
Vibhav Vineet, Pawan Harish, Suryakant Patidar

and P.J.Narayanan

Fast Minimum Spanning Tree

For Large Graphs on the GPU

IIIT, Hyderabad

  Given a Graph G(V,W,E) find a tree whose

collective weight is minimal and all vertices in the

graph are covered by it

  The fastest serial solution takes O(Eα(E,V)) time

  Popular solutions include Prim’s, Kruskal’s and

Sollin’s algorithms

  Solution given by Borůvka in 1926 and later

discovered by Sollins is generally used in parallel

implementations

Minimum Spanning Tree

  Network Design

  Route Finding

  Approximate solution to Traveling

Salesman problem

MST - Applications

Borůvka’s Solution to MST

Works for undirected graphs only

Borůvka’s Solution to MST

Each vertex finds the minimum weighted edge to

minimum outgoing vertex. Cycles are removed

explicitly

Borůvka’s Solution to MST

Vertices are merged together into disjoint

components called Supervertices.

Supervertices are treated as vertices for next

level of recursion

Borůvka’s Solution to MST

The process continues until one supervertex remains

Borůvka’s Solution to MST

Parallelizing Borůvka’s Solution

 Borůvka’s approach is a greedy solution. It has

two basic steps:

  Step1: Each vertex finds the minimum outgoing edge

to another vertex. Can be seen as

 Running a loop over edges and finding the min; writing to a
common location using atomics. This is an O(V) operation.

 Segmented min scan over |E| elements.

  Step2: Merger of vertices into supervertex. This can

be implemented as:

 Writing to a common location using atomics, O(V) operation.

 Splitting on |V| elements with supervetex id as the key

Related Work

[Bader And Cong] David Bader and G. Cong. 2005. A fast, parallel spanning tree

algorithm for symmetric multiprocessors (SMPs). J. Parallel Distrib. Comput.

[Bader and Madduri] David Bader and Kamesh Madduri, 2006. GTgraph: A synthetic

graph generator suite,

[Blelloch] G. E. Blelloch, 1989. Scans as Primitive Parallel Operations. IEEE Trans.

Computers

[Boruvka] O. Boruvka,1926. O Jistém Problému Minimálním (About a Certain Minimal

Problem) Práce Mor. Prírodoved.

[Chazelle] B. Chazelle, 2000. A minimum spanning tree algorithm with inverse-

Ackermann type complexity. J. ACM

[Johnson And Metaxas] Donald Johnson and Panagiotis Metaxas. 1992. A parallel

algorithm for computing minimum spanning trees. SPAA’92: Proceedings of the fourth

annual ACM symposium on Parallel algorithms and architectures

[HVN] Pawan Harish, Vibhav Vineet and P.J. Narayanan, 2009. Large Graph Algorithms

for Massively Multithreaded Architectures. Tech. Rep. IIIT/TR/2009/74.

  Our previous implementation similar to the algorithm given in [Johnson And Metaxas]

Motivation for using primitives

  Primitives are efficient

 Non-expert programmer needs to know hardware

details to code efficiently

 Shared Memory usage, optimizations at grid.

 Memory Coalescing, bank conflicts, load balancing

  Primitives can port irregular steps of an algorithm to

data-parallel steps transparently

  Borůvka’s approach seen as primitive operations

 Min finding can be ported to a scan primitive

 Merger can be seen as a split on supervertex ids.

Primitives used for MST

  Scan (CUDPP implementation):

 Used to allot ids to supervertices after merging of

vertices into a supervertex

  Segmented Scan (CUDPP implementation):

 Used to find the minimum outgoing edge to minimum

outgoing vertex for each vertex

  Split (Our implementation):

 Used to bring together vertices belonging to same

supervertex

 Reducing the edge-list by eliminating duplicate edges

The Split Primitive

Input to Split

44 30 145 12 15 3 11 2 12 155 14 56 23 22 38 41

44 30 145 12 15 3 11 2 12 155 14 56 23 22 38 41

Output of Split

The Split primitive is used to bring together all

elements in an array based on a key

The Split Primitive - Performance

Code available from http://cvit.iiit.ac.in

X-axis represents combinations of key-size/record size. Times on GTX 280

Graph Representation

Compact edge list representation. Edges of vertex i following edges of

vertex i+1. Each entry in Vertex array points to its starting of its
adjacency list in the Edge list. Similar representation given in [Blelloch]

5 2 3 4

1 5

1 4 5

1 3 5

1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 6 9 12

Number of Vertices

Number of Edges

1

2

3

4

5

Space

Complexity

O(V+E)

  Find the minimum weighted edge to minimum outgoing vertex

  Using segmented min scan on O(E) elements

  Find and remove cycles by traversing successor or every vertex. Kernel of O(V)

  Select one vertex as representative for each disjoint component

  Mark the remaining edges in the output as part of MST

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V)

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size.

  Assign new ids to supervertices using a scan on O(V) elements

  Remove self edges per supervertex. Kernel of O(E)

  Remove duplicate edges from one supervertex to another. Split on supervertex ids

along with edge weights. O(E) operation.

  Create a new vertex list from newly created edge-list. Scan of O(E)

  Recursively call again on newly created graph until one vertex remains

Primitive based MST - Algorithm

Finding Minimum outgoing edge

Append edge weight along with its outgoing vertex id per vertex.

Apply a segmented min scan on this array to find the minimum

outgoing edge to minimum outgoing vertex per vertex

0

3

4

2

1
5

9

4

10

56

11

9,4 10,2 9,0 10,4 4,2 56,5 4,3 11,5 56,3 3,2 11,1 3,5

9,4 9,0 4,2 3,5 11,5 3,2

3

0

3

4

2

1
5

9

4

11

3

40

40,1

Append {w,v} for each edge per vertex and apply segmented min scan

segmented min scan

40,0

  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min

scan on O(E) elements

  Find and remove cycles by traversing successor for every vertex

  A Kernel of O(V)

  Select one vertex as representative for each disjoint component

  Mark the remaining edges in the output as part of MST

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V)

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size.

  Assign new ids to supervertices using a scan on O(V) elements

  Remove self edges per supervertex. Kernel of O(E)

  Remove duplicate edges from one supervertex to another. Split on supervertex ids

along with edge weights. O(E) operation.

  Create a new vertex list from newly created edge-list. Scan of O(E)

  Recursively call again on newly created graph until one vertex remains

Primitive based MST - Algorithm

Finding and Removing Cycles

 For |V| vertices |V| edges are added, at

least one cycle is expected to be formed

  It can be easily proved that cycles in an

undirected case can only exist between two

vertices and one per disjoint component

[Johnson And Metaxas]

Create a successor array with each vertex’s outgoing vertex id.

Traverse this array if S(S(u))=u then u makes a cycle. Remove

the smaller id, either u or S(u), edge from the current edge set.

4 0 2 5 2 5

0 1 2 3 4 5

0

3

4

2

1
5

9

4

11

3

Mark remaining edges as part of output MST.

Remove edge of

Min(S(u),u) if
S(S(u))=u

0

3

4

2

1
5

9

4

11

3

Cycles

Representative

  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min

scan on O(E) elements

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V)

  Select one vertex as representative for each disjoint component

  Mark the remaining edges in the output as part of MST

  Propagate representative vertex id.

  Using pointer doubling. Kernel of O(V)

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size.

  Assign new ids to supervertices using a scan on O(V) elements

  Remove self edges per supervertex. Kernel of O(E)

  Remove duplicate edges from one supervertex to another. Split on supervertex ids

along with edge weights. O(E) operation.

  Create a new vertex list from newly created edge-list. Scan of O(E)

  Recursively call again on newly created graph until one vertex remains

Primitive based MST - Algorithm

Propagating representative vertex id

The vertices whose edges are removed

act as representative of each disjoint

component called a supervertex

Employ pointer doubling to converge at the representative

vertex in log of the longest distance from any vertex to its

representative iterations.

0

3

4

2

1
5

9

4

11

3

Representative

pointer

doubling

4 0 2 5 2 5

Propagated Ids

0 0 2 2 2 2

  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min

scan on O(E) elements

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V)

  Select one vertex as representative for each disjoint component

  Mark the remaining edges in the output as part of MST

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V)

  Merge vertices into supervertices.

  Using a split of O(V) with log(V) bit key size.

  Assign new ids to supervertices.

  Using a scan on O(V) elements

  Remove self edges per supervertex. Kernel of O(E)

  Remove duplicate edges from one supervertex to another. Split on supervertex ids

along with edge weights. Optional O(E) operation.

  Create a new vertex list from newly created edge-list. Scan of O(E)

  Recursively call again on newly created graph until one vertex remains

Primitive based MST - Algorithm

Bringing vertices together

Split based on the supervertex id to bring together all vertices belonging
to the same supervertex.

0 0 1 0 0 0

Create Flag

0 0 2 2 2 2

0

2

0

2

2
2

9

4

11

3

Scan

0

1

0

1

1
1

9

4

11

3

0 0 1 1 1 1

New Vertex Ids

0

3

4

2

1
5

4

11

3

0 0 2 2 2 2

0 0 2 2 2 2

Scan the flag to assign new ids.

  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min

scan on O(E) elements

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V)

  Select one vertex as representative for each disjoint component

  Mark the remaining edges in the output as part of MST

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V)

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size.

  Assign new ids to supervertices. Using a scan on O(V) elements

  Remove self edges per supervertex.

  Kernel of O(E)

  Remove duplicate edges from one supervertex to another.

  Split edges on supervertex ids along with edge weights,

Optional O(E) operation.

  Create a new vertex list from newly created edge-list. Scan of O(E)

  Recursively call again on newly created graph until one vertex remains

Primitive based MST - Algorithm

Shortening The Edge list

Remove self-edges by looking at supervertex ids of both vertices

Optionally remove duplicate edges using a 64-bit split on {u,v,w}. It

is expensive O(E) operation and is done in initial iterations only.

Pick first distinct {u,v} entry eliminating duplicated edges

9

4

11

3

0

1

0

1

1

1

10

40

10

40

0,1,40 0,1,10 1,0,10 1,0,40

0,1,40 0,1,10 1,0,10 1,0,40

Split

0,1,10 1,0,10

0,1,10 1,0,10

Pick First Distinct {u,v} pair entry

Compact to create

Edge-list and Weight-list

Append {u,v,w} for each edge

Remove Edges with same

vertex ids for both vertices

Primitive based MST - Algorithm

  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min

scan on O(E) elements

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V)

  Select one vertex as representative for each disjoint component

  Mark the remaining edges in the output as part of MST

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V)

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size.

  Assign new ids to supervertices. Using a scan on O(V) elements

  Remove self edges per supervertex. Kernel of O(E)

  Remove duplicate edges from one supervertex to another. Split edges on supervertex

ids along with edge weights. Optional O(E) operation.

  Create a new vertex list from newly created edge-list.

  Scan of O(E)

  Recursively call again on newly created graph until one vertex remains

Creating the Vertex list

  The Vertex list contains the starting index of each vertex in the edge list.

0 0 1 0 1 0 Flag

u

Edgelist v 6 9 5 7 8 19

0 0 1 1 2 2

0 1 2 3 4 5index

0 0 1 1 2 2

Scan of flag

0 2 4 New Vertexlist

Scan

  This gives us the index where each vertex should write its starting value

  Compacting the entries gives us the desired vertex list

  In order to find the starting index we scan a flag based on distinct supervertex

ids in the edge-list.

Primitive based MST - Algorithm

  Find the minimum weighted edge to minimum outgoing vertex. Using segmented min

scan on O(E) elements

  Find and remove cycles by traversing successor or every vertex. A Kernel of O(V)

  Select one vertex as representative for each disjoint component

  Mark the remaining edges in the output as part of MST

  Propagate representative vertex id. Using pointer doubling. Kernel of O(V)

  Merge vertices into supervertices. Using a split of O(V) with log V bit key size.

  Assign new ids to supervertices. Using a scan on O(V) elements

  Remove self edges per supervertex. Kernel of O(E)

  Remove duplicate edges from one supervertex to another. Split edges on supervertex

ids along with edge weights. Optional O(E) operation.

  Create a new vertex list from newly created edge-list. Scan of O(E)

  Recursively call again on newly created graph until one vertex

remains

Recursive invocation

Iteration number Number of Vertices

Number of Edges

After removing self

edges only

After removing self

and duplicate edges

0 1000000 9999930 -

1 233592 8467090 646584

2 38002 8075560 79802

3 2810 7991444 22641

4 77 2006114 541

5 1 0 0

Total Number of Iterations: [Johnson And Metaxas] √ log V

Duplicate Edge removal is optional

• A full 64-bit split {u,v,w} is an expensive operation

• Segmented scan compensates for this in later iterations

Experimental Setup

  Hardware Used:
 Nvidia Tesla S1070: 240 stream processors with 4GB of device memory

  Comparison with
  Boost C++ Graph Library on Intel Core 2 Quad, Q6600, 2.4GHz

  Previous GPU implementation from our group on Tesla S1070 [HVN]

  Graphs used for experiments
 GT Graph Generator [Bader and Madduri]

 Random: These graphs have a short band of degree where all vertices lie,

with a large number of vertices having similar degrees.

 RMAT: Large number of vertices have small degree with a few vertices having

large degree. This model is best suited to large represent real world graphs.

 SSCA#2: These graphs are made of random sized cliques of vertices with a

hierarchical distribution of edges between cliques based on a distance metric.

 DIMACS ninth shortest path challenge

Results – Random Graphs

 A speed up of 20-30 over CPU and 3-4 over

our previous GPU implementation.

 5M vertices, 30M edges under 1 sec

 O(E) scans Vs O(V) threads writing atomically

 Actual number of atomic clashes are limited by

an upper bound based on the warp size

Results – RMAT graphs

 A speed up of 40-50 over CPU and 8-10 over

our previous GPU implementation.

 5M vertices, 30M edges under 1 sec

 High load imbalance due to large variation in

degrees for loop based approach.

 Primitive based approach performs better

Results – SSCA2 graphs

 A speed up of 20-30 over CPU and 3-4 over

our previous GPU implementation.

 5M vertices, 30M edges under 1 sec

Results – DIMACS Challenge

Name Vertices Edges

Time in Milliseconds

CPU [HVN] Ours

NY 264K 733K 780 76 39

San F 321K 800K 870 85 57

Colorado 436K 1M 1280 116 62

Florida 1.07M 2.7M 3840 261 101

NW-USA 1.2M 2.8M 4290 299 124

NE-USA 1.5M 3.9M 6050 383 126

California 1.9M 4.6M 7750 435 148

Great L 2.7M 6.9M 12300 671 204

USA-E 3.5M 8.8M 16280 1222 253

USA-W 6.2M 15.2M 32050 1178 412

 A speed up of 20 over CPU and

2-3 over our previous GPU

implementation.

 Linear nature (maximum

frequency for degrees 2-3) of

these graphs lead to smaller

loops in our previous approach

[HVN]

Conclusion and Future Work

  Irregular steps can be mapped to data-parallel primitives

efficiently of generic irregular algorithms

  Recursion works well as controlled via CPU

  We are likely to see many graph algorithms being ported

to GPUs using such primitives as it has the potential to

regularize irregular problems as common to graph theory

Thank you!

Questions?

