
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 2, MARCH 2010 267

Fast Model Predictive Control Using
Online Optimization
Yang Wang and Stephen Boyd, Fellow, IEEE

Abstract—A widely recognized shortcoming of model predictive
control (MPC) is that it can usually only be used in applications
with slow dynamics, where the sample time is measured in seconds
or minutes. A well-known technique for implementing fast MPC
is to compute the entire control law offline, in which case the on-
line controller can be implemented as a lookup table. This method
works well for systems with small state and input dimensions (say,
no more than five), few constraints, and short time horizons. In this
paper, we describe a collection of methods for improving the speed
of MPC, using online optimization. These custom methods, which
exploit the particular structure of the MPC problem, can compute
the control action on the order of 100 times faster than a method
that uses a generic optimizer. As an example, our method com-
putes the control actions for a problem with 12 states, 3 controls,
and horizon of 30 time steps (which entails solving a quadratic pro-
gram with 450 variables and 1284 constraints) in around 5 ms, al-
lowing MPC to be carried out at 200 Hz.

Index Terms—Model predictive control (MPC), real-time convex
optimization.

I. INTRODUCTION

I N CLASSICAL model predictive control (MPC), the con-
trol action at each time step is obtained by solving an on-

line optimization problem. With a linear model, polyhedral con-
straints, and a quadratic cost, the resulting optimization problem
is a quadratic program (QP). Solving the QP using general pur-
pose methods can be slow, and this has traditionally limited
MPC to applications with slow dynamics, with sample times
measured in seconds or minutes. One method for implementing
fast MPC is to compute the solution of the QP explicitly as a
function of the initial state [1], [2]; the control action is then
implemented online in the form of a lookup table. The major
drawback here is that the number of entries in the table can grow
exponentially with the horizon, state, and input dimensions, so
that “explicit MPC” can only be applied reliably to small prob-
lems (where the state dimension is no more than around five).

In this paper, we describe a collection of methods that can be
used to greatly speed up the computation of the control action in
MPC, using online optimization. Some of the ideas have already
been noted in literature, and here we will demonstrate that when

Manuscript received September 13, 2008; revised November 11, 2008. Manu-
script received in final form March 10, 2009. First published June 30, 2009; cur-
rent version published February 24, 2010. Recommended by Associate Editor
J. Lee. The work of Y. Wang was supported by a Rambus Corporation Stanford
Graduate Fellowship. This work was supported in part by the Precourt Institute
on Energy Efficiency, by NSF Award 0529426, by NASA Award NNX07AEIIA,
and by AFOSR Award FA9550-06-1-0514.

Y. Wang and S. Boyd are with the Department of Electrical Engineering,
Stanford University, Stanford, CA 94305 USA (e-mail: yw224@stanford.edu;
boyd@stanford.edu).

Digital Object Identifier 10.1109/TCST.2009.2017934

used in combination, they allow MPC to be implemented orders
of magnitude faster than with generic optimizers.

Our main strategy is to exploit the structure of the QPs that
arise in MPC [3], [4]. It has already been noted that with an ap-
propriate variable reordering, the interior-point search direction
at each step can be found by solving a block tridiagonal system
of linear equations. Exploiting this special structure, a problem
with state dimension , input dimension , and horizon takes

operations per step in an interior-point method,
as opposed to if the special structure were not
exploited. Since interior-point methods require only a constant
(and modest) number of steps, it follows that the complexity
of MPC is therefore linear rather than cubic in the problem
horizon.

We should mention here, that a popular method for reducing
the complexity of the MPC QP is by reformulating the QP en-
tirely in terms of the control inputs. In this case, the QP be-
comes dense (the structure of the problem is lost), and requires

operations per step in an interior point method. This
technique is often combined with a strategy known as move
blocking, where the input is assumed to be constant for fixed
portions of the horizon, and so the number of optimization vari-
ables is further reduced (see, e.g., [5] and [6]). This can work
well when the horizon is small, but we will see that even for
modest values of , this method will be slower compared with
a method that fully exploits the problem structure.

Another important technique that can be used in online MPC
is warm-starting [7], [8], in which the calculations for each step
are initialized using the predictions made in the previous step.
Warm-start techniques are usually not used in general interior-
point methods (in part because these methods are already so
efficient) but they can work very well with an appropriate choice
of interior-point method, cutting the number of steps required by
a factor of five or more.

The final method we introduce is (very) early termination
of an appropriate interior-point method. It is not surprising
that high quality control is obtained even when the associated
QPs are not solved to full accuracy; after all, the optimization
problem solved at each MPC step is really a planning exercise,
meant to ensure that the current action does not neglect the
future. We have found, however, that after only surprisingly
few iterations (typically between 3 and 5), the quality of control
obtained is very high, even when the QP solution obtained is
poor.

We will illustrate our methods on several examples: a me-
chanical control system, a supply chain problem, and a ran-
domly generated example. The mechanical control system ex-
ample has 12 states, 3 controls, and a horizon ;

1063-6536/$26.00 © 2009 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

268 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 2, MARCH 2010

each MPC step requires the solution of a QP with 450 vari-
ables, 924 inequality constraints, and 360 equality constraints.
A simple, non-optimized C implementation of our method al-
lows each MPC step to be carried out in around 5 ms, on a 3
GHz PC, which would allow MPC to be carried out at around
200 Hz. For a larger example, with 30 states, 8 con-
trols, and horizon , each step requires solution of a
QP with over a thousand variables, and several thousand con-
straints; our method can be compute each MPC step in around
25 ms, allowing an update rate of 40 Hz. (Details of the perfor-
mance obtained will be given later.)

MPC can be used for several types of control (and also,
estimation) problems, including tracking problems, regulator
problems, and stochastic control problems; moreover, the
time-varying and finite-horizon versions of each of these can
be handled. In this paper we will focus on the infinite-horizon
time-invariant stochastic control problem, mentioning at the
end of the paper how the methods extend or apply to other
types of problems.

A. Related Work

Model predictive control goes by several other names, such
as rolling-horizon planning, receding-horizon control, dynamic
matrix control, and dynamic linear programming. It has been ap-
plied in a wide range of applications, including chemical process
and industrial control [5], [9]–[12], control of queuing systems
[13], supply chain management [14], [15], stochastic control
problems in economics and finance [16], [17], dynamic hedging
[18], and revenue management [19], [20].

For discussion of MPC from the point of view of optimal con-
trol, see [21]–[23]; for a survey of stability and optimality re-
sults, see [24]. For closed-form (offline) methods, see [1], [2],
and [25]. For dynamic trajectory optimization using optimiza-
tion methods, see [26].

Previous work that addresses efficient solution of the QPs that
arise in MPC includes [27]–[29], and [63]; for efficient methods
for large-scale MPC problems arising in chemical process con-
trol, see [30]–[32]. Efficient methods for robust MPC are ad-
dressed by [33]–[35]. The idea of using Newton’s method, ap-
plied to a smooth non-quadratic cost function can be found in
[36], [37].

II. TIME-INVARIANT STOCHASTIC CONTROL

A. System Dynamics and Control

In this section, we describe the basic time-invariant stochastic
control problem with linear dynamics. The state dynamics are
given by

(1)

where denotes time, is the state, is the
input or control, and is the disturbance. The matrices

and are (known) data. We assume
that , for different values of , are independent identically
distributed (IID) with known distribution. We let
denote the mean of (which is independent of).

The control policy must determine the current input from
the current and previous states , i.e., we will have
a causal state feedback policy. We let
denote the control policy, so that

This is equivalent to the statement that the random variable
is measurable on the random variable . An
important special case is a time-invariant static state feedback
control, for which , where is
called the control function.

B. Objective and Constraints

We define the following objective:

(2)

where is a convex quadratic stage cost function,
with the form

Here,
, and are parameters, and we will assume

where denotes matrix inequality.
We also have state and control constraints, defined as a set of

linear inequalities

(3)

where , and are problem data,
and denotes vector (componentwise) inequality.

In many problems the objective and constraints are separable
in the state and controls. This means that , and that the
state and control constraints can be written separately, as

where, here, .
A further specialization is where, in addition, and are diag-
onal, and the state and control constraints consist of lower and
upper bounds

where and . We refer to
these as box constraints.

C. Stochastic Control Problem

The stochastic control problem is to find a control policy that
satisfies the state and control constraints (3), and minimizes
the objective (2). Several pathologies can occur. The sto-
chastic control problem can be infeasible: there exists no causal
state feedback policy for which the contraints hold for all

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

WANG AND BOYD: FAST MODEL PREDICTIVE CONTROL USING ONLINE OPTIMIZATION 269

(with probability one), and is finite. Our stage cost can be un-
bounded below (since it has linear terms and the quadratic part
need not be positive definite), so the stochastic control problem
can also be unbounded below, i.e., there exists a policy for which

. Our interest in this paper is to describe a method
for efficiently computing an MPC control policy (which is itself
only a heuristic suboptimal policy) and not the technical details
of stochastic control, so we will not consider these issues fur-
ther, and simply assume that the problem is feasible, with finite
optimal cost. See, e.g., [43] for more on the technical aspects of
linear stochastic control.

It can be shown that there is an optimal policy which has
the form of a time-invariant static state feedback control, i.e.,

. Unfortunately, the state feedack function
can be effectively computed in only a few special cases,

such as when there are no constraints and is Gaussian.

D. Steady-State Certainty Equivalent Problem

For future reference we describe the steady-state certainty-
equivalent problem, in which we assume that and have the
constant values and , and the process noise has constant
value equal to its mean . The dynamics equation becomes

the constraint becomes , and the objective be-
comes .

The steady-state certainty-equivalent problem is then

minimize

subject to

with variables and . This problem is a convex
QP and is readily solved. We will let denote an optimal value
of in the certainty equivalent problem.

In many cases the steady-state certainty-equivalent problem
has a simple analytic solution. For example, when , the
objective is purely quadratic (i.e., and are both zero), and

(which means satisfy the constraints), we
have .

E. Model Predictive Control

MPC is a heuristic for finding a good, if not optimal, con-
trol policy for the stochastic control problem. In MPC the con-
trol is found at each step by first solving the optimization
problem

minimize

subject to

(4)

with variables and .
Here, is the (planning) horizon, the function is
the terminal cost function, which we assume is quadratic

with , and is the terminal state con-
straint. There are many methods for choosing the MPC param-
eters , and ; see, e.g., [44]–[48].

The problem (4) is a convex QP with problem data

Let be optimal
for the QP (4). The MPC policy takes . The MPC
input is evidently a (complicated) function of the current
state , so the MPC policy has a static state-feedback form

. It can be shown that is a piecewise-
affine function, when the quadratic cost term is positive definite
(see, e.g., [1]).

We can give a simple interpretation of the MPC QP (4). In
this QP, we truncate the true cost function to a horizon steps
in the future, and we replace the current and future disturbances
(which are not yet known) with their mean values. We represent
the truncated portion of the cost function with an approximate
value function . We then compute an optimal trajectory for
this simplified problem. We can think of
as a plan for what we would do, if the disturbance over the next

steps were to take on its mean value. We use only the first
control action in this plan, , as our actual control. At time

, the actual value of becomes available to us, so
we carry out the planning process again, over the time period

. This is repeated for each time step.

F. Explicit MPC

In explicit model predictive control, an explicit form of the
piecewise-affine control law is computed offline. We com-
pute, offline, the polyhedral regions over which the control is
affine, as well as the offset and control gain for each region
[1], [2], [49]. The online control algorithm is then reduced to
a lookup table: the region associated with the current state
is first determined, and then the control law associated with that
region is applied.

This method is very attractive for problems with a small
number of states and controls, simple constraints, and a modest
horizon, for which the number of regions is manageable. For
other problems (say, with , and) the
number of regions can be very large, so explicit MPC is no
longer practically feasible. (There is some hope that a good
control law can be obtained by simplifying the piecewise-affine
function , e.g., using the methods described in [50]–[52],
replacing it with a piecewise-affine function with a manageable
number of regions.)

Even when the number of regions is manageable (say, a few
thousand), it can still be faster to solve the QP (4), using the
methods described in this paper, rather than implementing the
lookup table required in explicit MPC. Furthermore, explicit
MPC cannot handle cases where the system, cost function,
or constraints are time-varying. On the other hand, the QP
(4) can be easily modified for the case where the matrices

and vary over time (we only
need to keep track of the time index for these matrices).

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

270 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 2, MARCH 2010

III. PRIMAL BARRIER INTERIOR-POINT METHOD

In this section, we describe a basic primal barrier interior-
point for solving the QP (4), that exploits its special structure.
Much of this material has been reported elsewhere, possibly in
a different form or context (but seems to not be widely enough
appreciated among those who use or study MPC); we collect it
here in one place, using a unified notation. In Section IV, we
describe variations on the method described here, which give
even faster methods.

We first rewrite the QP (4) in a more compact form. We define
an overall optimization variable

and express the QP (4) as

minimize

subject to (5)

where

...
...

...
. . .

...
...

...

...
...

...
. . .

...
...

...

...
...

...
...

. . .
...

...
...

...

...

...

Evidently these matrices have considerable structure; for ex-
ample, is block tridiagonal. In special cases we can have even
more structure. When the problem is state control separable, for
example, is block diagonal.

A. Primal Barrier Method

We will use an infeasible start primal barrier method to solve
the QP [3, Ch. 11], [53]. We replace the inequality constraints
in the QP (5) with a barrier term in the objective, to get the
approximate problem

minimize

subject to (6)

where is a barrier parameter, and is the log barrier
associated with the inequality constraints, defined as

where are the rows of . (We take
if .) The problem (6) is a convex optimization problem
with smooth objective and linear equality constraints, and can
be solved by Newton’s method, for example.

As approaches zero, the solution of (6) converges to a so-
lution of the QP (5): it can be shown that the solution of (6) is
no more than suboptimal for the QP (5) (see, e.g.,
[3, Sect. 11.2.2]). In a basic primal barrier method, we solve a
sequence of problems of the form (6), using Newton’s method
starting from the previously computed point, for a decreasing
sequence of values of . A typical method is to reduce by
a factor of 10 each time a solution of (6) is computed (within
some accuracy). Such a method can obtain an accurate solu-
tion of the original QP with a total effort of around 50 or so
Newton steps. (Using the theory of self-concordance [3, Sect.
11.5], [54], one can obtain a rigorous upper bound on the total
number of Newton steps required to solve the QP to a given
accuracy. But this bound is far larger than the number of steps
always observed in practice.)

B. Infeasible Start Newton Method

We now focus on solving the problem (6) using an infeasible
start Newton method [3, Sect. 10.3.2]. We associate a dual vari-
able with the equality constraint . The opti-
mality conditions for (6) are then

(7)

where , and denotes the th row of . The
term is the gradient of . We also have the implicit
constraint here that . We call the primal residual, and

the dual residual. The stacked vector is called the
residual; the optimality conditions for (6) can then be expressed
as .

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

WANG AND BOYD: FAST MODEL PREDICTIVE CONTROL USING ONLINE OPTIMIZATION 271

In the infeasible start Newton method, the algorithm is ini-
tialized with a point that strictly satisfies the inequality con-
straints , but need not satisfy the equality constraints

, (thus, the initial can be infeasible, which is where
the method gets its name). We can start with any .

We maintain an approximate (with) and , at each
step. If the residuals are small enough, we quit; otherwise we
refine our estimate by linearizing the optimality conditions (7)
and computing primal and dual steps for which

give zero residuals in the linearized approximation.
The primal and dual search steps and are found by

solving the linear equations

(8)

(The term is the Hessian of .) Once
and are computed, we find a step size using a
backtracking line search on the norm of the residual , making
sure that holds for the updated point (see, e.g., [3,
Sect. 9.2]). We then update our primal and dual variables as

and . This procedure is repeated
until the norm of the residual is below an acceptable threshold.

It can be shown that primal feasibility (i.e.,) will be
achieved in a finite number of steps, assuming the problem (6)
is strictly feasible. Once we have , it will remain zero
for all further iterations. Furthermore, and will converge to
an optimal point. The total number of Newton steps required
to compute an accurate solution depends on the initial point
(and). This number of steps can be formally bounded using
self-concordance theory, but the bounds are much larger than
the number of steps typically required.

C. Fast Computation of the Newton Step

If we do not exploit the structure of the (8), and solve it
using a dense factorization, for example, the cost is

flops. But we can do much better by
exploiting the structure in our problem.

We will use block elimination [3, App. C]. Before we pro-
ceed, let us define , which is block
diagonal, with the first block , the last block and
the remaining blocks . Its inverse is
also block diagonal; we write it as

...
...

...
. . .

...
...

...

Solving (8) by block elimination involves the following se-
quence of steps.

1) Form the Schur complement and
.

2) Determine by solving .
3) Determine by solving .

The Schur complement has the block tridiagonal form

...
...

...
. . .

...
...

where

We can form as follows. First we compute the Cholesky
factorization of each of the blocks in , which requires

flops, which is order
. Forming is then done by backward and for-

ward-substitution with columns taken from and , and then
multiplying by the associated blocks in ; this requires order

flops. Thus, step 1 requires order
flops.

Step 2 is carried out by Cholesky factorization of , followed
by backward and forward-substitution. The matrix is block
tridiagonal, with (block) rows, with blocks. It can be
factored efficiently using a specialized method described below
for block tridiagonal matrices (which is related to the Riccati
recursion in control theory) [27]–[29], [55], [56], or by treating
it as a banded matrix, with bandwidth . Both of these methods
require order flops ([3], [4], [29]–[32], [55], [56]). Step 2
therefore requires order flops.

The Cholesky factorization of , where is lower
triangular, is found as follows. The Cholesky factor has the
lower bidiagonal block structure

...
...

...
. . .

...
...

where are lower triangular with positive diagonal
entries, and are general matrices. Directly from

we find that

Thus, we can find by Cholesky factorization of , then we
find by solving by forward substitution; then
we can find by Cholesky factorization of , and
so on. Each of these steps requires order flops.

The cost of step 3 is dominated by the other steps, since the
Cholesky factorization of was already computed in step 1. The

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

272 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 2, MARCH 2010

overall effort required to compute the search directions and
, using block elimination, is order . Note that this

order grows linearly with the horizon , as opposed to cubicly,
if the (8) are solved using a generic method.

For special cases, further savings in complexity are possible.
For example, when the problem is state control separable, with
diagonal and , and box constraints, the matrix is diagonal.
In this case, the over all complexity is order flops,
which grows linearly in both and .

D. Warm Start

In a typical primal barrier method, we solve (6) for a de-
creasing sequence of values of . When we decrease and solve
(6) again, for the new value of , we can simply use the pre-
viously computed as the initial for the first Newton step.
This warm start method is extremely effective in reducing the
number of Newton steps required for each value of . (Indeed,
it is the key to the primal barrier method.) It can be proved, using
the theory of self-concordance, that when is decreased by any
constant factor, the total number of Newton steps required to
solve (6) to a given accuracy, starting from the previously com-
puted solution, is bounded by a polynomial of the problem di-
mensions. While the existence of such a bound is reassuring, its
value is much larger than the number of Newton steps actually
required, which is typically small (say, between 5 and 10) [3,
Sect. 10.3.3].

We can also use this warm start idea to initialize the first
time we solve (6), at time step , using the previously computed
trajectory for time step . Roughly speaking, in MPC we
compute the current action by working out an entire plan for the
next time steps. We can use the previously computed plan,
suitably shifted in time, as a good starting point for the current
plan.

We initialize the primal barrier method for solving (6) for
time step with the trajectories for and computed during
the previous time step, with and appended at the end. One
simple choice for and is and . Suppose at time
the computed trajectory is

We can initialize the primal barrier method, for time step , with

Assuming satisfies the equality constraints, so will , ex-
cept at the first and last time steps. If satisfies the inequality
constraints strictly, then so will , except possibly at the first
and last time steps. In this case, we can modify and so
that the inequality constraints are strictly satisfied.

Several other warm start methods can be used in special cases.
For example, let us consider the case with box constraints. We
can work out the linear control obtained using the associated
LQR problem, ignoring the constraints, or using the techniques
described in [44], and then project this trajectory a small dis-
tance into the feasible set (which is a box). This warm start ini-
tialization has the (possible) advantage of depending only on

, and not on the previous states or any controller state.

IV. APPROXIMATE PRIMAL BARRIER METHOD

In this section, we describe some simple variations on the
basic infeasible start primal barrier method described above.
These variations produce only a good approximate solution of
the basic MPC QP (5), but with no significant decrease in the
quality of the MPC control law (as measured by the objective).
These variations, however, can be computed much faster than
the primal barrier method described previously.

A. Fixed

Our first variation is really a simplification of the barrier
method. Instead of solving (6) for a decreasing sequence of
values of , we propose to use one fixed value, which is never
changed. Moreover, we propose that this fixed value is not
chosen to be too small; this means that the suboptimality bound

will not be small.
For a general QP solver, using a single fixed value of would

lead to a very poor algorithm, that could well take a very large
number of steps, depending on the problem data, and in addition
only computes an approximate solution. We propose the use of
a fixed value of here for several reasons. First, we must re-
member that the goal is to compute a control that gives a good
objective value, as measured by , and not to solve the QP (5)
accurately. (Indeed, the QP is nothing but a heuristic for com-
puting a good control.) In extensive numerical experiments, we
have found that the quality of closed-loop control obtained by
solving the approximate QP (6) instead of the exact QP (5) is ex-
tremely good, even when the bound on suboptimality in solving
the QP is not small. This was also observed by Wills and Heath
[57] who explain this phenomenon as follows. When we sub-
stitute the problem (6) for (5), we can interpret this as solving
an MPC problem exactly, where we interpret the barrier as an
additional nonquadratic state and control cost function terms.

The particular value of to use turns out to not matter much
(in terms of Newton iterations required, or final value of
achieved); any value over a very wide range (such as a factor
of) seems to give good results. A good value of can be
found for any particular application by increasing it, perhaps
by a factor of 10 each time, until simulation shows a drop in the
quality of control achieved. The previous value of can then
be used.

The idea of fixing a barrier parameter to speed up the approxi-
mate solution of a convex problem was described in [58], where
the authors used a fixed barrier parameter to compute a nearly
optimal set of grasping forces extremely rapidly.

A second advantage we get by fixing is in warm starting
from the previously computed trajectory. By fixing , each MPC
iteration is nothing more than a Newton process. In this case,
warm starting from the previously computed trajectory reliably
gives a very good advantage in terms of the number of Newton
steps required. In contrast, warm start for the full primal barrier
method offers limited, and erratic, advantage.

By fixing , we can reduce the number of Newton steps re-
quired per MPC iteration from a typical value of 50 or so for a
primal barrier method, to a value on the order of 5. (The exact
number depends on the application; in some cases it can be even
smaller.)

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

WANG AND BOYD: FAST MODEL PREDICTIVE CONTROL USING ONLINE OPTIMIZATION 273

B. Fixed Iteration Limit

Our second variation on the primal barrier method is also
a simplification. By fixing we have reduced each MPC cal-
culation to carrying out a Newton method for solving (6). In
a standard Newton method, the iteration is stopped only when
the norm of the residual becomes small, or some iteration limit

is reached. It is considered an algorithm failure when
the iteration limit is reached before the residual norm is small
enough. (This happens, for example, when the problem does
not have a strictly feasible point.) In MPC, the computation of
the control runs periodically with a fixed period, and has a hard
run-time constraint, so we have to work with the worst case time
required to compute the control, which is times the time
per Newton step.

Now we come to our second simplification. We simply choose
a very small value of , typically between 3 and 10. (When
the MPC control is started up, however, we have no previous tra-
jectory, so we might use a larger value of .) Indeed, there
is no harm in simply running a fixed number of Newton
steps per MPC iteration, independent of how big or small the
residual is.

When has some small value such as 5, the Newton
process can terminate with a point that is not even primal
feasible. Thus, the computed plan does not even satisfy
the dynamics equations. It does, however, respect the con-
straints; in particular, satisfies the current time constraint

(assuming these constraints are strictly
feasible). In addition, of course, the dual residual need not be
small.

One would think that such a control, obtained by such a crude
solution to the QP, could be quite poor. But extensive numerical
experimentation shows that the resulting control is of very high
quality, with only little (or no) increase in when compared to
exact MPC. Indeed, we have observed that with as low
as 1, the control obtained is, in some cases, not too bad. We do
not recommend ; we only mention it as an interesting
variation on MPC that requires dramatically less computation.

We do not fully understand why this control works so well,
even in cases where, at many time instances, the optimization
is terminated before achieving primal feasibility. One plausible
explanation goes back to the basic interpretation of MPC: At
each step, we work out an entire plan for the next steps, but
only use the current control. The rest of the plan is not really
used; the planning is done to make sure that the current control
does not have a bad effect on the future behavior of the system.
Thus it seems reasonable that the current control will be good,
even if the plan is not carried out very carefully.

It is interesting to note that when the algorithm does not fully
converge in iterations, the resulting control law is not a
static state feedback, as (exact) MPC is. Indeed, the controller
state is the plan , and the control does indeed depend (to
some extent) on .

C. Summary and Implementation Results

We have developed a simple implementation of our approx-
imate primal barrier method, written in C, using the LAPACK
library [59], [60] to carry out the numerical linear algebra
computations. Our current C implementation, available at

TABLE I
TIME TAKEN TO SOLVE EACH QP FOR RANDOMLY GENERATED EXAMPLES

http://www.stanford.edu/~boyd/fast_mpc.html, handles the
case of separable purely quadratic objective (i.e.,)
and box constraints. We report here the timing results for 12
problems with different dimensions, constructed using the
method described in Section V-C, on a 3 GHz AMD Athlon
running Linux.

To be sure that the inputs computed by our method delivered
control performance essentially equivalent to exact MPC, we
simulated each example with exact MPC, solving the QP ex-
actly, using the generic optimization solver SDPT3 [61], called
by CVX [62]. (The reported times, however, include only the
SDPT3 CPU time.) SDPT3 is a state-of-the-art primal-dual in-
terior-point solver, that exploits sparsity. The parameters
and in our approximate primal barrier method were chosen
to give control performance, as judged by Monte Carlo simula-
tion to estimate average stage cost, essentially the same as the
control performance obtained by solving the QP exactly; in any
case, never more than a few percent worse (and in some cases,
better).

Table I lists results for 12 problems. The column listing QP
size gives the total number of variables (the first number) and the
total number of constraints (the second number). We can see that
the small problems (which, however, would be considered large
problems for an explicit MPC method) are solved in under a mil-
lisecond, making possible kiloHertz control rates. The largest
problem, which involves a QP that is not small, with more than
a thousand variables and several thousand constraints, is solved
in around 26 ms, allowing a control rate of several tens of hertz.
We have solved far larger problems as well; the time required
by our approximate primal barrier method grows as predicted,
or even more slowly.

We can also see that the approximate barrier method far out-
performs the generic (and very efficient) solver SDPT3, which
only exploits sparsity. Of course the comparison is not entirely
fair; in each call to SDPT3, the sparsity pattern must be detected,
and a good elimination ordering determined; in contrast, in our
code, the sparsity exploitation has already been done. (Indeed
we can see this effect: for the problem with ,
and , the time taken by SDPT3 is actually lower than
for , since SDPT3 chooses to treat the former problem
as sparse, but the latter one as dense.) The numbers make our

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

274 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 2, MARCH 2010

Fig. 1. Oscillating masses model. Bold lines represent springs, and the dark
regions on each side represent walls.

point: Generic convex optimization solvers, even very efficient
ones, are not optimized for repeatedly solving small and modest
sized problems very fast.

V. EXAMPLES

In the next section, we present three specific examples: a
mechanical control system, a supply chain, and a randomly gen-
erated system. We compare the performance of our fast approx-
imate MPC method with exact MPC, and give timing specifica-
tions for the two cases which our current C implementation can
handle.

A. Oscillating Masses

The first example consists of a sequence of six masses con-
nected by springs to each other, and to walls on either side, as
shown in Fig. 1. There are three actuators, which exert tensions
between different masses. The masses have value 1, the springs
all have spring constant 1, and there is no damping. The controls
can exert a maximum force of , and the displacements of
the masses cannot exceed .

We sample this continuous time system, using a first order
hold model, with a period of 0.5 (which is around 3 times faster
than the period of the fastest oscillatory mode of the open-loop
system). The state vector is the displacement and
velocity of the masses. The disturbance is a random
force acting on each mass, with a uniform distribution on

. (Thus, the disturbance is as large as the maximum
allowed value of the actuator forces, but acts on all six masses.)
For MPC we choose a horizon , and separable quadratic
objective with .
We choose using a heuristic method described in [44]. The
problem dimensions are and .
The steady-state certainty equivalent optimal state and control
are, of course, zero.

All simulations were carried out for 1100 time steps, dis-
carding the first 100 time steps, using the same realization of
the random force disturbance. The initial state is set to
the steady-state certainty equivalent value, which is zero in this
case. We first compare exact MPC (computed using CVX [62],
which relies on the solver SDPT3 [61]) with approximate MPC,
computed using a fixed positive value of , but with no itera-
tion limit. Exact MPC achieves an objective value
(computed as the average stage cost over the 1000 time steps).
Fig. 2 shows the distributions of stage cost for exact MPC and
for approximate MPC with , and . For

, the control performance is essentially the same as for
exact MPC; for , the objective is less than 3% larger
than that obtained by exact MPC, and for , the objective
is about 18% larger than exact MPC.

Fig. 2. Histograms of stage costs, for different values of �, for oscillating
masses example. Solid vertical line shows the mean of each distribution.

To study the effect of the iteration limit , we fix
, and carry out simulations for ,

and . The distribution of stage costs is shown in
Fig. 3. For and , the quality of control
obtained (as measured by average stage cost) is essentially the
same as for exact MPC. For , in which only one
Newton step is taken at each iteration, the quality of control is
measurably worse than for exact MPC, but it seems surprising
to us that this control is even this good. For , primal
feasibility is attained in 5% of the steps, while for ,
primal feasibility is attained in only 68% of the steps, and for

, primal feasibility is attained in 95% of the steps.
It is apparent (and a bit shocking) that primal feasibility is not
essential to obtaining satisfactory control performance.

For this example, a reasonable choice of parameters would
be and , which yields essentially the same
average stage cost as exact MPC, with a factor of 10 or more
speedup (based on 50 iterations for exact solution of the QP).
The control produced by and is very
similar to, but not the same as, exact MPC. Fig. 4 shows ,
the displacement of the first mass, and , the first control,
for both exact MPC and fast MPC. The state trajectories are
almost indistinguishable, while the control trajectories show a
few small deviations.

Our simple C implementation can carry out one Newton
step for the oscillating masses problem in around 1 ms. With

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

WANG AND BOYD: FAST MODEL PREDICTIVE CONTROL USING ONLINE OPTIMIZATION 275

Fig. 3. Histograms of stage costs, for different values of � , with � �

�� , for oscillating masses example. The solid vertical line shows the mean
of each distribution.

Fig. 4. Simulation of oscillating masses example with � � �� �� � �.
The solid curves show fast MPC; the dashed curves show exact MPC.

, our approximate MPC control can be implemented
with sample time of 5 ms. It follows that the MPC control can
be carried out at a rate up to 200 Hz.

Fig. 5. Supply chain model. Dots represent nodes or warehouses. Arrows rep-
resent links or commodity flow. Dashed arrows are inflows and dash-dot arrows
are outflows.

B. Supply Chain

This example is a single commodity supply chain consisting
of 6 nodes, representing warehouses or buffers, interconnected
with 13 uni-directional links, representing some transport mech-
anism or flow of the commodity, as shown in Fig. 5. Three of the
flows, represented by dashed arrows, are inflows, and beyond
our control; the remaining 10 flows, however, are the controls.
Two of these controls are outflows, represented in dashed-dotted
line type.

At each time step, an uncertain amount of commodity enters
the network along the three inflow links; the control law chooses
the flow along the other 10 edges, including the two outflow
links. The system state is the quantity of the commodity present
at each node, so . The state is constrained to sat-
isfy . The control is , each component of
which is constrained to lie in the interval . (Thus, each
link has a capacity of 2.5.) The disturbance is the inflow,
so . The components of are IID with exponential
distribution, with mean one. There is one more constraint that
links the controls and the states: The total flow out of any node,
at any time, cannot exceed the amount of commodity available
at the node. Unlike the constraints in the oscillating masses ex-
ample, this problem is not separable in the state and control. The
problem dimensions are , and .

The objective parameters are
. (Here denotes the vector with all

entries one.) This means that there is a storage cost at each node,
with value , and a charge equal to the flow on each
edge. The storage cost gives incentive for the commodity to be
routed out of the network through the outflow links and .
For this problem, the steady-state certainty equivalent problem
is not trivial; it must be computed by solving a QP.

For MPC control of the supply chain, we used a horizon
. In our simulations, we use initial state .

In this example, we find that with , our
approximate MPC gives essentially the same quality of control
as exact MPC. Fig. 6 shows and for both exact MPC
(dashed line) and approximate MPC (solid line). Evidently, the
controls and states for the two are almost indistinguishable.

Our current C implementation of the fast MPC method does
not handle coupled state input constraints, which are present in

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

276 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 2, MARCH 2010

Fig. 6. Simulation of supply chain with � � ����� � � ��. Solid line:
Fast MPC, Dashed line: Exact MPC.

this example, so we cannot report the timing. (All the simula-
tions shown in this example were found using a MATLAB im-
plementation of the fast MPC method, which is slow for many
reasons.) We can, however, form a reasonable estimate of the
performance that would be obtained, based on the complexity
analysis given above and extrapolating from other examples.
Our estimate is that the fast MPC implementation would take
around 1.2 ms per Newton step, and so around 12 ms per solve.

C. Random System

Our third example is a randomly generated system, where the
entries of and are zero mean unit variance normal random
variables. We then scale so that its spectral radius is one, so the
system is neutrally stable. We have already given timing results
for this family of problems in Table I; here we consider a specific
problem, to check that out approximate solution of the QP has
little or no effect on the control performance obtained.

The particular example we consider has states and
controls. The constraints are box constraints:

. The disturbance has IID entries,
uniformly distributed on . (The constraints and dis-
turbance magnitudes were chosen so that the controls are often
saturated.) The cost parameters are

and we choose using the method described in [44].
For MPC we use a horizon of , with a randomly gener-
ated starting point .

As in the previous examples, we found that approximate
primal barrier MPC, with parameters and ,
yields a control essentially the same as exact MPC. A sample
trace is shown in Fig. 7.

Using our C implementation, we can carry out one Newton
step for this example in around 5 ms. With , our
method allows MPC to be implemented with a sample time of
25 ms, so control can be carried out at a rate of 40 Hz.

VI. EXTENSIONS AND VARIATIONS

Our discussion so far has focussed on the time-invariant infi-
nite-horizon stochastic control problem. Here, we describe how

Fig. 7. Simulation of random system with � � ������ � �. Solid line:
fast MPC; Dashed line: exact MPC.

the same methods can be applied in many variations on this
particular MPC formulation. First, it should be clear that the
exact same methods can be used when the system, cost func-
tion, or constraints are time-varying; we only need to keep track
of the time index in the matrices , and ,
and the vectors , and . The same infeasible-start Newton
method, and the same method for rapidly computing the Newton
step, can be used. All that changes is that these data matrices
(possibly) change at each time step. Other extensions that are
straightforward include multi-rate problems, or problems with
piecewise-linear or piecewise-constant inputs, or the addition of
a final state constraint (instead of our final state cost term).

The method can be applied to nonlinear systems as well, using
standard techniques. At each Newton step we simply linearize
the dynamics (using Jacobians or particle filter methods), at the
current value of , and compute the step using this linearized
model. (We would, however, carry out the line search using
the true primal residual, with nonlinear dynamics, and not the
primal residual in the linearized dynamics.) In this case, the data
matrices change each Newton step (as the linearization is up-
dated). We have not experimented much with applying these
methods to problems with nonlinear dynamics; we expect that a
larger number of iterations will be required to give good control
performance. Our ability to rapidly compute each Newton step
will be useful here as well.

We can use any smooth convex stage cost functions, with
little change. We can incorporate nonsmooth convex stage cost
functions, by introducing local variables that yield a (larger)
smooth problem (see, e.g., [3, Ch. 4]). These added variables
are “local”, i.e., interact only with , so their contribu-
tion to the Hessian will also be local, and the same methods can
be applied. One example is moving horizon estimation with a
Huber cost function, which gives a smoothing filter that is very
robust to outliers in process disturbance or noise [3, Sect. 6.1].
We can also add any convex constraints that are “local” in time,
i.e., that link state or control over a fixed number of time steps;
such constraints lead to KKT matrices with the same banded
form.

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

WANG AND BOYD: FAST MODEL PREDICTIVE CONTROL USING ONLINE OPTIMIZATION 277

VII. CONCLUSION AND IMPLICATIONS

By combining several ideas, some of which are already
known in MPC or other contexts, we can dramatically increase
the speed with which online computation of MPC control laws
can be carried out. The methods we have described complement
offline methods, which give a method for fast control computa-
tion when the problem dimensions are small. Combined with
ever-increasing available computer power, the possibility of
very fast online computation of MPC control laws suggests to
us that MPC can be used now, or soon, in many applications
where it has not been considered feasible before.

Much work, both practical and theoretical, remains to be
done in the area of fast online MPC methods. While our ex-
tensive simulations suggest that fast online MPC works very
well, a formal stability analysis (or, even better, performance
guarantee) would be a welcome advance.

ACKNOWLEDGMENT

The authors would like to thank M. Morari, S. Meyn, A. Be-
mporad, and P. Parrilo for very helpful discussions. They would
also like to thank K. Koh and A. Mutapcic for advice on the C
implementation, and D. Gorinevski for help with the examples.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, Jan. 2002.

[2] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit MFC solutions,”
in Proc. IEEE Conf. Dec. Control, 2001, pp. 1199–1204.

[3] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge University Press, 2004.

[4] S. J. Wright, “Applying new optimization algorithms to model pre-
dictive control,” Chemical Process Control-V., vol. 93, no. 316, pp.
147–155, 1997.

[5] J. M. Maciejowski, Predictive Control with Constraints. Englewood
Cliffs, NJ: Prentice-Hall, 2002.

[6] R. Cagienard, P. Grieder, E. C. Kerrigan, and M. Morari, “Move
blocking strategies in receding horizon control,” in Proc. 43rd IEEE
Conf. Dec. Control, Dec. 2004, pp. 2023–2028.

[7] F. A. Potra and S. J. Wright, “Interior-point methods,” J. Comput. Appl.
Math., vol. 124, no. 1–2, pp. 281–302, 2000.

[8] E. A. Yildirim and S. J. Wright, “Warm-start strategies in interior-point
methods for linear programming,” SIAM J. Opt., vol. 12, no. 3, pp.
782–810, 2002.

[9] R. Soeterboek, Predictive Control: A Unified Approach. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

[10] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Eng. Practice, vol. 11, no. 7, pp. 733–764,
2003.

[11] E. Camacho and C. Bordons, Model Predictive Control. New York:
Springer-Verlag, 2004.

[12] W. Wang, D. E. Rivera, and K. Kempf, “Model predictive control
strategies for supply chain management in semiconductor manufac-
turing,” Int. J. Production Economics, vol. 107, pp. 57–77, 2007.

[13] S. P. Meyn, Control Techniques for Complex Networks. Cambridge,
U.K.: Cambridge University Press, 2006.

[14] E. G. Cho, K. A. Thoney, T. J. Hodgson, and R. E. King, “Supply chain
planning: Rolling horizon scheduling of multi-factory supply chains,”
in Proc. 35th Conf. Winter Simulation: Driving Innovation, 2003, pp.
1409–1416.

[15] W. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality. New York: Wiley, 2007.

[16] H. Dawid, “Long horizon versus short horizon planning in dynamic op-
timization problems with incomplete information,” Economic Theory,
vol. 25, no. 3, pp. 575–597, Apr. 2005.

[17] F. Herzog, “Strategic portfolio management for long-term investments:
An optimal control approach,” Ph.D. dissertation, ETH, Zurich, The
Netherlands, 2005.

[18] J. Primbs, “Dynamic hedging of basket options under proportional
transaction costs using receding horizon control,” in Int. J. Control,
2009. [Online]. Available: http://www.Stanford.edu/japrimbs/Auto-
Submit20070813.pdf

[19] K. T. Talluri and G. J. V. Ryzin, The Theory and Practice of Revenue
Management. New York: Springer, 2004.

[20] D. Bertsimas and I. Popescu, “Revenue management in a dynamic net-
work environment,” Transportation Sci., vol. 37, no. 3, pp. 257–277,
2003.

[21] W. H. Kwon and S. Han, Receding Horizon Control. New York:
Springer-Verlag, 2005.

[22] P. Whittle, Optimization Over Time. New York: Wiley, 1982.
[23] G. C. Goodwin, M. M. Seron, and J. A. De Doná, Constrained Control

and Estimation. New York: Springer, 2005.
[24] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,

“Constrained model predictive control: Stability and optimality,”
Automatica, vol. 36, no. 6, pp. 789–814, Jun. 2000.

[25] G. Pannocchia, J. B. Rawlings, and S. J. Wright, “Fast, large-scale
model predictive control by partial enumeration,” Automatica, vol. 43,
no. 5, pp. 852–860, May 2006.

[26] J. T. Belts, Practical Methods for Optimal Control Using Nonlinear
Programming. Warrendale, PA: SIAM, 2001.

[27] A. Hansson and S. Boyd, “Robust optimal control of linear discrete-
time systems using primal-dual interior-point methods,” in Proc. Amer.
Control Conf., 1998, vol. 1, pp. 183–187.

[28] A. Hansson, “A primal-dual interior-point method for robust optimal
control of linear discrete-time systems,” IEEE Trans. Autom. Control,
vol. 45, no. 9, pp. 1639–1655, Sep. 2000.

[29] L. Vandenberghe, S. Boyd, and M. Nouralishahi, “Robust linear pro-
gramming and optimal control,” presented at the 15th IFAC World
Congr. Autom. Control, Barcelona, Spain, Jul. 2002.

[30] R. A. Bartlett, L. T. Biegler, J. Backstrom, and V. Gopal, “Quadratic
programming algorithms for large-scale model predictive control,” J.
Process Control, vol. 12, no. 7, pp. 775–795, 2002.

[31] L. T. Biegler, “Efficient solution of dynamic optimization and NMPC
problems,” in Nonlinear Model Predictive Control, F. Allgöwer and A.
Zheng, Eds. Cambridge, MA: Birkhauser, 2000, pp. 119–243.

[32] J. Albuquerque, V. Gopal, G. Staus, L. T. Biegler, and B. E. Ydstie, “In-
terior point SQP strategies for large-scale, structured process optimiza-
tion problems,” Comput. Chem. Eng., vol. 23, no. 4–5, pp. 543–554,
1999.

[33] P. J. Goulart, E. C. Kerrigan, and D. Ralph, “Efficient robust optimiza-
tion for robust control with constraints,” Math. Program., vol. Series
A, pp. 1–33, 2007.

[34] M. Cannon, W. Liao, and B. Kouvaritakis, “Efficient MFC optimiza-
tion using pontryagin’s minimum principle,” Int. J. Robust Nonlinear
Control, vol. 18, no. 8, pp. 831–844, 2008.

[35] V. M. Savala, C. D. Laird, and L. T. Biegler, “Fast implementations
and rigorous models: Can both be accommodated in NMPC?,” Int. J.
Robust Nonlinear Control, vol. 18, no. 8, pp. 800–815, 2008.

[36] C. G. Economou, M. Morari, and B. O. Palsson, “Internal model con-
trol: Extension to nonlinear system,” Ind. Eng. Chem. Process Des. De-
velopment, vol. 25, no. 2, pp. 403–411, 1986.

[37] W. C. Li, L. T. Biegler, C. G. Economou, and M. Morari, “A con-
strained Pseudo-Newton control strategy for nonlinear systems,”
Comput. Chem. Eng., vol. 14, no. 4, pp. 451–468, 1990.

[38] R. Bitmead, V. Wertz, and M. Gevers, Adaptive Optimal Control: The
Thinking Man’s GPC.. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[39] A. Bemporad, “Model predictive control design: New trends and tools,”
in Proc. 45th IEEE Conf. Dec. Control, 2006, pp. 6678–6683.

[40] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[41] D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear
systems,” IEEE Trans. Autom. Control, vol. 35, no. 7, pp. 814–824,
1990.

[42] S. M. Estill, “Real-time receding horizon control: Application pro-
grammer interface employing LSSOL,” Dept. Mech. Eng., Univ. Cal-
ifornia, Berkeley, Dec. 2003.

[43] D. P. Bertsekas, Dynamic Programming and Optimal Control. Bel-
mont, MA: Athena Scientific, 2005.

[44] Y. Wang and S. Boyd, “Performance bounds for linear stochastic con-
trol,” Syst. Control Lett., vol. 53, no. 3, pp. 178–182, Mar. 2009.

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

278 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 2, MARCH 2010

[45] M. Corless and G. Leitmann, “Controller design for uncertain system
via Lyapunov functions,” in Proc. Amer. Control Conf., 1988, vol. 3,
pp. 2019–2025.

[46] R. A. Freeman and J. A. Primbs, “Control Lyapunov functions, new
ideas from an old source,” in Proc. 35th IEEE Conf. Dec. Control, 1996,
vol. 4, pp. 3926–3931.

[47] E. D. Sontag, “A Lyapunov-like characterization of asymptotic con-
trollability,” SIAM J. Control Opt., vol. 21, no. 3, pp. 462–471, 1983.

[48] M. Sznaier, R. Suarez, and J. Cloutier, “Suboptimal control of con-
strained nonlinear systems via receding horizon constrained control
Lyapunov functions,” Int. J. Robust Nonlinear Control, vol. 13, no. 3–4,
pp. 247–259, 2003.

[49] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit MFC,” Int. J. Robust Nonlinear
Control, vol. 18, no. 8, pp. 816–830, 2008.

[50] P. Tøndel and T. A. Johansen, “Complexity reduction in explicit linear
model predictive control,” presented at the 15th IFAC World Congr.
Autom. Control, Barcelona, Spain, Jul. 2002.

[51] A. Bemporad and C. Filippi, “Suboptimal explicit receding horizon
control via approximate multiparametric quadratic programming,” J.
Opt. Theory Appl., vol. 117, no. 1, pp. 9–38, Nov. 2004.

[52] A. Magnani and S. Boyd, “Convex piecewise-linear fitting,”
Opt. Eng. Mar. 2008. [Online]. Available: http://www.stan-
ford.edu/~boyd/cvx_pwl_fitting.html

[53] J. Nocedal and S. J. Wright, Numerical Optimization. New York:
Springer, 1999.

[54] Y. Nesterov and A. Nemirovsky, Interior-Point Polynomial Methods in
Convex Programming. Warrendale, PA: SIAM, 1994.

[55] M. A. Kerblad and A. Hansson, “Efficient solution of second order cone
program for model predictive control,” Int. J. Control, vol. 77, no. 1,
pp. 55–77, Jan. 2004.

[56] C. V. Rao, S. J. Wright, and J. B. Rawlings, “Application of interior
point methods to model predictive control,” J. Opt. Theory Appl., vol.
99, no. 3, pp. 723–757, Nov. 2004.

[57] A. G. Wills and W. P. Heath, “Barrier function based model predictive
control,” Automatica, vol. 40, no. 8, pp. 1415–1422, Aug. 2004.

[58] S. Boyd and B. Wegbreit, “Fast computation of optimal contact forces,”
IEEE Trans. Robot., vol. 23, no. 6, pp. 1117–1132, Dec. 2007.

[59] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. D.
Croz, S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen, “LA-
PACK: A portable linear algebra library for high-performance com-
puters,” in Proc. Supercomput., 1990, pp. 2–11.

[60] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide. Warrendale, PA: SIAM,
1999.

[61] K. C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3: A matlab software
package for semidefinite programming,” Opt. Methods Softw., vol. 11,
no. 12, pp. 545–581, 1999.

[62] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming,” 2006. [Online]. Available: http://www.stan-
ford.edu/~boyd/cvx

[63] K. Ling, B. Wu, and J. Maciejowski, “Embedded model predictive con-
trol (MPC) using a FPGA,” in Proc. 17th IFAC World Congr., Jul. 2008,
pp. 15250–15255.

Yang Wang received the B.A. and M.Eng. degrees
in electrical and information engineering from Cam-
bridge University (Magdalene College), Cambridge,
U.K., in 2006. He is currently pursuing the Ph.D. de-
gree in electrical engineering from Stanford Univer-
sity, Stanford, CA.

His current research interests include convex op-
timization with applications to control, signal pro-
cessing, and machine learning. He is generously sup-
ported by a Rambus Corporation Stanford Graduate
Fellowship.

Stephen P. Boyd (S’82–M’85–SM’97–F’99) re-
ceived the A.B. degree in mathematics (summa cum
laude) from Harvard University, Cambridge, MA, in
1980, and the Ph.D. degree in electrical engineering
and computer science from the University of Cali-
fornia, Berkeley, in 1985.

He is the Samsung Professor of Engineering
with the Information Systems Laboratory, Electrical
Engineering Department, Stanford University,
Stanford, CA. His current research interests include
convex programming applications in control, signal

processing, and circuit design. He is the author of Linear Controller Design:
Limits of Performance (Prentice-Hall, 1991), Linear Matrix Inequalities in
System and Control Theory (SIAM, 1994), and Convex Optimization (Cam-
bridge University Press, 2004).

Dr. Boyd was a recipient of an ONR Young Investigator Award, a Presidential
Young Investigator Award, and the 1992 AACC Donald P. Eckman Award. He
has received the Perrin Award for Outstanding Undergraduate Teaching in the
School of Engineering, and an ASSU Graduate Teaching Award. In 2003, he
received the AACC Ragazzini Education award. He is a Distinguished Lecturer
of the IEEE Control Systems Society.

Authorized licensed use limited to: Stanford University. Downloaded on March 03,2010 at 23:34:55 EST from IEEE Xplore. Restrictions apply.

