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  Given a Graph G(V,W,E) find a tree whose 

collective weight is minimal and all vertices in the 

graph are covered by it 

  The fastest serial solution takes O(Eα(E,V)) time  

  Popular solutions include Prim’s, Kruskal’s and 

Sollin’s algorithms 

  Solution given by Borůvka in 1926 and later 

discovered by Sollins is generally used in parallel 

implementations 

Minimum Spanning Tree 



  Network Design 

  Route Finding 

  Approximate solution to Traveling 

Salesman problem 

MST - Applications 



Borůvka’s Solution to MST 

Works for undirected graphs only 



Borůvka’s Solution to MST 

Each vertex finds the minimum weighted edge to 

minimum outgoing vertex. Cycles are removed 

explicitly 



Borůvka’s Solution to MST 

Vertices are merged together into disjoint 

components called Supervertices. 



Supervertices are treated as vertices for next 

level of recursion 

Borůvka’s Solution to MST 



The process continues until one supervertex remains 

Borůvka’s Solution to MST 



Parallelizing Borůvka’s Solution 

 Borůvka’s approach is a greedy solution. It has 

two basic steps: 

  Step1: Each vertex finds the minimum outgoing edge 

to another vertex. Can be seen as  

 Running a loop over edges and finding the min; writing to a 
common location using atomics. This is an O(V) operation. 

 Segmented min scan over |E| elements. 

  Step2: Merger of vertices into supervertex. This can 

be implemented as: 

 Writing to a common location using atomics, O(V) operation. 

 Splitting on |V| elements with supervetex id as the key 
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  Our previous implementation similar to the algorithm given in [Johnson And Metaxas]  



Motivation for using primitives 

  Primitives are efficient 

 Non-expert programmer needs to know hardware 

details to code efficiently 

 Shared Memory usage, optimizations at grid. 

 Memory Coalescing, bank conflicts, load balancing 

  Primitives can port irregular steps of an algorithm to 

data-parallel steps transparently 

  Borůvka’s approach seen as primitive operations 

 Min finding can be ported to a scan primitive 

 Merger can be seen as a split on supervertex ids. 



Primitives used for MST 

  Scan (CUDPP implementation):  

 Used to allot ids to supervertices after merging of 

vertices into a supervertex 

  Segmented Scan (CUDPP implementation):  

 Used to find the minimum outgoing edge to minimum 

outgoing vertex for each vertex 

  Split (Our implementation): 

 Used to bring together vertices belonging to same 

supervertex 

 Reducing the edge-list by eliminating duplicate edges 



The Split Primitive 

Input to Split 

44 30 145 12 15 3 11 2 12 155 14 56 23 22 38 41 

44 30 145 12 15 3 11 2 12 155 14 56 23 22 38 41 

Output of Split 

The Split primitive is used to bring together all 

elements in an array based on a key 



The Split Primitive - Performance 

Code available from http://cvit.iiit.ac.in 

X-axis represents combinations of key-size/record size. Times on GTX 280 



Graph Representation 

Compact edge list representation. Edges of vertex i following edges of 

vertex i+1. Each entry in Vertex array points to its starting of its 
adjacency list in the Edge list. Similar representation given in [Blelloch] 
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  Find the minimum weighted edge to minimum outgoing vertex  

  Using segmented min scan on O(E) elements 

  Find and remove cycles by traversing successor or every vertex. Kernel of O(V) 

  Select one vertex as representative for each disjoint component 

  Mark the remaining edges in the output as part of MST 

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V) 

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size. 

  Assign new ids to supervertices using a scan on O(V) elements 

  Remove self edges per supervertex. Kernel of O(E) 

  Remove duplicate edges from one supervertex to another. Split on supervertex ids 

along with edge weights. O(E) operation. 

  Create a new vertex list from newly created edge-list. Scan of O(E) 

  Recursively call again on newly created graph until one vertex remains 

Primitive based MST - Algorithm 



Finding Minimum outgoing edge 

Append edge weight along with its outgoing vertex id per vertex.  

Apply a segmented min scan on this array to find the minimum 

outgoing edge to minimum outgoing vertex per vertex 
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  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min 

scan on O(E) elements 

  Find and remove cycles by traversing successor for every vertex 

  A Kernel of O(V) 

  Select one vertex as representative for each disjoint component 

  Mark the remaining edges in the output as part of MST 

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V) 

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size. 

  Assign new ids to supervertices using a scan on O(V) elements 

  Remove self edges per supervertex. Kernel of O(E) 

  Remove duplicate edges from one supervertex to another. Split on supervertex ids 

along with edge weights. O(E) operation. 

  Create a new vertex list from newly created edge-list. Scan of O(E) 

  Recursively call again on newly created graph until one vertex remains 

Primitive based MST - Algorithm 



Finding and Removing Cycles 

 For |V| vertices |V| edges are added, at 

least one cycle is expected to be formed 

  It can be easily proved that cycles in an 

undirected case can only exist between two 

vertices and one per disjoint component 

[Johnson And Metaxas]  

Create a successor array with each vertex’s outgoing vertex id. 

Traverse this array if S(S(u))=u then u makes a cycle. Remove 

the smaller id, either u or S(u), edge from the current edge set.  
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  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min 

scan on O(E) elements 

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V) 

  Select one vertex as representative for each disjoint component 

  Mark the remaining edges in the output as part of MST 

  Propagate representative vertex id.  

  Using pointer doubling. Kernel of O(V) 

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size. 

  Assign new ids to supervertices using a scan on O(V) elements 

  Remove self edges per supervertex. Kernel of O(E) 

  Remove duplicate edges from one supervertex to another. Split on supervertex ids 

along with edge weights. O(E) operation. 

  Create a new vertex list from newly created edge-list. Scan of O(E) 

  Recursively call again on newly created graph until one vertex remains 

Primitive based MST - Algorithm 



Propagating representative vertex id 

The vertices whose edges are removed 

act as representative of each disjoint 

component called a supervertex 

Employ pointer doubling to converge at the representative 

vertex in log of the longest distance from any vertex to its 

representative iterations. 
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  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min 

scan on O(E) elements 

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V) 

  Select one vertex as representative for each disjoint component 

  Mark the remaining edges in the output as part of MST 

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V) 

  Merge vertices into supervertices.  

  Using a split of O(V) with log(V) bit key size. 

  Assign new ids to supervertices.  

  Using a scan on O(V) elements 

  Remove self edges per supervertex. Kernel of O(E) 

  Remove duplicate edges from one supervertex to another. Split on supervertex ids 

along with edge weights. Optional O(E) operation. 

  Create a new vertex list from newly created edge-list. Scan of O(E) 

  Recursively call again on newly created graph until one vertex remains 

Primitive based MST - Algorithm 



Bringing vertices together 

Split based on the supervertex id to bring together all vertices belonging 
to the same supervertex.  
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  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min 

scan on O(E) elements 

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V) 

  Select one vertex as representative for each disjoint component 

  Mark the remaining edges in the output as part of MST 

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V) 

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size. 

  Assign new ids to supervertices. Using a scan on O(V) elements 

  Remove self edges per supervertex.  

  Kernel of O(E) 

  Remove duplicate edges from one supervertex to another.  

  Split edges on supervertex ids along with edge weights, 

Optional O(E) operation. 

  Create a new vertex list from newly created edge-list. Scan of O(E) 

  Recursively call again on newly created graph until one vertex remains 

Primitive based MST - Algorithm 



Shortening The Edge list 

Remove self-edges by looking at supervertex ids of both vertices 

Optionally remove duplicate edges using a 64-bit split on {u,v,w}. It 

is expensive O(E) operation and is done in initial iterations only. 

Pick first distinct {u,v} entry eliminating duplicated edges 
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Primitive based MST - Algorithm 

  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min 

scan on O(E) elements 

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V) 

  Select one vertex as representative for each disjoint component 

  Mark the remaining edges in the output as part of MST 

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V) 

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size. 

  Assign new ids to supervertices. Using a scan on O(V) elements 

  Remove self edges per supervertex. Kernel of O(E) 

  Remove duplicate edges from one supervertex to another. Split edges on supervertex 

ids along with edge weights. Optional O(E) operation. 

  Create a new vertex list from newly created edge-list.  

  Scan of O(E) 

  Recursively call again on newly created graph until one vertex remains 



Creating the Vertex list 

  The Vertex list contains the starting index of each vertex in the edge list. 
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  This gives us the index where each vertex should write its starting value 

  Compacting the entries gives us the desired vertex list 

  In order to find the starting index we scan a flag based on distinct supervertex 

ids in the edge-list. 



Primitive based MST - Algorithm 

  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min 

scan on O(E) elements 

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V) 

  Select one vertex as representative for each disjoint component 

  Mark the remaining edges in the output as part of MST 

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V) 

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size. 

  Assign new ids to supervertices. Using a scan on O(V) elements 

  Remove self edges per supervertex. Kernel of O(E) 

  Remove duplicate edges from one supervertex to another. Split edges on supervertex 

ids along with edge weights. Optional O(E) operation. 

  Create a new vertex list from newly created edge-list. Scan of O(E) 

  Recursively call again on newly created graph until one vertex 

remains 



Recursive invocation 

Iteration number Number of Vertices 

Number of Edges 

After removing self 

edges only 

After removing self 

and duplicate edges 

0 1000000 9999930 - 

1 233592 8467090 646584 

2 38002 8075560 79802 

3 2810 7991444 22641 

4 77 2006114 541 

5 1 0 0 

Total Number of Iterations:                [Johnson And Metaxas]  √ log V 

Duplicate Edge removal is optional 

• A full 64-bit split {u,v,w} is an expensive operation  

• Segmented scan compensates for this in later iterations 



Experimental Setup 

  Hardware Used:  
 Nvidia Tesla S1070: 240 stream processors with 4GB of device memory 

  Comparison with 
  Boost C++ Graph Library on Intel Core 2 Quad, Q6600, 2.4GHz 

  Previous GPU implementation from our group on Tesla S1070 [HVN] 

  Graphs used for experiments  
 GT Graph Generator [Bader and Madduri]  

 Random: These graphs have a short band of degree where all vertices lie, 

with a large number of vertices having similar degrees. 

 RMAT: Large number of vertices have small degree with a few vertices having 

large degree. This model is best suited to large represent real world graphs. 

 SSCA#2: These graphs are made of random sized cliques of vertices with a 

hierarchical distribution of edges between cliques based on a distance metric. 

 DIMACS ninth shortest path challenge 



Results – Random Graphs 

 A speed up of 20-30 over CPU and 3-4 over 

our previous GPU implementation. 

 5M vertices, 30M edges under 1 sec 

 O(E) scans Vs O(V) threads writing atomically 

 Actual number of atomic clashes are limited by 

an upper bound based on the warp size 



Results – RMAT graphs 

 A speed up of 40-50 over CPU and 8-10 over 

our previous GPU implementation. 

 5M vertices, 30M edges under 1 sec 

 High load imbalance due to large variation in 

degrees for loop based approach. 

 Primitive based approach performs better 



Results – SSCA2 graphs 

 A speed up of 20-30 over CPU and 3-4 over 

our previous GPU implementation. 

 5M vertices, 30M edges under 1 sec 



Results – DIMACS Challenge 

Name Vertices Edges 

Time in Milliseconds 

CPU [HVN] Ours 

NY 264K 733K 780 76 39 

San F 321K 800K 870 85 57 

Colorado 436K 1M 1280 116 62 

Florida 1.07M 2.7M 3840 261 101 

NW-USA 1.2M 2.8M 4290 299 124 

NE-USA 1.5M 3.9M 6050 383 126 

California 1.9M 4.6M 7750 435 148 

Great L 2.7M 6.9M 12300 671 204 

USA-E 3.5M 8.8M 16280 1222 253 

USA-W 6.2M 15.2M 32050 1178 412 

 A speed up of 20 over CPU and 

2-3 over our previous GPU 

implementation. 

 Linear nature (maximum 

frequency for degrees 2-3) of 

these graphs lead to smaller 

loops in our previous approach 

[HVN] 



Conclusion and Future Work 

  Irregular steps can be mapped to data-parallel primitives 

efficiently of generic irregular algorithms 

  Recursion works well as controlled via CPU 

  We are likely to see many graph algorithms being ported 

to GPUs using such primitives as it has the potential to 

regularize irregular problems as common to graph theory 



Thank you! 

Questions? 


