
Vol. 23 no. 14 2007, pages 1728–1736
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm247

Sequence analysis

Fast model-based protein homology detection without alignment
Sepp Hochreiter1,*, Martin Heusel2 and Klaus Obermayer2
1Institute of Bioinformatics, Johannes Kepler Universität Linz 4040 Linz, Austria and 2Department of Electrical
Engineering and Computer Science, Technische Universität Berlin and Bernstein Center for Computational
Neuroscience, 10587 Berlin, Germany

Received on December 22, 2006; revised on April 18, 2007; accepted on May 1, 2007

Advance Access publication May 11, 2007

Associate Editor: Limsoon Wong

ABSTRACT

Motivation: As more genomes are sequenced, the demand for fast

gene classification techniques is increasing. To analyze a newly

sequenced genome, first the genes are identified and translated into

amino acid sequences which are then classified into structural or

functional classes. The best-performing protein classification meth-

ods are based on protein homology detection using sequence

alignment methods. Alignment methods have recently been

enhanced by discriminative methods like support vector machines

(SVMs) as well as by position-specific scoring matrices (PSSM) as

obtained from PSI-BLAST.

However, alignment methods are time consuming if a new sequence

must be compared to many known sequences—the same holds for

SVMs. Even more time consuming is to construct a PSSM for the

new sequence. The best-performing methods would take about 25

days on present-day computers to classify the sequences

of a new genome (20 000 genes) as belonging to just one specific

class—however, there are hundreds of classes.

Another shortcoming of alignment algorithms is that they do not

build a model of the positive class but measure the mutual distance

between sequences or profiles. Only multiple alignments and hidden

Markov models are popular classification methods which build a

model of the positive class but they show low classification

performance. The advantage of a model is that it can be analyzed

for chemical properties common to the class members to obtain new

insights into protein function and structure.

We propose a fast model-based recurrent neural network for protein

homology detection, the ‘Long Short-Term Memory’ (LSTM). LSTM

automatically extracts indicative patterns for the positive class, but in

contrast to profile methods it also extracts negative patterns and

uses correlations between all detected patterns for classification.

LSTM is capable to automatically extract useful local and

global sequence statistics like hydrophobicity, polarity, volume,

polarizability and combine them with a pattern. These properties

make LSTM complementary to alignment-based approaches as

it does not use predefined similarity measures like BLOSUM or

PAM matrices.

Results: We have applied LSTM to a well known benchmark for

remote protein homology detection, where a protein must be

classified as belonging to a SCOP superfamily. LSTM reaches

state-of-the-art classification performance but is considerably faster

for classification than other approaches with comparable classifica-

tion performance. LSTM is five orders of magnitude faster than

methods which perform slightly better in classification and two

orders of magnitude faster than the fastest SVM-based approaches

(which, however, have lower classification performance than LSTM).

Only PSI-BLAST and HMM-based methods show comparable time

complexity as LSTM, but they cannot compete with LSTM in

classification performance.

To test the modeling capabilities of LSTM, we applied LSTM to

PROSITE classes and interpreted the extracted patterns. In 8 out of

15 classes, LSTM automatically extracted the PROSITE motif. In the

remaining 7 cases alternative motifs are generated which give better

classification results on average than the PROSITE motifs.

Availability: The LSTM algorithm is available from http://

www.bioinf.jku.at/software/LSTM_protein/

Contact: hochreit@bioinf.jku.at

1 INTRODUCTION

In our post-genomic era, there is increasing need to analyze the

amino acid sequences obtained from whole genome sequencing.

To deduce the function or the 3D structure of a protein from

the amino acid sequence, the most successful approach is to

detect its homology to other proteins. Therefore, pairwise

alignment methods like the Smith–Waterman algorithm (Smith

and Waterman, 1981) or its approximations like FASTA

(Pearson and Lipman, 1988) or BLAST/PSI-BLAST (Altschul

et al., 1990) are important to measure the similarity, i.e. the

homology, of proteins.

These alignment-based methods were recently enhanced by

discriminative methods like the support vector machine (SVM),

(Vapnik, 2000). SVM-based protein homology detection

methods are based on kernels which use alignment methods

or sequence identities to compute similarities between

sequences. These methods include the pairwise SVM method

(Liao and Noble, 2002), the Fisher-kernel (Jaakkola et al.,

1999), the mismatch kernel (Leslie et al., 2004a, b) and related

*To whom correspondence should be addressed.

1728 � The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

http://

kernels (Dong et al., 2006; Lingner and Meinicke, 2006) the

Smith–Waterman and the local alignment kernel (Vert et al.,

2004). Recently, these methods have been improved by using

profiles and position-specific scoring matrices (PSSM) instead

of the original sequences (Rangwala and Karypis, 2005).

However, sequence similarity-based (i.e. alignment-based)

methods still have a number of shortcomings. Despite their

good performance, they require too much computation time for

broad use (Vinga and Almedia, 2003). For example, to classify

the protein sequences identified in a newly sequenced genome,

the best-performing methods would take about one month to

classify the genes only belonging to a single class. For hundreds

of classes, their time complexity makes these approaches

infeasible for practical use.
Alignment methods still have problems with genetic recom-

bination and genetic shuffling (Vinga and Almeida, 2003).
Another shortcoming of similarity-based methods is that they

are not model based. Without a model it is difficult to interpret

classification results in terms of relevant patterns or chemical

properties which are relevant for the protein class (function,

stability, folding). Whereas, model-based methods are able to

identify relevant elements for structural biochemistry.
Here, we suggest to use recurrent neural networks (RNNs)

in order to overcome the earlier mentioned disadvantages

of similarity-based methods. RNNs have already success-

fully been applied to protein secondary structure prediction

(Baldi, et al., 1999) and to sheet pairing prediction (Cheng and

Baldi, 2005).
In contrast to similarity-based methods, RNNs

(a) can extract dependencies between subsequences. A

subsequence AB, e.g. may only be indicative if it is

followed later by the subsequence CD;

(b) can extract correlations within subsequences. Both

subsequences AB and CD may be indicative for the class

(motif [AC]–[BD]), however, AD may not be indicative for

the class (AD is a negative pattern);

(c) can extract global sequence characteristics (hydrophobi-

city or atomic weight), and

(d) can extract dependencies between amino acids which

range over a long interval in the amino acid sequence.

RNNs can thus deal with interactions between different

profiles, e.g. a detected pattern can inhibit or reinforce the

storage of another pattern. They can compute non-linear func-

tions of indicative patterns in the sequence, therefore, they are in

principle an interesting tool for amino acid sequence processing.

However, RNNs also have disadvantages: (1) they need a

large enough training set for model selection; (2) an architecture

must be chosen before using them; (3) the training phase may

be computational intensive and (4) they cannot detect

similarities between negative examples.

The new aspect when using RNNs for homology detection is

that pointwise similarity measures (identity, BLOSUM or PAM

matrices) are not a priori fixed. RNNs can learn their own

similarity measure suited for a specific classification task, where

they may combine patterns with sequence statistics like

hydrophobicity.

2 THE LSTM NETWORK

2.1 Model architecture

We suggest the ‘Long Short-Term Memory’ (LSTM),

(Hochreiter and Schmidhuber, 1997) recurrent net architecture

in Figure 1 for protein homology detection. Sequences are

processed element by element by the network and are finally

classified at sequence end. At each step, the network input is

taken from a window region around the current position.
LSTM contains specially designed memory sub-architectures

called ‘memory cells’ which are able to store information like

the occurrence of a pattern from previously scanned regions

without loss (see Fig. 2 for more details on memory cells). The

stored information is used to inhibit or reinforce other patterns

in the remaining sequence and is important at sequence end for

predicting the class.

2.2 The importance of memory

Information, e.g. a pattern, which is indicative for a protein

class can be located at any position in the sequence, hence, long

intervals may occur between relevant sequence locations.

Therefore, the relevant information must be stored until it is

needed for classification. But classical RNNs fail at this task

because of the exponential decay of previously seen information

with processing time leading to a ‘vanishing gradient’ problem

(Hochreiter, 1991; Hochreiter: et al., 2000).

output

hidden

input

LSTM network

A V D A A T A E K V F K

m
em

o
ry

ce
ll

m
em

o
ry

ce
ll

Fig. 1. Proposed LSTM network with three layers: input layer (window

of the amino acid sequence – shaded elements); hidden layer (with

memory cells – see Fig. 2) and output layer. Arrows represent weighted

connections; the hidden layer is fully connected. The subnetworks

denoted by ‘memory cell’ can store information and receive three kinds

of inputs, which act as pattern detectors (input ! hidden), as storage

control (recurrent connections) and as retrieval control (recurrent

connections). The stored information is combined at the output. The

amino acid sequence is processed by scanning the sequence step by step

from the beginning to the end.

Fast model-based protein homology detection

1729

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

In order to be a competitive method for protein classifica-

tion, RNNs require a specially designed memory to store

information until it is being used. Note, that for the tasks in

Baldi et al., (1999) and Cheng and Baldi (2005) the important

information in the sequence was close to the prediction position

and such memories were not necessary.
LSTM, (Hochreiter andSchmidhuber, 1997) is an RNN with

a designed memory sub-architecture called ‘memory cell’ to

store information; therefore it is suited for protein classifica-

tion. Memory units with non-decaying information are realized

by volume-conserving mappings constructed through a linear

unit with a self-recurrent connection with weight one. Figure 2

shows such a ‘memory cell’ within an LSTM network. The unit

in the center of the box implements the volume-conserving

mapping.
The input to the memory cell is controlled by an ‘input

gating’ or attention unit (Fig. 2, unit marked ‘xin’) which blocks

class-irrelevant information, so that only class-relevant infor-

mation is stored in memory. The activation of attention units is

bounded by 0 and 2, i.e. the incoming information �(t) is

squashed by a sigmoid function g. The memory cell’s activation

function is given by

xðtþ 1Þ ¼ xðtÞ þ xinðtÞ � gð�ðtÞÞ , ð1Þ

where �(t) is the local sequence information (cf. Equation

(3)). The output of the memory cell (Fig. 2, center) is bounded

between �1 and 1 by the sigmoid function h (Fig. 2, unit labeled

as ‘h’). Memory readout is controlled by an ‘output gate’

(Fig. 2, unit labeled ‘xout’). The cell’s output xcellout is then

computed as follows:

xcelloutðtþ 1Þ ¼ xoutðtÞ � hðxðtþ 1ÞÞ ¼

xoutðtÞ � h xðtÞ þ xinðtÞ � gð�ðtÞÞ
� �

:
ð2Þ

Memory cells can in principle be integrated into any neural

network architecture. Here, we use the LSTM recurrent

network structure as depicted in Figure 1.

2.3 Learning of profiles

In order to extract class-indicative information, we adopt

profiles (Gribskov et al., 1987 or Henikoff and Henikoff, 1994)

as inputs for the LSTM network which enable LSTM to

automatically learn the profiles by error propagation. The input

weights to a memory cell form a profile because they provide

a weighted sum of the amino acids within the window.
We use a local encoding of the amino acids in the input, i.e.

each amino acid is represented as a 20D vector with zeros,

except for one position, which contains a one. If the profile has

length l, then the input is a 20� l matrix Y with components

Y�j. Figure. 3 depicts a profile as input to the LSTM network.

Each memory cell uses its own input profile, and the ith profile

input �i(t) at sequence position t to the LSTM network is

computed as

�iðtÞ ¼
Xðl, 20Þ

ð�, jÞ¼ð1, 1Þ

wi
�j Y�j, Y�j ¼

1 stþ� ¼ AAj

0 otherwise

�
, ð3Þ

where st is the tth element of the input sequence and AAj

represents the jth amino acid. wi
�j is an element of the ith profile

matrix but is simultaneously an input weight of the LSTM

network which makes LSTM to automatically learn the profile.

2.4 Model characteristics

For protein classification and learning profiles, the original

LSTM architecture is modified (cf. Fig. 1, e.g. with two

memory cells). The memory cells receive their only input

through the profiles, where a profile is formed by all weights

from the input to the memory cell. In contrast to the original

D
A

A
T

A
E

V
K

A
V

K
F

g h

x in

xout

1.0

xcellout

e

x = x + x i n g (e)

Fig. 2. The LSTM memory cell. Arrows represent weighted connec-

tions of the neural network. Circles represent units (neurons), where the

activation function (linear or sigmoid) is indicated in the circle.

R
−0.5

R
−0.3

R
−0.8

R
−0.2

R
−0.5

R
−0.9

D
−1.2

D
2.5

D
−0.3

D
−1.2

D
−1.7

D
1.7

D
0.2

R
1.2

A
0.1

A
1.8

A
0.2

A
−0.6

A
0.9

A
−0.2

A
0.2

+

A V V F KD A A T A E K

Y
−0.7

Y
−1.1

Y
0.3

Y
0.3

Y
0.3

Y
−0.2

Y
−1.3

V
−1.3

V
−1.9

V
0.2

V
0.5

V
0.3

V
−0.9

V
−0.8

input sequence

p
ro

fi
le processing

direction

LSTM network

e

Fig. 3. A profile as input to the LSTM network which scans the input

from left to right. Amino acids are represented by the one letter code.

Shaded squares in the matrix match the input and contribute to the

sum �.

S.Hochreiter et al.

1730

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

LSTM architecture there are no weights from the input to any

other units. The attention unit and the output gate receives

inputs from other attention units, other output gates and other

memory cells, while the output unit only obtains input from the

memory cells (cf. Fig. 2).
The LSTM architecture is trained with the LSTM learning

procedure as described in Hochreiter and Schmidhuber (1997)

which is a gradient-descent method.

2.5 Computational complexity

The LSTM approach has time complexity of O(L) for

classifying a new sequence of length L. This complexity has

to be compared with the complexity of the most efficient

profile-based methods from the literature. The method of

Rangwala and Karypis (2005) is dominated by the time needed

to compute the profile of a new sequence. In order to compute

the profile, the NR database with more than 3 million entries

must be scanned and a multiple alignment must be generated

followed by a profile–profile alignment. Alignment methods

have complexity of OðL2Þ including profile–profile alignments.

Thus alignment-based kernel methods possess complexity of

OðNSVL
2Þ, where NSV is the number of support vectors.

Because of an explicit representation of the linear classifier

(the weight vector) in feature space, the time complexity has

been reduced to OðL2Þ in Lingner and Meinicke (2006). For

L4100 LSTM is theoretically more than two orders of

magnitude faster than the fastest SVM-based method which

has been confirmed experimentally in the experiments described

subsequently.

3 NUMERICAL EXPERIMENTS

We perform three sets of experiments. In the first set, we assess

the performance and the time complexity of LSTM for remote

homology detection and compare LSTM to various state-of-

the-art approaches on a benchmark dataset from the SCOP

database (Murzin et al.,1995).

In the second set of experiments, we compare LSTM to

different machine-learning methods which extract features from

the sequences on a SCOP fold prediction task from Ding and

Dubchak (2001).
In the third set of experiments, we assess LSTM’s modeling

performance and investigate whether LSTM automatically

extracts indicative motifs for a protein classification. LSTM is

applied to the PROSITE database (Bairoch, 1995), and the

motifs extracted by LSTM are compared to the PROSITE

motifs (Sigrist et al.,2002).

3.1 Remote homology detection: SCOP superfamilies

3.1.1 Data We used the widely used benchmark dataset
for remote homology detection from (Liao and Noble, 2002)

which is available under http://www.cs.columbia.edu/compbio/

svm-pairwise. The dataset defines 54 superfamily recognition

tasks. For each task, the positive examples of the training set

are taken from one superfamily from which one family is

withhold. The task is to detect the examples from the

withhold family. Negative training examples are chosen from
outside the fold the family belongs to.

3.1.2 Methods We perform benchmark with the following
methods: (a) PSI-BLAST (Altschul et al., 1997), (b) family

pairwise search (FPS, Grundy, 1998) and (c) SAM-T98
(Karplus et al., 1998; Park et al., 1998). These alignment-

based methods can be enhanced by SVMs which also take
negative examples into account. We compare: (d) the Fisher-
kernel SVM (Jaakkola et al., 1999, (e) SVMs using the

mismatch-kernel (Leslie et al., 2004a, b)—the mismatch-kernel
is similar to the BLAT alignment (Kent, 2002), (f) the SVM-

pairwise (Liao and Noble, 2002)—feature vector is the Swith-
Waterman alignment score to all other training sequences, (g)

SW-kernel (Vert et al., 2004)–SW-pairwise scores are
considered as kernel matrix, (h) local alignment (LA) kernel
(Vert et al., 2004) based on the BLOSUM matrix, (i) the

oligomer-based distance SVM approach (Lingner and
Meinicke, 2006). We then include into the comparison methods

which are based on PSSMs or profiles and which we summarize
under (j) which includes ‘HMMSTR’ from (Hou et al., 2004),
‘Mismatch-PSSM’ the mismatch kernel with PSSM (Kuang et

al., 2005), and ‘SW-PSSM’, the SW-kernel with PSSM
(Rangwala et al., 2005). We included the result of the best

parameters as given in the corresponding publications (note,
that we may overestimate the results because hyperparameter
selection was avoided). Finally, (k) we report the results

obtained with our new LSTM method.

3.1.3 LSTM implementation detatils Hyperparameter selec-
tion: we selected the parameters of the model (number of

memory cells, window size, learning rate, initialization, etc.) on
a separate dataset from Gille et al. (2003) which is available via
the program package STRAP http://www.3d-alignment.eu. The

dataset consists of 500 proteasome sequences and 7400
negatives from PDB.

Architecture: thirteen memory cells, profile length: 11. All
units are biased and have sigmoid activation functions in ½0, 1�,
except for g and h which are sigmoid in ½0, 2� and ½�1, 1�,

respectively.
Initialization: output unit bias: –1.0 (to account for more

negative examples), memory cell input bias: from –2.0 to –5.0
(descending every second cell by 0.5), memory cell output bias:
–1.0, memory cell output to output unit weight: 1.0 and –1.0

alternating, this yields to 7 positive and 6 negative memory
cells. All other weights are set to 0.
Output coding: 0.8 (positive class) and 0.2 (negative class).

Learning parameters: 500 epochs learning time, learning rate:
� ¼ 0:01. Positive examples are cloned until their number is at

least 1/5 of the number of negative examples.
Training set: the positive training set is extended by running

PSI-BLAST with five iterations and default parameters against

the NR database for each positive example and selecting
examples with e-values smaller than 10.0 in the last
iteration. Note, that the PSI-BLAST run was only used to

extend the training set [cf. disadvantage (1) of RNNs at end of
Introduction] and is not necessary for classifying new examples.

3.1.4 Evaluation The quality of a ranking of the test set

examples was evaluated by the area under the receiver

Fast model-based protein homology detection

1731

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

http://www.cs.columbia.edu/compbio/
http://www.3d-alignment.eu

operating characteristics curve (ROC). The methods were
evaluated through 54 ROC values, where the ROC value is

between 0.5 (random guessing) and 1.0 (perfect prediction). As

a more precise quality measure, we also used the area under the

ROC50 which is the area under the ROC up to 50 false

positives. ROC50 essentially rescales the false positive rate of

the ROC.

3.1.5 Test times Computing times were measured on an
Opteron 165 1.8 GHz machine. The time for the LA-kernel was

evaluated by using the software from Vert et al. (2004). With

the LA-kernel, we measured a test sequence with length 165

(the average length of proteins in the dataset). The time for the
oligomer method can be computed from the LA-kernel time

because in Lingner and Meinicke (2006) the authors report that

the oligomer method is 1000 times faster than the LA-kernel.

The time for the SW kernel was lower bounded by BLAST

(NCBI bl2seq 2.2.14 from http://www.ncbi.nlm.nih.gov/Ftp/)

for pairs of proteins because BLAST is faster than the exact
Smith–Waterman algorithm. For measuring the time of the

mismatch kernel, we used the software from http://www1.cs.

columbia.edu/compbio/string-kernels/ according to Leslie et al.

(2004a). The PSI-BLAST, SAM-T98 and Fisher-kernel test

times were computed from the CPU values given in Tarnas and

Hughey (1998). The test times for ‘SW-PSSM’ were computed
with the software from Rangwala and Karypis (2005). The time

for computing a profile for one sequence was 90 s which gives

500 h for 20 000 test examples as an lower bound for profile

methods. The training times of SVM-methods using a profile

and LSTM are 110 h and 117 h, respectively. These high

training times result from PSI-BLAST runs (105 h) which

construct the profiles SVM or extend the positives LSTM.

3.1.6 RESULTS Table 1 summarizes the average values
of the area under ROC, the area under ROC50 and the

time complexity for all methods used in our benchmark.

The classification results except for LSTM are taken from Hou

et al. (2004), Kung et al. (2005), Liao and Noble, (2002),

Lingner and Meinicke, (2006), Rangwala and Karypis, (2005),

Vert et al. (2004), The time measurements are from Linger and

Meinicker, (2006), Madera and Gough, (2002), Tarnas and

Hughey, (1998), and measured using the string kernel software

from http://www1.cs.columbia.edu/compbio/string-kernels/

and BLAST algorithms from http://www.ncbi.nlm.nih.gov/

Ftp/. Figures 4 and 5 show for each method how many

classification tasks reached a certain ROC value.

Results for the ROC values: the table and the figures show

that only some of the similarity-based methods using profiles

show a better performance than LSTM. We looked at those

LSTM misclassifications which were made correctly by

similarity-based methods: LSTM false positives possessed

high similarity to positive training examples however using

similarity-based methods this similarity was outvoted by a

similarity to a specific negative training example (cf. RNN’s

disadvantage (4) at the end of the Introduction).
However, Lingner and Meinicke (2006) noticed that the best

performing approaches (Dong et al., 2006, Rangwala and

Karypis, 2005) might be optimized on the test data, i.e. the

results may be overoptimistic. LSTM has similar performance

as the LA-kernel approach (Vert et al., 2004) and, therefore, is

among the best methods which are solely based on scanning the

primary sequence. All model-based approaches perform worse

than the LSTM approach with respect to classification

performance.
Results for the time complexity: Concerning the computa-

tional time of the methods, only PSI-BLAST is faster than

LSTM. LSTM is even 1 order of magnitude faster than SAM-

T98. Note, that LSTM only scans the sequence and has not to

align it to a profile. LSTM is 2 orders of magnitude faster

Table 1. Results of remote homology detection on the SCOP benchmark database

Method M P V S ROC ROC50 Time

(a) PSI-BLAST � � � � 0.693 0.264 5.5 s

(b) FPS � � � � 0.596 � 6800 s

(c) SAM-T98 þ � � � 0.674 0.374 200 s

(d) Fisher � � � þ 0.887 0.250 4200 s

(e) Mismatc h � � � þ 0.872 0.400 380 s

(f) Pairwise � � � þ 0.896 0.464 4700 s

(g) SW � � � þ 0.916 0.585 4470 s

(h) LA � � � þ 0.923 0.661 550 h

(i) Oligomer � � � þ 0.919 0.508 2000 s

(j) HMMSTR � þ þ þ � 0.640 4500h

(j) Mismatch-PSSM � þ þ þ 0.980 0.794 4500h

(j) SW-PSSM � þ þ þ 0.982 0.904 4620h

(k) LSTM þ � þ � 0.932 0.652 20 s

The first column gives the method. The columns 2–5 denote whether the method belongs to a class (‘þ’) or not (‘�’), where the classes are ‘M’ for model based, ‘P’ for

profile input, ‘V’ for semi-supervised, and ‘S’ for SVM. The sixth and seventh column report the average area under the receiver operating curve (‘ROC’) and the same

value for maximal 50 false positives (‘ROC50’). The last column reports the average time needed to classify 20 000 new sequences into one superfamily. For calculation of

computation time see text. The classification results except for LSTM are taken from Hou et al. (2004), Kuang et al. (2005), Liao and Noble, (2002), Lingner and

Meinicke, (2006), Vert et al. (2004), Rangwala and Karypis, (2005). Only some of the profile-based methods show a better classification performance than LSTM but they

are three orders of magnitude slower.

S.Hochreiter et al.

1732

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

http://www.ncbi.nlm.nih.gov/Ftp/
http://www1.cs
http://www1.cs.columbia.edu/compbio/string-kernels/
http://www.ncbi.nlm.nih.gov/

than the fastest SVM-based method. Methods which perform

better than LSTM need 5 orders of magnitude more CPU time

to process a new sequence.

3.1.7 PFAM test We additionally tested LSTM, PSI-

BLAST and SAM 3.5 on the PFAM database, because SCOP

covers only 15% of the PFAM families, hence PFAM allows to

test for more variants of negatives. We optimized the

performance of PSI-BLAST and SAM by using as score for

the positive class the best score from all positive training

sequences (like the FPS method). For PSI-BLAST, we

performed two iterations on the NR database to build a

profile. The NR database was also used by SAM to build an

alignment. The HMM was build with w0.5 and calibrated.

Note, that both methods SAM and PSI-BLAST build a model

based on multiple alignment (a profile and an HMM,

respectively) which is also the basis of the PFAM classification.

It might be possible that these methods are overestimated

because the model underlying the dataset is the same as

the model which was build by the methods we compare.

To label the PFAM sequences we identified the PFAM

families which had an unique superfamily in the SCOP

database. These PFAM families are labeled according to the

SCOP superfamily they belong to. For remote homology

detection, only PFAM families in the SCOP test set are labeled

positive. The results on the PFAM dataset are given in Table 2.

LSTM shows the best performance and is fastest in testing new

sequences.

3.2 SCOP fold prediction

To compare our method with other machine-learning methods

which describe the amino acid sequence by extracted features,

we performed another benchmark on the dataset from Ding

and Dubchak, (2001). We consider the ‘one-versus-other’ task

where for each class a binary classifier is constructed with the

class members in the positive class and the rest in the

negative class.

3.2.1 Data This data set was also derived from SCOP

and consists of 622 positive training sequences which are

classified into 27 folds. The test dataset was the PDB40D with

386 sequences also classified into the given 27 folds.

3.2.2 Methods For the different methods the authors in
Ding and Dubchak (2001) extracted the optimal description

parameters including amino acid composition, predicted

secondary structure, hydrophobicity, normalized van der

Waals volume, polarity, polarizability, etc. These features

characterize the sequence through composition, percent in

each class, transition frequencies and distribution. The neural

network model was a three-layer feed-forward neural network

trained by conjugate gradient. The authors in Ding and

Dubchak (2001) found that one hidden unit and two output

units gave good performance while being low complex to ensure

generalization. The SVM was tested with a linear, a polynomial

and an RBF kernel, where the authors in Ding and

Dubchak (2001) found that the latter gave the best results.

3.2.3 Evaluation The accuracy Q (rate of correct classifica-
tion) of fold prediction was measured on the independent

PDB40D dataset. The task is a multiclass problem,

therfore only classifications which are uniquely assigned to

a class are judged as being correct. For LSTM, a protein is

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 fa

m
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC

SAM-T98
PSI-BLAST

Fisher
Pairwise

SW
Mismatch
Oligomer

LA
SW-PSSM

LSTM

Fig. 4. Comparison of homology detection methods for the SCOP 1.53

benchmark dataset. The total number of families for which a given

method exceeds a ROC threshold is plotted.

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 fa

m
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC50

PSI-BLAST
SAM-T98

Fisher

Mismatch
Pairwise

SW

HMMSTR
LA

Mismatch-PSSM

SW-PSSM
LSTM

Fig. 5. Comparison of homology detection methods for the SCOP 1.53

benchmark dataset. The total number of families for which a given

method exceeds a ROC50 threshold is plotted.

Table 2. Results on the PFAM database ‘ROC all’ denotes the area

under the curve for all test examples

Method ROC all ROC remote Time

PSI-BLAST 0.80 0.69 50h

SAM 3.5 0.85 0.76 1200h

LSTM 0.88 0.79 27h

‘ROC remote’ gives the area under the curve if only the remote homologous test

sequences are considered. The last column gives the computation time on the

PFAM database.

Fast model-based protein homology detection

1733

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

assigned to that class where the according classifier gives the

largest output.

3.2.4 Results In Table 3, the results on the dataset from
Ding and Dubchak, (2001) are reported. LSTM clearly
outperforms the other methods in terms of the Q-value.

3.3 Motif extraction: PROSITE database

3.3.1 Data We randomly chose 15 PROSITE protein
classes from version 18.20. The LSTM training data consisted

of 90% of the positive examples plus 1300 randomly chosen
negative examples. The remaining 10% positives are withhold
as test examples.

3.3.2 Methods After training the LSTM network, we

identified the sequence positions where the profiles are
activated (highest activation) by examples from the positive
training set. From these positions a motif was extracted by

multiple alignment (we used ClustalW, Thompson et al., 1994)
of the subsequences in the input window at these positions. The
multiple alignment can deal with the fact that more than one

motif is encoded in the profile. We then compare the extracted
motif from LSTM with the PROSITE motif.
In the PROSITE database 80% of the motifs are 21 amino

acids or less long (Fig. 6), therefore a window length of 21 was
used in this experiment. We only used two memory cells (one
for patterns of the positive class and one for negative class) to

avoid superimposition of motifs. The initialization of the cell
input bias was increased to �6.0 to obtain large absolute input

Table 3. Results on the data set from Ding and Dubchak (2001) for

different machine-learning methods

Method Q Method Q

NN 41.8 SVM 45.2

LSTM 51.7

where ‘NN’ means neural network and ‘SVM’ support vector machine. LSTM

yields the highest accuracy.

Table 4. Results of PROSITE protein classification tested on the

SwissProt database

Method/motif Sensitivity Specificity Balanced Error

PROSITE 85.91 (15.62) 99.94 (0.15) 7.08 (7.79)

LSTM 98.24 (3.55) 99.79 (0.19) 0.99 (1.82)

Motif 86.82 (9.2) 99.93 (0.16) 6.63 (4.59)

All numbers are averaged over given 15 classes, the SD of the results is given in

brackets. Results are reported for the PROSITE motif (‘PROSITE’), for LSTM

(‘LSTM’), and for the motif extracted from LSTM (‘motif’). The columns show

(left to right): method, sensitivity (true positives divided by all positives in

percent, ‘sens.’), specificity (true negatives divided by all negatives in percent,

‘spec.’), and the balanced error in percent (‘bal. err.’). The balanced error is the

mean of the class 1 and the class 2 error rate and is an appropriate measure for

classification with unbalanced class sizes.

Table 5. The motifs found by LSTM compared to the PROSITE motifs

� 4FE4S_ FERREDOXIN (385)

PROSITE C-x(2)-C-x(2)-C-x(3)-C-[PEG]

LSTM (�) C-x(2)-C-x(2)-C-x(2)-{C}-[AC]-[PEG]

�AA_ TRNA_ LIGASE_ I (913)

PROSITE P-x(0,2)-[GSTAN]-[DENQGAPK]-x-[LIVMFP]-

[HT]-[LIVMYAC]-G-[HNTG]-[LIVMFYSTAGPC]

LSTM (�) [ACFILMPV]-H-[ILMVFY]-G-[HGNT]-{DEHNPQR}-

{DEP}-{CHKRY}-{DER}-[AILMSTVY]-{EGHPW}

�ATPASE_ ALPHA_ BETA (376)

PROSITE P-[SAP]-[LIV]-[DNH]-x(3)-S-x-S

LSTM (å) [ILV]-G-[CELR]-x(0,2)-[DGNV]-x-[ILRSV]-[AGS]-

[DEKNQRV]-[AEGPV]-[DILMV]-[ADRT]-[DEGLNV]

�CITRATE_ SYNTHASE (76)

PROSITE G-[FYA]-[GA]-H-x-[IV]-x(1,2)-[RKT]-x(2)-D-[PS]-R

LSTM (å) [ASG]-R-x(2)-G-W-x-A-H-x(2)-E OR

[ASG]-[QK]-x-P-x-[LIVM]-[AV]-A-x(2)-Y

�CYTOCHROME_ C (388)

PROSITE C-{CPWHF}-{CPWR}-C-H-{CFYW}

LSTM (�) C-{CFP}-{CRWY}-C-H-{CFHWY}

�DEHYDROQUINASE_ I (44)

PROSITE D-[LIVM]-[DE]-[LIVMN]-x(18,20)-[LIVM](2)-x-

[SC]-[NHY]-H-[DN]

LSTM (å) D-[LIVA]-[LIVAY]-E-[LIVFW]-R-[LIVA]-D

�HISTONE_ H3_ 1 (44)

PROSITE K-A-P-R-K-Q-L

LSTM (�) T-G-x-K-A-P-R

�INSULIN (194)

PROSITE C-C-{P}-x(2)-C-[STDNEKPI]-x(3)-[LIVMFS]-x(3)-C

LSTM (�) C-C-{CDW}-x(2)-C-[DEIKNPSTB]-x(3)-[FILMV]-x(3)-C

�INVOLUCRIN (14)

PROSITE M-S-[QH]-Q-x-T-[LV]-P-V-T-[LV]

LSTM (å) L-E-L-P-E-Q-Q OR Q-Q-E-S-x-E-x-E-L

�PHOSPHOFRUCTOKINASE (97)

PROSITE [RK]-x(4)-G-H-x-Q-[QR]-G-G-x(5)-D-R

LSTM (å) [ILV]-E-V-M-G-[HR]-x(2)-[GS]

�PHOSPHOPANTETHEINE (198)

PROSITE [DEQGSTALMKRH]- . . . -[DNEKHS]-S-[LIVMST]-

PCFY- . . . -[LIVMWSTA]-[LIVGSTACR]-

x(2)-[LIVMFA]

LSTM (�) [LFT]-x(1,2)-[DEQSTAK]- . . . -[DEHQSN]-S-[LIVMA]-

x(4)-[LIVMSTA]-x(3)-[LIVMAF]-[DEHQSTAR]

�SERPIN (156)

PROSITE [LIVMFY]-x-[LIVMFYAC]-[DNQ]-[RKHQS]-[PST]-F-

[LIVMFY]-[LIVMFYC]-x-[LIVMFAH]

LSTM (å) F-{ADEGINP}-[IKLMNSV]-x(6,7)-V-x-M-M

�UPF0011 (26)

PROSITE S-D-A-G-x-P-x-[LIV]-[SN]-D-P-G

LSTM (å) R-x(4)-[LF]-x(5)-[LIVF]-x(2)-E-D-T-R

�ZINC_ FINGER_ C2H2_ 1 (792)

PROSITE C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H

(Continued)

S.Hochreiter et al.

1734

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

weights which support motif extraction. LSTM parameters are

as in the SCOP experiment except that we sped up learning by a

learning rate of 0.1 and a momentum factor of 0.9 and,

therefore, stopped learning at 100 epochs.

3.3.3 Evaluation The classification performances are
tested on the SwissProt database (version 42.9) with 143 790

sequences. The motifs are also compared with respect to their

position in the amino acid sequence in order to determine

whether both motifs identified the same conserved region.

3.3.4 Results The average test results on the SwissProt
database are given in Table 4 for 15 classes. The table shows

that LSTM performs best in terms of sensitivity with only a

marginal deficit in terms of specificity, leading to drastic

reduction of the balanced error in favor for LSTM. When

motifs extracted by LSTM are used in a replacement of

PROSITE motifs, classification performance is still superior

(in the earlier sense) in 10 out of the 15 classes. Even when

different patterns are found by LSTM, performance is better in

5 out of 7 classes. This shows that new indicative motifs can be

extracted using LSTM as a tool for ‘explorative data analysis’.

The motifs of PROSITE and LSTM are reported in Table 5,

which shows that in 8 out of 15 cases LSTM automatically

extracts a motif similar to that of PROSITE. However, in

7 cases alternative and—given the classification performance —

even more indicative motifs are identified.

These results demonstrate that new information can be

extracted from LSTM models which may give new insights into

protein function or structure.

4 CONCLUSION

We have presented a novel method, called LSTM, for protein

sequence classification and motif extraction. On a benchmark

homology detection dataset, LSTM reaches state-of-the-art

results while being five orders of magnitude faster than the best-

performing methods and two orders of magnitude faster than

the fastest SVM-based method. LSTM can be used to classify a

whole genome into structural or functional classes

in reasonable time while guaranteeing state-of-the-art

performance.
On PROSITE datasets the modeling strength of LSTM was

demonstrated: new and even more indicative motifs were

found. LSTM models of structural classes may, therefore, be

used to identify regions which are relevant for the 3D structure,

i.e. which are important for the folding process or for the 3D

stability.
LSTM is complementary to alignment-based approaches

because it does not measure similarities based on the BLOSUM

or PAM matrices. Rather it extracts new similarity measures

automatically and may cope with genetic recombination and

genetic shuffling (Vinga and Almeida, 2003).
LSTM may compute local and global sequence statistics like

hydrophobicity, may construct patterns for the negative class,

may use a detected pattern to inhibit or reinforce another

pattern. Therefore, LSTM may detect new regularities in

protein structure which cannot be discovered using standard

alignment methods. LSTM may therefore be a useful method,

e.g. to detect alternative splice sites or to extract nucleosome

positions from DNA data.

ACKNOWLEDGEMENTS

We thank Rene Pfeifer for performing the PROSITE experi-

ments. This work was founded in parts by the BMBF

(Grant no. 01GQ0414).

Conflict of Interest: none declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Bairoch,A (1999) The PROSITE database, its status in 1995. Nucleic Acids Res.,

24, 189–196.

Baldi,P. et al. (1999) Exploiting the past and the future in protein secondary

structure prediction. Bioinformatics, 15, 937–946.

Cheng,J. and Baldi,P. (2005) Three-stage prediction of protein beta-sheets

by neural networks, alignments, and graph algorithms. Bioinformatics, 21,

i75–i84.

Ding,C. and Dubchak,I. (2001) Multi-class protein fold recognition using

support vector machines and neural networks. Bioinformatics, 17, 349–358.

Dong,Q.-W et al. (2006) Application of latent semantic analysis to protein remote

homology detection. Bioinformatics, 22, 285–290.

Table 5. Continued

LSTM (�) [CFA]-x(2)-C-x(3)-[CFY]-x(5)-[LFQ]-x(2)-H-x(3)-H

�ZINC_ PROTEASE (546)

PROSITE [GSTALIVN]-x(2)-H-E-

[LIVMFYW]-{DEHRKP}-H-x-[LIVMFYWGSPQ]

LSTM (�) [GILNSTV]-[AFILMTVY]-x-H-E-

[AFILMTVY]-[AGILMSTV]-H

‘-’ separates positions, ‘x(a)’ means a arbitrary amino acids, ‘x(a,b)’ a to b

arbitrary amino acids, ‘[. . .]’ denotes alternatives and ‘{. . .}’ exceptions. The

brackets after LSTM indicate whether its motif is similar to the PROSITE motif

(‘�’) or not (‘å’). In bold are sub-patterns with match in both motifs.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

80 % motif length

Fig. 6. Histogram of motif length in the PROSITE database. Eighty

percent of the motifs have length 21 or less.

Fast model-based protein homology detection

1735

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

Gille,C. et al. (2003) A comprehensive view on proteasomal sequences:

implications for the evolution of the proteasome. J. Mol. Biol., 326,

1437–1448.

Gribskov,M. et al. (1987) Profile analysis: detection of distantly related proteins.

Proc. Natl Acad. Sci., 84, 4355–4358 .

Grundy,W.N. (1998) Family-based homology detection via pairwise sequence

comparison. In Proceedings of 2nd Annual International Conference on

Computational Molecular Biology, pp. 94–100. ACM Press, New York, USA.

Henikoff,S. and Henikoff,J.G. (1994) Position-based sequence weights. J. Mol.

Biol., 243, 574–578.

Hochreiter,S. (1991) Untersuchungen zu dynamischen neuronalen Netzen.

Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Tech. Univ.

München.

Hochreiter,S. and Schmidhuber.J. (1997) Long short-term memory. Neural

Comput., 9, 1735–1780.

Hochreiter,S. et al. (2001) Gradient flow in recurrent nets: the difficulty of

learning long-term dependencies. In Kolen, J. and Kremer, S. (eds),

A Field Guide to Dynamical Recurrent Networks. Wiley-IEEE Press,

Piscataway, NJ.

Hou,Y. et al. (2004) Remote homolog detection using local sequence-structure

correlations. Proteins Struct., Funct. and Bioinformatics, 57, 518–530.

Jaakkola,T. et al. (1999) Using the fisher kernel method to detect remote protein

homologies. In Proc. the Seventh International Conference on Intelligent

Systems for Molecular Biology, 16, 149–158. AAAI Press, Menlo Park, CA.

Karplus,K. et al. (1998) Hidden markov models for detecting remote protein

homologies. Bioinformatics, 14, 846–856.

Kent,W. J. (2002) BLAT - the BLAST like alignment tool. Genome Research, 12,

656–664.

Kuang,R. et al. (2005) Profile-based string kernels for remote homology detection

and motif extraction. Journal of Bioinformatics and Computational Biology, 3,

527–550.

Leslie,C. et al. (2004a) Mismatch string kernels for discriminative protein

classification. Bioinformatics, 20, 467–476.

Leslie,C. et al. (2004b) Inexact matching string kernels for protein classification.

In Schölkopf, B. Tsuda, K. and Vert, J.P. (eds), Kernel Methods in

Computational Biology, pp. 95–111. The MIT Press, Cambridge,

Massachusetts, London, England.

Liao,L. and Noble,W.S. (2002) Combining pairwise squence similarity support

vector machines for remote protein homology detection. In Proceedings of the

Sixth International Conference on Computational Molecular Biology,

pp. 225–232. ACM Press, New York, USA.

Lingner,T. and Meinicke,P. (2006) Remote homology detection based on

oligomer distances. Bioinformatics, 22, 2224–2236.

Madera,M. and Gough.J. (2002) A comparision of profile hidden Markov model

procedures for remote homology detection. Nucleic Acids Res., 30, 4321–4328.

Murzin,A.G. et al. (1995) SCOP: a structural classification of proteins database

for the investigation of sequences and structures. J. Mol.Biol., 247, 536–540.

Park,J. et al. (1998) Sequence comparisons using multiple sequences detect three

times as many remote homologues as pairwise methods. J. Mol. Biol., 284,

1201–1210.

Pearson,W. and Lipman,D. et al. (1988) Improved tools for biological sequence

comparison. Proc. Natl Acad. Sci., 85, 2444–2448, .

Rangwala,H. and Karypis,G. (2005) Profile based direct kernels for

remote homology detection and fold recognition. Bioinformatics, 21,

4239–4247 .

Sigrist,C.J.A. et al. (2002) PROSITE: A documented database using patterns and

profiles as motif descriptors. Brief. Bioinform., 3, 265–274.

Smith,T. and Waterman,M. et al. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

Tarnas,C. and Hughey,R. (1998) Reduced space hidden Markov model training.

Bioinformatics, 14, 401–406.

Thompson,J.D. et al. (1994) CLUSTAL W: improving the sensivity of

progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucleic Acids Res.,

22, 4673–4680.

Vapnik,V.N. (2000) The Nature of Statistical Learning Theory. Statistics for

Engineering and Information Science. 2nd edition, Springer Verlag. New

York.

Vert,J.-P. et al. (2004) Local alignment kernels for biological sequences.

In Schölkopf, B. Tsuda, K. and Vert, J.-P. (eds.), Kernel Methods

in Computational Biology, pp. 131–154. The MIT Press, Cambridge,

Massachusetts, London, England.

Vinga,S. and Almeida,J. (2003) Alignment-free sequence comparision–a review.

Bioinformatics, 19. 513–523.

S.Hochreiter et al.

1736

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/14/1728/189356 by guest on 21 August 2022

