
Fast Millimeter Wave Threat Detection Algorithm 
 

I. Gómez Maqueda1, N. Pérez de la Blanca1, R. Molina1, A.K. Katsaggelos2 
 

1 Dept. of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain. 
2 Dept. of Electrical Engineering and Computer Science, Northwestern University, Evanston, USA 

{igomezmaqueda,nicolas,rms}@decsai.ugr.es,  aggk@eecs.northwestern.edu 
 

ABSTRACT 
 
Millimeter Wave (MMW) imaging systems are currently 
being used to detect hidden threats. Unfortunately the 
current performance of detection algorithms is very poor 
due to the presence of severe noise, the low resolution of 
MMW images and, in general, the poor quality of the 
acquired images. In this paper we present a new real time 
MMW threat detection algorithm based on a tailored de-
noising, body and threat segmentation, and threat detec-
tion  process that outperforms currently existing detection 
procedures. A complete comparison with a state of art 
threat detection algorithm is presented in the experimental 
section.  
 

Index Terms—Millimeter wave imaging, image 
processing , Security. 
 

1. INTRODUCTION 
 

Passive Millimeter Wave (PMMW) imaging occurs 
through the detection of radiometric temperature differ-
ences of the various objects in the scene. Unfortunately, 
due to their characteristics, the quality of the acquired 
PMMW images is very poor, see Figure 1.  

MMW images can be used to detect weapons or con-
traband concealed on subjects both in active and passive 
systems [1], [2]. They are been increasingly used in secu-
rity applications to protect the security of public areas and 
services like trains and underground stations, airports, 
government buildings, military facilities, and checkpoints.  

The increasing interest in security and surveillance has 
fostered  the research and development of this kind of 
systems, e.g. the design of new detectors [3], [4] to obtain 
receiver modules [5]-[6] for passive imaging systems [7]-
[9], the development of a variety of active imaging sys-
tems in MMW-band [10] and THz-band [11]-[12], and the 
new advances in radar systems in THz-band [13]-[14]. 

Unfortunately, since very frequently automatic detec-
tion algorithms produce very high false alarm rates, 
threats in the images must be detected by an operator. 
However, it has been estimated that the maximum opera-
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tor screening rate is 120-140 person/hour while the Trans-
portation Security Administration (TSA) aims at a 
processing speeds of 240 passengers per hour. 

   

 
Passive MMW images have inherits limitations which 

make the detection of hidden threats a hard problem:  
 

• Low resolution images: image typically of size 
200x60 pixels. 

• High pixel size: each pixel has a size of about several 
millimeters due to working wavelength. 

• Passive radiometry implies very low Signal to Noise 
ratio (SNR). It is important to note that the amount of 
radiation emitted in the millimeter-wave range is 108 

times smaller than the amount emitted in the infrared 
range. Some commercial MMW systems have a 
thermal sensitivity up to 5ºK which precludes their 
use.  

• Intensity inhomogeneity due to temperature differ-
ences in the scene. 

• Limitations of the current acquisition systems. 
 
An approach to mitigate some of these limitations is to 

increase operating frequency. An increase in the working 
frequency translates into higher resolution images. How-
ever, given the electronic’s state of the art, signal to noise 
ratio can be worse. 

Previous works have addressed the automatic threat 
detection problem on MMW images. In [15], two segmen-
tation methods are presented: K-means and Active Shape 
Models (ASM). K-means is applied over the intensity 
histogram to classify the background, the body and 
threats. Results show unconnected classifications and the 
need to introduce heuristics in order to determine the 
number of clusters. Classification is then done by per-

a) b) c) d) e)  
a) Subject without threat; b) Subject carrying 175 ml of 
alcohol in his chest; c) Person carrying a CD in his trousers’ 
pocket; d) Person carrying plasticine in his shin; e) Subject 
carrying metallic bags. 

Fig. 1.  MWW sample images. 
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positive rate. The average improvement on the state of the 
art technique is higher than 40%. Furthermore, our algo-
rithm reduces the false alarm rate by 5%, placing the 
mean value of the false alarm rate as low as 15%. The 
developed algorithm reduces the processing time by a 
2000 factor, making it usable in real time operation mod-
es. 

In spite of the promising results, more research has to 
be carried out in order to increase accuracy rates in areas 
like arms and legs where threats are sometimes not de-
tected. For these cases different improvements based on a 
multilevel segmentation algorithm [19], analysis of the 
body outline and free parameter estimation must be consi-
dered. Also fusion with information from other image 
cues, such as depth, will potentially improve the detection 
of hidden threats and will be explored in the future. 
 

 
REFERENCES 

 
[1] N. E. Alexander, C. Callejero and R. Gonzalo, “Multispec-

tral mm-wave imaging: materials and images”, Proc. SPIE 
6948, 2008. 

[2] R. Appleby and H.B. Wallace, “Standoff Detection or 
Weapons and Contraband in the 100 GHz to 1 THz region”, 
IEEE Trans. Antennas Propagat., vol.55, Nov. 2007. 

[3] H.P. Moyer, J.N. Schulman, J.J. Lynch, J.H. Schaffner, M. 
Sokolich, Y. Royter, R.L. Bowen, C.F. McGuire, M. Hu 
and A. Schmitz, “W-Band Sb-Diode Detector MMICs for 
Passive Millimeter Wave Imaging," IEEE Microw. Com-
pon. Lett., vol.18, no.10, pp.686-688, Oct. 2008. 

[4] J.W. May and G.M. Rebeiz, "Design and Characterization 
of W-Band SiGe RFICs for Passive Millimeter-Wave Imag-
ing," IEEE Trans. Microw. Theory Techn., vol.58, no.5, 
pp.1420-1430, May 2010. 

[5] J.J. Lynch, H.P. Moyer, J.H. Schaffner, Y. Royter, M. 
Sokolich, B. Hughes, Y.J. Yoon and J.N. Schulman, "Pas-
sive Millimeter-Wave Imaging Module With Preamplified 
Zero-Bias Detection," IEEE Trans. Microw. Theory Techn, 
vol.56, no.7, pp.1592- 1600, July 2008. 

[6] L. Gilreath, V. Jain, H.-C. Yao, L. Zheng and P. Heydari, 
"A 94- GHz passive imaging receiver using a balanced 
LNA with embedded Dicke switch," IEEE Radio Frequency 
Integrated Circuits Symposium, vol.,pp.79-82, May 2010. 

[7] O. Martínez, L. Ferraz, X. Binefa, I. Gómez, and C. Dor-
ronsoro, "Concealed object detection and segmentation over 
millimetric waves images," IEEE Computer Society Confe-
rence on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pp.31-37, 13-18 June 2010. 

[8] K. Yamada, K. Morichika, T. Hasegawa, H. Hirai, H. Nii-
kura, T. Matsuzaki and J. Nakada, "Development of 77 
GHz millimeter wave passive imaging camera," IEEE Sen-
sors J., pp.1632-1635, 25-28 Oct. 2009. 

[9] K. K. Jung, S. W. Yoon, Y. S. Chae and J. K. Rhee, "De-
velopment of a passive millimeter-wave imaging system," 
Waveform Diversity and Design Conference, Feb. 2009. 

[10] D.M. Sheen, D.L. McMakin, T.E. Hall and R.H. Severtsen, 
"Active millimeter-wave standoff and portal imaging tech-
niques for personnel screening," IEEE Conference on 
Technologies for Homeland Security, pp.440-447, 11-12 
May 2009. 

[11] V. Krozer, T. Lo ffler, J. Dall, A. Kusk, F. Eichhorn, R.K. 
Olsson, J.D. Buron, P.U. Jepsen, V. Zhurbenko,and T. Jen-
sen, "Terahertz Imaging Systems With Aperture Synthesis 
Techniques," IEEE Trans. Microw. Theory Techn., vol.58, 
no.7, pp.2027-2039, July 2010. 

[12] F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M.D. 
Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. 
Keil, T. Loffler, R. Henneberger, A.K. Huhn, G. Spicker-
mann, P.H. Bolivar and H.G. Roskos, "THz Active Imaging 
Systems With Real-Time Capabilities," IEEE Trans. Tera-
hertz Science and Technology, vol.1, no.1, pp.183-200, 
Sept. 2011. 

[13] K.B. Cooper, R.J. Dengler, N. Llombart, B. Thomas, G. 
Chattopadhyay and P.H. Siegel, "THz Imaging Radar for 
Standoff Personnel Screening," IEEE Trans. Terahertz 
Science and Technology, vol.1, no.1, pp.169-182, Sept. 
2011. 

[14] N. Lombart, K.B. Cooper, R.J. Dengler, T.Bryllert and P.H. 
Siegel, “Confocal Ellipsoidal Reflector System for a Me-
chanically Scanned Active Terahertz Imager”, IEEE Trans. 
Antennas Propagat., vol. 58, no. 6, pp 1834-1841, June 
2010. 

[15] C. Haworth, B. Gonzalez, M. Tomsin, R. Appleby, P. Co-
ward, A. Harvey, K. Lebart, Y. Petillot, and E. Trucco. Im-
age analysis for object detection in millimetre-wave images. 
In R. Appleby, J. Chamberlain, and K. Krapels, editors, 
Conference on Passive Millimetre-Wave and Terahertz Im-
aging and Technology, volume 5619 of SPIE, pages 117–
128, 2004. 

[16] C. D. Haworth, Y. R. Petillot, and E. Trucco. “Image 
processing techniques for metallic object detection with 
millimetre wave images”. Pattern Recognition Letters, 
27(15):1843– 1851, 2006. 

[17] Nobuyuki Otsu "A threshold selection method from gray-
level histograms". IEEE Trans. Sys., Man., Cyber. 1979. 

[18] Comaniciu, D.; Meer, P., "Mean shift: a robust approach 
toward feature space analysis," Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on , vol.24, no.5, 
pp.603,619, May 2002 

[19] M. Luessi, M. Eichmann, G. M. Schuster, and A. K. Kat-
saggelos, ”A Framework for Efficient Multilevel Image 
Thresholding,” Journal of Electronic Imaging, vol. 18, issue 
1: SPIE, Jan. 2009. 

[20] N. Gopalsami, S. Liao, T. W. Elmer, E. R. Koehl, A. Hei-
fetz, A. C. Raptis, L. Spinoulas, and A. K. Katsaggelos, 
“Passive Millimeter Wave Imaging with Compressive Sens-
ing,” Optical Engineering, Special Issue on Terahertz and 
Millimeter Wave Imaging, vol. 51, no. 9, pp. 091614-
1:091614-9, Sept. 2012. 


