calls).

Now we can give a generic, essentially syntactic, transform from an encrypt-
ment scheme to a hash function. For an encryptment scheme EC, let F be the
associated binding tag computation function as per above. Let H : {0, 1}∗ →
{0, 1}n be the function defined as H(X) = F (KEC, ε,X) for KEC an arbitrary,
fixed bit string. (Here we take H = ε, so that the number of block cipher calls
required to compute F is solely determined by the length of the input X). The
following is simple to prove.

Theorem 1. Let EC be a encryptment scheme with binding codes, and let H
be defined as in the previous paragraph. For any collision-resistance adversary
A, we give an r-BIND adversary B so that Advcr

H(A) ≤ Advr-bind
EC (B). The

adversary B runs in the same amount of time as A.

Theorem 1 allows us to apply known negative results about efficient CR-hashing.
For example, we have the following corollary of Theorem1 and [35, Theorem 1]:

Corollary 1. Fix m > r ≥ 1 and n > 0 (m, r, n ∈ N). Let N = 2n. Let EC be
an encryptment scheme with ideal-cipher-based binding codes of length rn and
that has message space including strings of length mn. Then there is a runnable
adversary A making q = k(N1−(m−r)/k + 1) ideal cipher queries and achieving
Advr-bind

EC (A) = 1, where k ∈ N denotes the number of permutation calls required
to compute the binding code for an mn-bit input.

This immediately rules out security of rate-1 schemes that achieve the effi-
ciency of OCB, i.e., having k = m, m arbitrarily large, and r = 1. Consider the
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minimal case that m = 2 (two block messages), then A only requires q = 2
queries to succeed. Stronger results ruling out rate-1

2 verification can be sim-
ilarly lifted from [35, Theorem 2] under some technical conditions about the
verification function and the adversary. The results above were cast in terms of
r-BIND security, but extend to sr-BIND security because the latter implies the
former.

Ultimately these negative results indicate that for an r-BIND-secure encrypt-
ment scheme, the best we can hope for is either a rate- 1

3 construction with a
small set of keys, or to allow rekeying with each block of message. We therefore
turn to building as efficient-as-possible constructions.

In Sect. 7, we will describe how the existence of an r-BIND-secure ccAEAD
scheme of a given rate implies the existence of a given r-BIND-secure encrypt-
ment scheme of the same rate, and so the results of this section exclude the
existence of rate-1 or rate- 1

2 ccAEAD schemes also.

6 Encryptment from Hashing

In this section, we turn our attention to building secure and efficient encryptment
schemes. As we shall see in Sect. 7, these can be lifted to multi-opening, many-
time secure ccAEAD via simple and efficient transforms.

As one might expect given the close relationship between binding and CR
hashing discussed previously in Sect. 5, our starting point will be cryptographic
hashing. A slightly simplified version of the construction is shown in Fig. 8
(padding details are omitted), where f is a compression function. In summary,
the scheme hashes the key, associated data and message data (the latter two of
which are repeatedly XOR’d with the key). Intermediate chaining variables from
the hash computation are used as pads to encrypt the message data, while the
final chaining variable constitutes the binding tag.

Fig. 8. Encryptment in the HFC scheme for a 1-block header and m-block message.
For simplicity the diagram does not show the details of padding.

Intuitively, (strong) receiver binding derives from the collision resistance of
the underlying hash function. We XOR the key into all the associated data and
message blocks to ensure that every application of the compression function
is keyed. This is critical; just prepending (or both prepending and appending)
the key to the data leads to a scheme whose confidentiality is easily broken.
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Likewise one cannot dispense with the additional initial block that simply pro-
cesses the key, otherwise the encoding of the key, associated data, and message
would not be injective and binding attacks result.

Some notation. Before defining the full scheme, we first give some additional
notation which will simplify the presentation. The algorithm Parsed is used to
partition a string into d-bit blocks. Formally, we define Parsed to be the algorithm
which on input X outputs (X1, . . . , Xℓ) such that |Xi| = d for 1 ≤ i ≤ ℓ − 1 and
|Xℓ| = |X| mod d. For correctness, we require that X = X1‖ . . . ‖Xℓ. Similarly,
we define Truncr to be the algorithm which on input X outputs the r leftmost
bits of X. We write 〈y〉64 to be the encoding of y as a 64-bit string.

Fig. 9. Padding scheme PadS =
(PadH, PadM, PadSuf, Pad). We require
that ℓH , ℓM ∈ N

2.

Our scheme utilizes a padding
scheme PadS= (PadH,PadM,PadSuf,
Pad). The padding scheme is parame-
terized by a pair of numbers d, n, but
we omit these in the notation for sim-
plicity. We assume d ≥ n ≥ 128. The
algorithms PadH,PadM, and PadSuf
are shown in Fig. 9. Notice that for
all header and message pairs (H,M),
it holds that if |M | mod n = r, then
r + |PadSuf(|H|, |M |)| will be equal to
either d or 2d. The full padding func-
tion is then defined to be Pad(H,M) =
PadH(H)‖PadM(M)‖PadSuf(|H|, |M |).
Note that |Pad(H,M)| is a multiple of d
and that the function Pad(H,M) is injective, i.e., for all pairs (H,M), (H ′,M ′),
Pad(H,M) = Pad(H ′,M ′) only if (H,M) = (H ′,M ′).

Next we define iterated functions. Let f : {0, 1}n × {0, 1}d → {0, 1}n be
a function for some d ≥ n ≥ 128, let D+ = ∪i≥1{0, 1}id and let V0 ∈
{0, 1}n. Then f+ : {0, 1}n × D+ → {0, 1}n denotes the iteration of f, where
f+(V0, X1 ‖ · · · ‖ Xm) = Vm is computed via Vi = f(Vi−1, Xi) for 1 ≤ i ≤ m.

The HFC encryptment scheme. The hash-function-chaining encryptment
scheme HFC = (HFCKg,HFCEnc,HFCDec,HFCVer) is based on a compression
function f : {0, 1}n × {0, 1}d → {0, 1}n. The pseudocode for the encryptment
and decryptment algorithms is presented in Fig. 10.

Key generation HFCKg simply chooses KEC ←$ {0, 1}d. Encryptment first
pads the header and message using the padding functions PadH and PadM
respectively. We let IV ∈ {0, 1}n be a fixed constant value (also called an
initialization vector). The scheme computes an initial chaining variable as
V0 = f(IV,KEC). It then hashes PadH(H) ‖ PadM(M) ‖ PadSuf(|H|, |M |) with
f+, the iteration of the compression function f, where the secret encryptment
key KEC is XORed into each d-bit block prior to hashing. The final chain-
ing variable produced by this process forms the binding tag BEC. Notice that
while the compression function takes d-bit inputs, the way in which the message
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Fig. 10. The HFC encryptment scheme HFC built from a compression function
f : {0, 1}n×{0, 1}d → {0, 1}n and padding scheme PadS = (PadH, PadM, PadSuf, Pad).
Here KEC ∈ {0, 1}d, and IV ∈ {0, 1}n is a fixed public constant.

data is padded means we only process n-bits of message in each compression
function call. We will see that the collision resistance of the iterated hash func-
tion when instantiated with an appropriate compression function implies the
sr-BIND security of the construction.

Rather than running a separate encryption algorithm alongside this process
to encrypt the message, we instead generate ciphertext blocks by XORing the
message blocks Mi with intermediate chaining variables, yielding Ci = Vh+i−1 ⊕
Mi for 1 ≤ i ≤ m where h denotes the number of header blocks. Recall that in our
notation X ⊕ Y silently truncates the longer string to the length of the shorter
string, and so only the n-bits of message data in each d-bit padded message
block is XORed with the n-bit chaining variable; similarly, if message M is such
that |M | mod n = r, then the final ciphertext block produced by this process
is truncated to the leftmost r-bits. The properties of the compression function
ensure that the chaining variables are pseudorandom, thus yielding the required
otROR security. By ‘reusing’ chaining variables as random pads we can achieve
encryptment with no additional overhead over just computing the binding tag,
incurring a significant efficiency saving (see further discussion below).

Decryption DO(KEC,H,CEC) begins by padding H into d-bit blocks via
PadH(H) and parsing CEC into n-bit blocks. The algorithm computes the ini-
tial chaining variable as V0 = f(IV,KEC), then hashes the padded header as in
encryption. The scheme then recovers the first message block M1 by XORing the
chaining variable into the first ciphertext block C1. This is then used to compute
the next chaining variable via application of f, and so on. Notice how at most
n-bits of message data is recovered in each such step; this is why we must process
only n-bits of message data in each compression function call, else the decryptor
would be unable to compute the next chaining variable. Finally, DO recomputes
and verifies the binding tag, returning the message only if verification succeeds.

The verification algorithm (not shown), on input (KEC,H,M,BEC), pads the
message to PadH(H) ‖ PadM(M) ‖ PadSuf(|H|, |M |), XORs KEC into every
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block, and hashes the resulting string with f+ with initial chaining variable
V0 = f(IV,KEC), checking that the output matches the binding tag BEC.

Our padding scheme is a variant of MD strengthening. We will not rely on
the strengthening for its traditional purpose of forming a suffix-free padding
scheme; we use strengthening only for injectivity and will assume more of f.

Efficiency. The efficiency of the scheme (in terms of throughput) depends on
the parameters d, n, where recall that f : {0, 1}n×{0, 1}d → {0, 1}n. As discussed
previously, at most n-bits of message data can be processed in each compression
function call. As such, the HFC encryptment scheme achieves optimal through-
put when d = n. In this case no padding is applied to the message blocks, and
so computing the full encryptment incurs no overhead over simply computing
the binding tag. If d > n, then some throughput is lost due to the padding. In
the full version we present an alternative padding scheme for this case, which
recovers some throughput by padding message blocks with header data.

6.1 Analyzing the HFC Encryptment Scheme

In this section, we analyze the security of the HFC encryptment scheme, relative
to the security goals detailed in Sect. 4. We also discuss some of the options for
instantiating the compression function f.

Strong receiver binding. We begin by proving that the HFC encryptment
scheme satisfies strong receiver binding. Observe that the binding tag computa-
tion performed by HFCEnc on input tuple (KEC,H,M) is equivalent to XORing
KEC into each d-bit block of 0d ‖ Pad(H,M) (we refer to this as ‘encoding’ the
tuple), and hashing the resulting string with f+. Moreover, it is straightforward
to verify that the injectivity of Pad implies that the encoding map is injective
also. So any tuple breaking the sr-BIND security of HFC is a collision against f+.

A well-known folklore result (see [2]) gives that f+ is collision-resistant pro-
vided the underlying compression function is collision-resistant, and that it is
hard to find an input which hashes to the IV . Standard compression functions
satisfy both properties. The full proof of the following is given in the full version.
The conditions on d, n below are due to the padding scheme and can be relaxed.

Theorem 2. Let HFC be as shown in Fig. 10, using compression function
f : {0, 1}n × {0, 1}d → {0, 1}n where d ≥ n ≥ 128. Then for any adversary
A in the sr-BIND game against HFC, there exists an adversary B such that
Advsr-bind

HFC (A) ≤ Advcr
f+(B), where adversary B runs in the same time as A.

Sender binding and correctness. The s-BIND security of HFC is immediate
because decryption verifies the binding tag. Similarly, it is straightforward to
verify that the scheme is strongly correct. Therefore Lemma 1 allows us to bound
the SCU security of HFC as an immediate consequence of these observations
coupled with Theorem2.

One-time confidentiality. All that remains is to bound the otROR security
of HFC. We do this in the next theorem, by reducing otROR security of HFC
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to the related-key attack (RKA) PRF security [3] of f for a specific class of
related-key deriving functions.

Let F : {0, 1}n × {0, 1}d → {0, 1}n be a function, and consider the games
RKA-PRF0 and RKA-PRF1. In both games a key Kprf ←$ {0, 1}d is chosen.
The attacker is given access to an oracle to which he may submit queries of
the form (X,Y ) ∈ {0, 1}n × {0, 1}d. In game RKA-PRF0, the oracle returns
F (X,Y ⊕ Kprf). In game RKA-PRF1, the oracle returns a random bit string
for each query, answering consistently if (X,Y ⊕ Kprf) collides with a previous
query. The linear-only RKA-PRF advantage of an adversary A is defined as

Adv
⊕-prf
F (A) =

∣

∣Pr
[

RKA-PRF0A
F ⇒ 1

]

− Pr
[

RKA-PRF1A ⇒ 1
]∣

∣ ,

where the probabilities are over the coins used in the games.
The proof of the following theorem then follows from a reduction to the RKA-

PRF security of f, coupled with a birthday bound to account for collisions during
the challenge ciphertext computation. The proof is given in the full version.

Theorem 3. Let HFC be as shown in Fig. 10, using compression function
f : {0, 1}n × {0, 1}d → {0, 1}n where d ≥ n ≥ 128. Then for any adversary
A in the otROR game against HFC, there exists an adversary B such that

Advot-ror
HFC (A) ≤ Adv

⊕-prf
f

(B) + ℓ2

2n
, where ℓ · d denotes the length of A’s encryp-

tion query after padding. The adversary B runs in time that of A plus an O(ℓ)
overhead and makes at most ℓ queries.

Instantiations. The obvious (and probably best) choice to instantiate f is
the SHA-256 or SHA-512 compression function. These provide good software
performance, and there is a shift towards widespread hardware support in the
form of the Intel SHA instructions [11,18,39]. Extensive cryptanalysis for the
CR (e.g., [23,26,36]), preimage resistance (e.g., [19,23]), and RKA-PRP of the
associated SHACAL-2 blockcipher (e.g., [21,24,25,27]) gives confidence in its
security. Another approach would be to use AES via a PGV compression func-
tion [31] like Davies-Meyer (DM). Security of AES has been studied extensively,
and known attacks do not falsify the assumptions we need [7,8]. On systems with
AES-NI, HFC instantiated with DM-AES will have very good performance. More
problematic is that binding can only hold up 264, which is in general insufficient
in practice. Other options, although in some cases less well-studied cryptanalyt-
ically, include SHA-3 finalists. In particular, a variant of the HFC construction
using a sponge-based mode such as Keccak, in which the key is fed to the sponge
prior to hashing the message blocks, would allow us to avoid the RKA assump-
tion. We could also remove the assumption by using a compression function with
a dedicated key input such as LP231 [34]. We discuss both cases, and include a
more thorough discussion of instantiations, in the full version.
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7 Compactly Committing AEAD from Encryptment

In this section we recall the formal notions for compactly committing AEAD
schemes (ccAEAD schemes), following the treatment given by GLR [17], and
compare these to encryptment. With this in place, we show in Sect. 7.3 how
to build ccAEAD from encryptment with very efficient transforms. In the full
version, we will show how to construct a secure encryptment scheme from a
ccAEAD scheme in a way that transfers our negative results from Sect. 5 to
ccAEAD; this result does not appear here for space reasons.

7.1 ccAEAD Syntax and Correctness

Encryptment can be viewed as a one-time secure, deterministic variant of
ccAEAD. We discuss further the differences between the two primitives later
in the section.

ccAEAD schemes. Formally, a ccAEAD scheme is a tuple of algorithms CE =
(Kg,Enc,Dec,Ver) with associated key space K ⊆ Σ∗, header space H ⊆ Σ∗,
message space M ⊆ Σ∗, ciphertext space C ⊆ Σ∗, opening space Kf ⊆ Σ∗, and
binding tag space T ⊆ Σ∗, defined as follows. The randomized key generation
algorithm Kg takes no input, and outputs a secret key K ∈ K. The random-
ized encryption algorithm Enc takes as input a tuple (K,H,M) ∈ K × H × M
and outputs a ciphertext/binding tag pair (C,CB) ∈ C × T . The deterministic
decryption algorithm Dec takes as input a tuple (K,H,C,CB) ∈ H×M×C×T ,
and outputs a message/opening pair (M,Kf ) ∈ M × Kf or the error sym-
bol ⊥. The deterministic verification algorithm Ver takes as input a tuple
(H,M,Kf , CB) ∈ H × M × Kf × T , and outputs a bit b. We assume that
if Dec and Ver are queried on inputs which do not lie in their defined input
spaces, then they return ⊥ and 0 respectively.

Correctness and compactness. Correctness for ccAEAD schemes is defined
identically to the COR correctness notion for encryptment schemes (Fig. 5),
except in the ccAEAD case the probability is now over the coins of Enc also.
We require that the structure of ciphertexts C depend only on the length of the
underlying message. Formally, let M∗ = {i | ∃m ∈ M : |m| = i}. Then we require
that the ciphertext space C can be partitioned into disjoint sets C(i) ⊆ C, i ∈ M∗,
such that for all (H,M) ∈ H×M it holds that C ∈ C(|M |) with probability one
for the sequence of algorithm executions: K ←$ Kg ; (C,CB) ←$ Enc(K,H,M).
Finally, we require that the binding tags CB are compact, by which we mean
that all CB returned by a ccAEAD scheme are of constant length blen which is
linear in the key size.

Comparison with encryptment. With this in place, we highlight the key dif-
ferences between encryptment and ccAEAD schemes. The overarching difference
is that encryptment schemes are single-use (a key is only ever used to encrypt
a single message), whereas ccAEAD schemes are multi-use. To support this, the
encryption algorithm for ccAEAD schemes is randomized, whereas for encrypt-
ment this algorithm is deterministic. This is necessary for achieving schemes
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that enjoy security in the face of attackers that can obtain multiple encryptions.
Moreover, while encryptment schemes are restricted to use the same key for
verification as they use for encryptment, ccAEAD schemes output an explicit
opening key Kf during decryption. There is no requirement that this equal the
secret key used for encryption. Again, outputting an opening key distinct from
the encryption key allows for ccAEAD schemes that maintain confidentiality
and integrity even after some ciphertexts produced under a given encryption
key have been opened.

AEAD schemes. The usual definition of AEAD schemes (see Sect. 2) can
be recovered from the above definition of ccAEAD schemes by noticing that
the tuple of AEAD algorithms AEAD = (AEAD.kg,AEAD.enc,AEAD.dec) can
be defined identically to their ccAEAD variants, except we view the cipher-
text/binding tag pair as a single ciphertext, and modify decryption to no longer
output the opening, in the AEAD case. This framing allows us to define secu-
rity notions for AEAD schemes as a special case of those notions for ccAEAD
schemes for conciseness and ease of comparison. Similarly regular AE schemes
are defined to be the same as AEAD schemes but with all references to the
header removed.

7.2 Security Notions for Compactly Committing AEAD

We now define the security notions for ccAEAD schemes, following GLR. They
adapt the familiar security notions of real-or-random (ROR) ciphertext indis-
tinguishability [33], and ciphertext integrity (CTXT) [4] for AE schemes to
the ccAEAD setting. We focus on GLR’s multi-opening (MO) security notions.
MO-ROR (resp. MO-CTXT) requires that if multiple messages are encrypted
under the same key, then learning the message/opening pair (M,Kf ) for some
of the resulting ciphertexts does not compromise the ROR (resp. CTXT) secu-
rity of the remaining unopened ciphertexts. This precludes schemes which for
example have the opening key Kf equal to the secret encryption key K.

Confidentiality. Games MO-REAL and MO-RAND are shown in Fig. 11. In
both variants, the attacker is given access to an oracle ChalEnc to which he may
submit message/header pairs. This oracle returns real (resp. random) cipher-
text/binding tag pairs in game MO-REAL (resp. MO-RAND). The attacker is
then challenged to distinguish between the two games. To model multi-opening
security, the attacker is also given a pair of encryption/decryption oracles, Enc

and Dec, and may submit the (real) ciphertexts generated via a query to the
former to the latter, learning the openings of these ciphertexts in the process.
The challenge decryption oracle will return ⊥ for any ciphertext not generated
via the encryption oracle, to prevent the attacker trivially winning by decrypting
a ciphertext returned by ChalEnc. We define the advantage of an attacker A
in game MO-ROR against a ccAEAD scheme CE as

Advmo-ror
CE (A) =

∣

∣Pr
[

MO-REALA
CE ⇒ 1

]

− Pr
[

MO-RANDA
CE ⇒ 1

]∣

∣ .
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Fig. 11. Confidentiality (left two games) and ciphertext integrity (rightmost) games
for ccAEAD.

Ciphertext integrity. Ciphertext integrity guarantees that an attacker can-
not produce a fresh ciphertext which will decrypt correctly. The multi-opening
adaptation to the ccAEAD setting MO-CTXT is shown in Fig. 11. The attacker
A is given access to encryption oracle Enc and a challenge decryption ora-
cle ChalDec. The attacker wins if he submits a ciphertext to ChalDec which
decrypts correctly and which wasn’t the result of a previous query to the encryp-
tion oracle. To model multi-opening security, the attacker is given access to a
further oracle Dec via which he may decrypt ciphertexts and learn the corre-
sponding openings. The advantage of an attacker A in game MO-CTXT against
a ccAEAD scheme CE is then defined

Advmo-ctxt
CE (A) = Pr

[

MO-CTXTA
CE ⇒ true

]

.

Security for standard AEAD. We note that the familiar ROR and CTXT
notions for AEAD schemes can be recovered from the corresponding ccAEAD
games in Fig. 11 by reframing the ccAEAD scheme as an AEAD scheme as
described previously, removing access to oracle Dec in all games, and remov-
ing Enc in MO-REAL and MO-RAND. Advantage functions are defined analo-
gously. Since here we are removing attacker capabilities, it follows that security
for a ccAEAD scheme with respect to these notions implies security for the
derived AEAD scheme also.

Receiver and sender binding. Strong receiver binding for ccAEAD schemes
is the same as for encryptment (Fig. 6), except the attacker outputs openings
Kf ,K ′

f rather than secret keys K,K ′ as part of his guess. The sender bind-
ing game for a ccAEAD scheme challenges an attacker A to output a tuple
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(K,H,C,CB) such that (Kf ,M) ← Dec(K,H,C,CB) does not equal ⊥ but
Ver(H,M,Kf , CB) = 0. This is the same as the associated game for encryptment,
except that the opening Kf recovered during decryption is used for verification
rather than the key output by A. Given the similarities, we abuse notation by
using the same names for ccAEAD binding notion games and advantage terms
as in the encryptment case; which version will be clear from the context.

Given that both target certain binding notions, a natural question is whether
an sr-BIND secure ccAEAD scheme is also robust [16], and vice versa. In the
full version, we show that neither notion implies the other in generality. We also
discuss the conditions under which the ccAEAD schemes we build from secure
encryptment are robust.

7.3 Encryptment to ccAEAD Transforms

We now turn to building ccAEAD from encryptment. Fix an encryptment
scheme EC = (EKg,EC,DO,EVer) and a standard AEAD scheme AEAD =
(AEAD.Kg,AEAD.enc,AEAD.dec). Let CE[EC,AEAD] = (Kg,Enc,Dec,Ver) be
the ccAEAD scheme whose encryption, decryption, and verification algorithms
are shown in Fig. 12. Key generation Kg runs K ←$ AEAD.Kg and outputs K.

To encrypt a header/message (H,M), Enc uses the key generation algo-
rithm of the encryptment scheme to generate a one-time encryptment key
KEC ←$ EKg, and computes the encryptment of the header and message via
(CEC, BEC) ← EC(KEC,H,M). The scheme then uses the encryption algo-
rithm of the AEAD scheme to encrypt the one-time key KEC with header BEC,
producing CAE ←$ AEAD.enc(K,BEC,KEC), and outputs ((CEC, CAE), BEC). On
input (K, (CEC, CAE), BEC), Dec computes KEC ← AEAD.dec(K,BEC, CAE) and if
KEC =⊥ returns ⊥ since this clearly indicates that CAE is invalid. The recovered
key KEC is in turn used to recover the message via M ← DO(KEC,H,CEC, BEC).
If M =⊥, the scheme returns ⊥; otherwise, EC returns (M,KEC) as the mes-
sage/opening pair. Ver simply applies the verification algorithm EVer of the
underlying encryptment scheme to the input tuple and returns the result.

Notice that by including the binding tag BEC as the header in the authen-
ticated encryption, this ensures the integrity of BEC. If we did not authenticate
BEC then an attacker could trivially break the MO-CTXT-security of the scheme
by using an Enc query to obtain ciphertext ((CEC, CAE), BEC) for a pair (H,M),
submitting that ciphertext to Dec to recover the opening/key KEC, with which
he can easily create a valid forgery by computing (C ′

EC
, B′

EC
) ← EC(KEC,H ′,M ′)

for some distinct header/message pair and outputting ((C ′
EC

, CAE), B′
EC

). Includ-
ing the binding tag as the header in the AEAD ciphertext means that an attacker
trying to replicate the above mix-and-match attack must create a forgery for an
encryptment binding tag and key already returned as the result of an Enc query,
thus violating the SCU security of the underlying encryptment scheme.
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Fig. 12. A generic trans-
form from an encryptment
scheme EC and a standard
authenticated encryption
scheme AEAD to a multi-
opening ccAEAD scheme
CE[EC, AEAD]. Verification
simply runs EVer.

Security of the transform. Next, we analyze
the security of the ccAEAD scheme CE[EC,AEAD]
shown in Fig. 12. We begin with confidentiality.
The proof of the following theorem follows from
reductions to the ROR security of the underlying
encryptment and AEAD schemes, and is given in
the full version.

Theorem 4. Let EC be an encryptment scheme,
AEAD be an authenticated encryption scheme, and
let CE[EC,AEAD] be the ccAEAD scheme built from
EC according to Fig. 12. Then for any adversary A
in the MO-ROR game against CE making a total of
q queries, of which qc are to ChalEnc and qe are
to Enc, there exists adversaries B and C such that

Advmo-ror
CE (A) ≤ 2·Advror

AEAD(B)+qc·Advot-ror
EC (C) .

Adversaries B and C run in the same time as A
with an O(q) overhead, and adversary B makes at
most qc + qe encryption oracle queries.

Next we bound the MO-CTXT advantage of any adversary against
CE[EC,AEAD], via a reduction to the CTXT security of the underlying AEAD
scheme, and the SCU security of the encryptment scheme; we defer the proof to
the full version.

Theorem 5. Let EC be an encryptment scheme, AEAD be an authenticated
encryption scheme, and let CE[EC,AEAD] be the ccAEAD scheme built from EC

according to Fig. 12. Then for any adversary A in the MO-CTXT game against
CE making a total of q queries, of which qe are to Enc, there exists adversaries
B and C such that

Advmo-ctxt
CE (A) ≤ Advctxt

AEAD(B) + qe · Advscu
EC (C) .

Adversaries B and C run in the same time as A with an O(q) overhead, and
adversary B makes at most as many queries as A.

We omit bounding the s-BIND and sr-BIND security of CE[EC,AEAD], since
CE inherits these properties directly from EC. By reframing CE as a regular
AEAD scheme, our transform yields a ROR and CTXT secure single-pass AEAD
scheme. To implement the transform, the fixed-input-length AE scheme must be
instantiated. One can use, for example, AES-GCM or OCB. In the full ver-
sion of the paper, we provide two other approaches for building ccAEAD from
encryptment, which use a PRF and a tweakable block cipher respectively.
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