
Fast Methods for Extraction and Sparsification of
Substrate Coupling

Joe Kanapka
Massachusetts Institute

of Technology
Cambridge, MA 02139

kanapka@rlevlsi.mit.edu

Joel Phillips
Cadence Berkeley

Laboratories
San Jose, CA 95134
jrp@cadence.com

Jacob White
Massachusetts Institute

of Technology
Cambridge, MA 02139
white@rlevlsi.mit.edu

ABSTRACT
The sudden increase in systems-on-a-chip designs has renewed in-

terest in techniques for analyzing and eliminating substrate cou-

pling problems. Previous work on the substrate coupling analysis

has focused primarily on faster techniques for extracting coupling

resistances, but has offered little help for reducing the resulting net-

work whose number of resistors grows quadratically with the num-

ber of contacts. In this paper we show that an approach inspired by

wavelets can be used in two ways. First, the wavelet method can be

used to accurately sparsify the dense contact conductance matrix.

In addition, we show that the method can be used to compute the

sparse representation directly. Computational results are presented

that show that for a problems with a few thousand contacts, the

method can be almost ten times faster at constructing the matrix.

1. INTRODUCTION
As designers of mixed signal integrated circuits become more ag-

gressive in their use of the technology, the conservative design prac-

tices that allowed them to ignore substrate coupling problems are

being abandoned. Not only is this making substrate coupling prob-

lems more commonplace, but the ones that do occur are harder to

analyze. For this reason, there is renewed interest in analyzing sub-

strate coupling[1, 2, 3, 4, 5]. Because of the complexity of the

substrate interactions, it is important to find robust and effective

numerical techniques for substrate parasitic extraction and conse-

quent simulation of substrate effects on circuit performance.

Compared to other parasitic extraction and analysis problems, such

as capacitance extraction, the difficulty with extracting and simu-

lating substrate coupling models is that the coupling is potentially

dense. Evaluating the impact of parasitic capacitances is relatively

easy in comparison, since due to strong shielding effects conduc-

tors are usually capacitively coupled only to a few other nearby

bodies, and the extraction problem can be localized by analyzing

only a section of the 3D geometry. Later simulation is efficient

because the capacitive parasitics generate only a few more terms

in the sparse circuit matrix. If the substrate is uniformly conduc-

tive, substrate coupling is more localized, so that the conductance

matrix is already numerically sparse. In other cases, such as in sub-

strates where there is a thin top layer of relatively low conductiv-

ity and lower layers of higher conductivity, a situation desirable for

latchup supression, the coupling tends to be global. In this case, ev-

ery substrate contact may have important couplings to every other

contact, implying that large sections of the substrate may need to

be analyzed at once.

Recent work on numerical modeling of substrate coupling effects

has focused on obtaining an n by n impedance or admittance cou-

pling matrix, where n is the number of contacts. Any of the algo-

rithms developed for rapid analysis of interconnect parasitics[6, 7,

8, 9] may be adapted to solve the problem of extracting the sub-

strate coupling information associated with a single contact(e.g.,

[10, 11, 12]).

The difficulty with these approaches is that, in the substrate cou-

pling context, knowing how to do each of these single-contact solves

quickly is insufficient. First, the density of the extracted coupling

matrix makes later circuit simulation prohibitively costly, because

the now-dense circuit matrix must be factored hundreds or thou-

sands of times in each simulation. Second, most methods of ob-

taining the n columns of the coupling matrix require n matrix so-

lutions, which is computationally quite costly, making it imprac-

tical to solve problems with n larger than a few hundred. To ad-

dress these two problems we are motivated by work on multi-scale,

wavelet-like bases[13, 11, 9] for fast integral equation solutions.

By changing to a wavelet basis, which is constructed to efficiently

represent coarse-grain information associated with the specific IC

geometry under study, we hope that the resulting coupling matrix

will become numerically sparse. That is, the use of the wavelet

basis will allow us to “sparsify” the matrix, as many entries will

become small in the new basis, and can simply be dropped with

only small loss of accuracy. This will have advantages for later

circuit simulation. It is important to note that because of the multi-

resolution property of the wavelet basis, the matrix can be made

sparse while still preserving the global circuit couplings. We show

for an example that we can reduce the number of nonzeros by 90%

while still achieving 1% accuracy.

In addition, because the construction of the wavelet basis gives us

a good idea of the final sparsity structure of the matrix, we can

exploit this structure to reduce the total number of solves needed

to extract the full coupling information. To see this, consider that

the naive approach to computing the conductance matrix is to per-
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form n solves with a unit vector or a basis function as a right-hand

side. Then each solve produces one column of an n� n conduc-

tance matrix. The number of solves can be reduced by construct-

ing right-hand sides which are sums of basis functions whose as-

sociated current responses do not overlap. Thus we extract several

columns of the conductance matrix while only doing one solve, in

this way reducing the number of solves needed to obtain the com-

plete (sparsified) coupling matrix. We present this acceleration of

the extraction process as a black-box algorithm that can be used

regardless of what underlying technology (finite-difference, finite-

element, boundary-element) implements the detailed extraction al-

gorithm. Our preliminary results show that number of solves can

be potentially reduced by an order of magnitude for medium sized

analog or RF circuits. It should be noted that on larger problems

with sparser conductance matrices, many more basis functions will

generate current responses that do not overlap. Therefore, each

solve will yield more matrix columns, suggesting that the asymp-

totic complexity is closer to O(n) than O(n2).

The coupling matrix sparsification technique is developed in Sec-

tion 3 and can be performed whether or not the technique of Section

4 for reducing the number of solves is used. In Section 2, we spec-

ify our formulation and briefly describe the simple Laplace solver

we developed to do the solves. It is based on a standard finite-

difference volume discretization, using a preconditioned iterative

method for the solve. Numerical results are presented in Section 5.

2. FINITEDIFFERENCE ANALYSIS

2.1 Formulation
To obtain a concrete solver technology in which to test the matrix

sparsification ideas, we have implemented a simple finite difference

solver. We were motivated in our choice by the fact that modern

process technologies produce substrates with complex conductivity

profiles as a result of features such as wells, diffusion gradients, and

buried layers, so that in the future we can easily use the solver for

these more complicated cases. However, we emphasize that the

choice of finite-difference solver is independent of our algorithms

for sparsifying the conductance matrix and reducing the number of

solves, and other approaches such as boundary elements could be

used.

The finite-difference formulation we use for our numerical experi-

ments is standard and has been described elsewhere, so we discuss

it only briefly here. We consider a substrate of rectangular cross

section with L layers, ordered from top to bottom of thicknesses

d1 : : :dL and conductivities σ1 : : :σL. No current can enter or es-

cape the substrate except through the contacts, which are on the top

surface. This situation is described by Poisson’s equation

�∇ � (σi∇φ (r)) = ρ(r)

where φ(r) is the potential (voltage) at r and ρ(r) is the current

flux density at r. Note that this is zero inside the substrate. The

boundary conditions are Dirichlet on the contacts and Neumann

everywhere else:

∂φ
∂n

= 0 on non-contact substrate surfaces

φ = φ(r) on contacts

For simplicity of implementation, we work with piecewise-constant

conductivities, so at the interfaces of regions of differing conduc-

tivity, current continuity must be enfored, leading to the interface

condition between layers i and i+1,

σi
∂φi

∂n
(r) = σi+1

∂φi+1

∂n
(r)

where ∂φi=∂n(r) denotes the normal derivative of φ at r on the in-

terface, approached from layer i. The current flowing from the ith

contact can be calculated asZ
contact

σ1
∂φ
∂n

:

For computer solution of this mixed Dirichlet-Neumann problem,

discretization is required. We use a uniform grid with a standard

7-point stencil. It is easiest to understand as a large 3-D grid of

resistors. The only issue is what to do at the interfaces. If an inter-

face is a fraction p between two grid layers (with conductivities σi

and σi+1) the conductance of the resistor crossing the layer is de-

termined by using the formulas for resistors in series and resistance

from resistivity and length: r = 1
p

σi
+

1�p

σi+1

.

2.2 Finitedifference solver
The finite-difference solver uses the preconditioned conjugate gra-

dient method. The method is effective for our problem because

the operator matrix A is quite sparse (at most 7 nonzeros per row)

and thus cheap to apply, and because we were able to find a good

preconditioner. Preconditioning is particularly important for large

Laplace/Poisson type problems because the condition number grows

quadratically with the discretization fineness.

Fast Poisson solvers are the method of choice for solving prob-

lems with uniform boundary conditions in each dimension. Unfor-

tunately they cannot be applied directly to problems, such as ours,

with irregular mixed boundary conditions. However, for a precon-

ditioner to be effective it only needs to be an approximate inverse,

suggesting the use of a fast Poisson solver for the pure-Dirichlet

problem as a preconditioner [14]. For our experiments this usually

resulted in solves to a 10�5 relative residual tolerance in about 20

iterations.

Each iterative solve of the finite-difference equations, followed by

a current calculation, can be considered as the (implicit) multipli-

cation of the contact-contact substrate conductance coupling matrix

G with a potential vector v that corresponds to voltages on the con-

tacts. To extract the n� n conductance matrix G, the standard ap-

proach is to set the voltages on each contact in turn to one volt and

then obtain a column of G using the currents computed the finite-

difference solver. That is, for column i of the conductance matrix,

the voltage is set to unity on contact i and zero on all contacts j 6= i,

and the vector of currents obtained from the iterative solve forms

column i.

3. SPARSIFYING THE CONDUCTANCE MA

TRIX
Suppose for the moment that we have been able to extract the con-

ductance matrix, G, that relates the voltages v on the contacts to

the current flowing into the contacts, as Gv = i. In this section we

explain how to sparsify the conductance matrix G—that is, find a

change of basis which is inexpensive to apply and results in a matrix

which is numerically sparse. Numerically sparse is a weaker condi-

tion than sparse in that we don’t require that most entries are zero,

only that most entries are smaller than a suitably chosen threshold.

Then we can zero the entries below the threshold to obtain a truly
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sparse approximation to the numerically sparse matrix. Of course,

the threshold must not be chosen too large or the approximation

will be inaccurate.

The algorithm is based on the wavelet methods developed in [9].

Here we adapt these methods to the quite different setting of sub-

strate coupling. The methods of [9] sparsify the 1=r potential-from-

charge operator in three dimensions. (In making precise compar-

isons with the notation of [9], it is important to keep in mind that

the analogous quantity to charge in [9] is potential for us, and the

analogous quantity to potential in [9] is current for us, since we

calculate the contact currents from the contact potentials using G).

3.1 The algorithm
Assume for simplicity that the top surface of the substrate is a

square with side length 1. This square can be subdivided into four

squares of half the sidelength. In general, doing l levels of subdivi-

sion leads to a partition of the surface into 22l squares of sidelength

2�l . The union of the 22l squares on level l is denoted by Sl . For

simplicity we assume that the level of refinement L is chosen so that

contacts do not cross square boundaries. The union of the contacts

in square s at level l is denoted by Cs. The standard basis consists of

the characteristic functions of the ns contacts in square s, denoted

by χs;1 � � �χs;ns
.

Before going through the multilevel algorithm formally, we try to

develop some intuition for what is going on. On the lowest level,

the idea is that the new basis vector voltages will be linear com-

binations of the standard basis vector voltages in a given square s

on level L which have vanishing moments, resulting in very local

current response—that is, far away from s the current response will

be very small. This leads to a numerically sparse matrix. Consider

the zeroth-order moment

µ0(σ;s) =
Z

s
σ(x;y)dxdy;

where σ(r) is a linear combination of χs;1 � � �sχs;ns
. On two equal-

area contacts, if one voltage is set to 1 and the other to�1, we might

expect that at distant points (relative to the distance between the two

contacts), the current response from one contact would cancel most

of the current response from the other. If we can set higher-order

moments of our new basis functions to 0 as well, even faster decay

of current response might be expected. In [9], there is a theorem to

this effect for the 1=r kernel.

Of course, some basis functions on the lowest level will not have

vanishing moments. For example if we choose the (1;�1) voltage

vector in the previous paragraph, the (1;1) which is orthogonal to

it has a nonzero zeroth-order moment. However, if we take linear

combinations of basis functions in the four squares on level L� 1

whose parent is the parent of s, it is possible to get moments which

vanish on that higher level. This process is continued up through

the levels.

We now describe the algorithm more formally. First, the moments

µα;β;s of a function σ(x) are defined for s 2 Sl by

µα;β;s(σ) =
Z

s
x0αy0βσ(x;y)dxdy;

where (x0;y0) = (x;y)�centroid(s). We want basis functions on the

lowest level whose moments vanish up to order p (order(µα;β;s) :=
α+β). There are (p+1)(p+2)=2 moments of order � p.

3.2 Lowest level
On level L in square s, we find the vs basis functions ψs;i whose

moments vanish and the ws basis function φs;i which are orthogonal

to the ψ functions (and whose moments therefore do not vanish),

for a total of ns := vs +ws basis functions in square s on level L, by

forming the (p+1)(p+2)=2�ns matrix of moments

M(α;β); j = µα;β;s(χs; j):

From this we will find the change-of-basis matrix Qs = qi; j such

that

φs;i = ∑
j

q j;iχs; j; i = 1 : : :ws

ψs;i = ∑
j

q j+ws ;iχs; j; i = 1 : : :vs

by taking the singular value decomposition

Ms = [Us℄
�

Ss;r 0
�� ΦT

ΨT

�

which we can write in the more standard form by defining

Ss =
�

Ss;r 0
�

Qs =
�

Φ Ψ
�

so we have

Ms =UsSsQT
s

where Us and Qs both are matrices with orthonormal columns. The

matrix M is a matrix that maps a vector representing a function

f expressed as a sum of the characteristic functions χ into mo-

ments of f . If M f = 0, then f has vanishing moments. If f has

vanishing moments, it must lie in the nullspace of M. We con-

clude that because by construction the rightmost vs columns of the

singular value matrix Ss are 0, then the vs columns of the sub-

matrix Ψ are the columns of the matrix Q corresponding the the

basis functions ψ with vanishing moments, as only vectors in the

space spanned by the columns of Ψ can have non-zero inner prod-

uct with Ψ. Similarly the ws columns of the submatrix Φ give

the basis functions with non-vanishing moments; these basis func-

tions will be “pushed up” to the next level. Note that the num-

ber ws of basis functions with nonvanishing moments is limited to

(p+1)(p+2)=2, because the dimension of the nullspace of Ms is at

least ns� (p+1)(p+2)=2. We can re-organize the decomposition

as MsQs =UsSs, such that the left-hand side gives the moments of

the new basis functions. This vector of moments MsQs =UsSs will

be used to calculate higher-level moments.

3.3 Higher levels
Call the union of lowest level basis functions over all the lowest-

level squares φ(L), ψ(L), where the φL have nonvanishing moments

and the ψ(L) have vanishing moments. Now we describe induc-

tively the construction of φ(l) and ψ(l), the basis functions on level

l for l < L with nonvanishing and vanishing moments respectively.

Each level-l basis function will be nonzero in only one level-l square,

and the moments are computed with respect to the center of that

square, just as on the lowest level. Assume φ(k) and ψk have been

constructed for all k > l. Then the basis functions φand ψ on level

l are combinations of the φ functions (nonvanishing moments) of

the four child cubes on level l+1:
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φs;i = ∑
j;α

q(α; j);iφα; j; i = 1 : : :ws

ψs;i = ∑
j;α

q(α; j);i+ws
φα; j i = 1 : : :vs

Again Qv is found by a singular value decomposition. It would

be inefficient to calculate the moments directly on the larger levels

since the squares get larger and larger. Fortunately this is not nec-

essary, because one can use the already-calculated moments of the

children. To do this the center with respect to which the moments

are calculated must be shifted. A 6� 6 matrix results, whose en-

tries can easily be calculated by expanding out (x� x0)
α(y� y0)

β

for α+β� p.

The process is continued all the way to the top level. It is cheap

in computational cost, as the analysis in [9] shows. In this way a

change-of-basis matrix Q is calculated which is sparse, and in the

new basis the coupling matrix G becomes QT GQ.

4. REDUCING THE NUMBER OF SOLVES
In the preceding section, we assumed that we were given a known

conductance matrix, G. In the situation of [9], the 1=r kernel is

known explicitly: given charges, potentials are calculated. In our

situation, given potentials at the contacts, we calculate the cur-

rents using the finite-difference solution procedure. The G matrix

is known only implicitly. Instead of a simple 1=r calculation (or

even a relatively simple panel integration) to calculate the potential

at panel y due to a charge at panel x, for us, calculating the current

on contact y due to a voltage at contact x will, as detailed in Section

2, involve a computationally expensive solve. To obtain an explicit

form for the entire conductance matrix, n solves are required if the

computation is performed in the usual manner.

In order to reduce this cost, basis vectors can be added and the cur-

rent response of the sum found in one solve. If we know where the

current response will be significantly different from zero, and these

areas of large entries do not overlap for the basis vectors which

were added together, then we can extract the current responses for

each basis vector in the sum from the solution vector. To see how

this might work, consider a sparse matrix :

A =

2
664

a

c d

e f

g h

3
775 :

In general, to extract all the entries of A by performing only matrix-

vector product operations (which, recall, in the substrate context,

are actually themselves iterative solves), we would need four prod-

ucts (i.e. solves), since A has four columns, one product with each

of the identity vectors. But if we know the sparsity structure of A,

we only need two vectors,

v1 =

2
664

1

0

1

0

3
775 ; v2 =

2
664

0

1

0

1

3
775 :

Note that v1 is the sum of the first and third unit vectors, and v2

the sum of the second and fourth. Since the columns extracted

by entries in the first and second rows of v1 and v2, respectively,

cannot overlap with columns extracted by placing ones in the third

�� ��

��

��

��

��

��

����

Schematic representation of basis vector
constituents of rhs vector for solve-
reduction technique (each basis vector
represented by a black square). Note that
neighbor squares of distinct basis vector
squares do not overlap.

and fourth rows the non-zero entries in A can be extracted just by

examining the vectors Av1 and Av2.

In order to create the right-hand side vectors, we need to make some

assumption on where the large entries are. The assumption we use,

of rapidly decaying response to basis functions with vanishing mo-

ments, is made by analogy with properties which are provably true

in the case of the multipole algorithm for the 1=r kernel. Intu-

itively, it is plausible that other physically based integral operators,

and their inverses, share similar properties. To understand our as-

sumptions, consider two basis vectors, φ1 in square s on level l and

φ2 in square t on level m � l. (By construction, every basis vector

in the new basis has support in only one square at some level l and

its moments vanish at that level, except for some at level 0 whose

moments don’t vanish.) If l = m, we assume that φ1 and φ2 have a

large interaction only if s and t are the same or neighbors. If m < l,

we denote by p the parent square on level m of s, and assume that

φ1 and φ2 have a large interaction only if p and t are the same or

neighbors.

In order to provide the needed separation, we only combine basis

vectors which are on the same level and which are at least 3 squares

apart. See Figure 4. Then we have right hand side vectors for each

level l, i = 0 : : :2, j = 0 : : :2, given by

θl;(i; j);m =
1�k;n�2l

∑
(k;n)=(i mod 3; j mod 3)

= ψ(k;n);m

where ψ(k;n);m is the mth vanishing-moment basis vector in the

square in row k and column n on level l. Under our assumptions,

for each ψ vector from the θ solution, we can then extract the cur-

rent response component in the direction of each transformed basis

vector on levels � l. The rest of the conductance matrix (current

response components on levels > l to basis functions on level l) is

obtained by symmetry.

By choosing the highest-level squares sufficiently small so that
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Figure 1: Regular contact layout.

Figure 2: Irregular contact layout.

each square has at most a constant number of contacts in it, we

can assure that each square at every level will have at most a con-

stant c vanishing-moments basis functions (the constant c depends

on the order of moments used). Notice that there are at most 9c

vectors θl;(i; j);m n a given level, so the number of solves needed is

9c �number of levels, which for large N will be much smaller than

N. (The number of levels depends on the problem size but for prac-

tical purposes is not large, usually of order ten).

The next section of computational results shows the accuracy of

our method for some examples.

5. COMPUTATIONAL RESULTS
For all the examples we use two layers with the bottom-layer con-

ductivity 100 times the top-layer conductivity. The grid used was

8 points in the z-direction by 128� 128 in the xy plane, with an

interface just below the top surface (z= 0:5). Contacts of size 2�2

grid points were placed in a square pattern with a spacing of 4 grid

points (between corresponding points on adjacent contacts), for a

total of 1024 contacts. To show that our method applies to irregular

layouts as well, we present a second example with 1199 contacts

chosen using a randomized multilevel method designed to create

clustering of contacts. Figures 1 and 2 show the contact layouts

for the two examples. Even for these small examples, doing all the

solves required naively (one per contact) requires around 4 hours

on a SUN Ultrasparc.

First we examine the matrix QT GQ obtained by using the change-

of-basis matrix derived in Section 3, using order 2 moment match-

ing. We measure its numerical sparsity by choosing a “drop toler-

ance” t and counting the number of entries in QT GQ that are greater

than t. We calculate a “sparsification ratio”, the factor by which we

can reduce the number of entries in the matrix, by dividing the to-

tal number of entries (n2) in the original matrix by the number of

Example Contacts sparsification ratio L2 error

Regular 1024 1.001 1�10�3

Irregular 1199 1.004 2�10�3

Table 1: Sparsification in the standard basis.

Example Contacts sparsification ratio L2 error

Regular 1024 6 1�10�3

1024 24 1�10�2

Irregular 1199 9 2�10�3

1199 29 3�10�2

Regular 4096 13 1�10�4

4096 18 2�10�3

4096 34 2�10�2

Table 2: Sparsification using the wavelet basis.

entries greater than t.

Clearly we can achieve any desired sparsity by setting the threshold

t appropriately. The real test is getting good sparsity with small

error. There are many ways to measure error; we choose the L2

norm error, which is computationally easy to estimate and has a

simple intuitive interpretation. The L2 norm error measures the

maximum possible ratio of the length of the error vector (that is,

the difference between the computed currents in the sparsified and

unsparsified representations) to the input (voltage) vector length.

To obtain a relative measure of error, we scale the L2 error by the

L2 norm of the original (unsparsified) matrix. It is important to

note that iterative methods are available for L2 norm estimation,

and we can apply the unsparsified G, without actually having G, by

using the solver. This is important since computational savings in

the extraction depends on not having to extract the full G.

A common approach to reducing the density of coupling in the

substrate conductance matrix is simply to drop entries that, in the

normal basis, are small. Table 1 shows a sparsity ratio and error

obtained by thresholding without a change of basis, demonstrating

that this more obvious approach can be quite ineffective. However,

when the multiscale basis is employed, much better results can be

obtained. Table 2 shows the sparsity ratio obtained for three ex-

amples in the wavelet basis. On the larger example, over an order

of magnitude compression can be achieved with very small error.

Moreover, note that the compression ratio seems to increase with

problem size. Figures 3 and 4 show the numerical sparsity pat-

tern for the 1024 contact and 1199 contact coupling matrices re-

spectively, in the wavelet basis. The multilevel structure is clearly

visible.

Now we look at the performance of the technique for reducing the

number of solves. We actually simulated the technique, in order to

save time in the exploration of the sparsification tolerance space, by

using the already-calculated standard basis coupling matrix G and

taking linear combinations of its columns to get the solutions for

the θ vectors in the solve-reduction technique. Since aside from a

modest setup cost, the expense of the actual algorithm is precisely

proportional to the number of solves, the results will be the same

doing the actual solves up to iterative method tolerance. See Ta-

ble 3. The “speedup ratio” column gives the ratio of the the number

of solves required naively (n) to the number of solves needed with

the multiscale basis and basis vector combining, i.e., the factor by

which the extraction can be accelerated. The L2 error column gives
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Figure 3: Numerical sparsity pattern for size 1024 regular con-

tact coupling matrix
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Figure 4: Numerical sparsity pattern for size 1199 irregular

contact coupling matrix

the approximate norm of the difference between the dense matrix

obtained directly and the sparse matrix obtained through solve re-

duction. This gives the maximum current error length as a fraction

of the voltage vector input length. The number of solves required

is reduced substantially with very little loss in accuracy.

6. CONCLUSIONS AND FUTURE WORK
We have demonstrated a promising new method for sparsifying

dense coupling matrices, which could be used to speed up circuit

simulation of substrate coupling. We also showed how to obtain the

sparse approximate coupling matrix quickly by combining many

solves into one. The results show considerable improvements in

sparsity with only small loss in accuracy. This algorithm can be

applied to accelerate a variety of substrate extraction algorithms.

Ideally we would like to have an analysis, analogous to that for

the multipole or wavelet algorithms for the 1=r kernel, giving error

bounds for the new algorithm.
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Example Contacts solve speedup ratio L2 error

Regular 1024 2.94 2:3�10�4

Irregular 1199 2.86 7:3�10�4

Regular 4096 8.03 1:4�10�4

Table 3: Solve-reduction technique performance
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