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FAST Modular Wind Turbine CAE Tool:

Nonmatching Spatial and Temporal Meshes∗

Michael A. Sprague†, Jason M. Jonkman‡,

and Bonnie J. Jonkman§

National Renewable Energy Laboratory, Golden, Colorado, 80401, USA

In this paper we propose and examine numerical algorithms for coupling time-dependent
multi-physics modules relevant to computer-aided engineering (CAE) of wind turbines.
In particular, we examine algorithms for coupling modules where spatial grids are non-
matching at interfaces and module solutions are time advanced with different time incre-
ments and different time integrators. The new mesh-mapping algorithm supports mapping
between spatial meshes that are highly disparate. Sharing of data between modules is ac-
complished with a predictor-corrector approach, which allows for either implicit or explicit
time integration within each module. Algorithms are presented in a general framework,
but are applied to simple problems that are representative of the systems found in a whole-
turbine analysis. Numerical experiments are used to explore the stability, accuracy, and
efficiency of the proposed algorithms. This work is motivated by an in-progress major revi-
sion of FAST, the National Renewable Energy Laboratory’s (NREL’s) premier aero-elastic
CAE simulation tool. The algorithms described here will greatly increase the flexibility
and efficiency of FAST.

I. Introduction

In this paper we examine the numerical stability and accuracy of several coupling methods for multi-
physics modules relevant to computer-aided engineering (CAE) of wind turbines. Our focus is coupling of
modules that have spatial grids that are, in general, non-matching at module interfaces and have different
time increments and time integrators. The wind turbine system is composed of many physics that have
significantly different characteristic time and length scales. The wind turbine industry relies heavily on CAE
tools for analyzing wind turbine performance, loading, and mechanical stability. Over the past two decades,
the U.S. Department of Energy has sponsored the National Renewable Energy Laboratory’s (NREL’s) devel-
opment of CAE tools for wind turbine analysis. NREL’s premier tool is FAST,1 which is a modular assembly
of advanced CAE codes. FAST is an open-source, professional-grade software package. FAST encompasses
modules for aerodynamics (AeroDyn2, 3), platform hydrodynamics (HydroDyn4, 5) for offshore systems, con-
trol and electrical systems (ServoDyn), and structural dynamics (ElastoDyn). The modules are coupled
to allow for nonlinear analysis of aero-hydro-servo-elastic interactions in the time domain. The FAST tool
enables the analysis of a range of wind turbine configurations, including two- or three-blade horizontal-axis
rotors, pitch or stall regulation, rigid or teetering hub, upwind or downwind rotor, and lattice or tubular
towers. The wind turbine can be modeled on land or offshore on fixed-bottom or floating substructures.

This work is motivated by a major restructuring of the FAST tool suite, which is described in Jonkman.6

FAST-restructuring goals include (1) improving the ability to read, implement, and maintain source code;
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(2) increasing module sharing and shared-code development across the wind community; (3) improving
numerical performance and robustness; and (4) greatly enhancing flexibility and expandability to enable
further developments of functionality without the need to recode established modules. It is envisioned that
the new modularization framework will transform FAST into a powerful, robust, and flexible wind turbine
modeling tool with a large number of developers and a range of modeling fidelities across the aerodynamic,
hydrodynamic, servo-dynamic, and structural-dynamic components.

In general, when modeling wind turbine multi-physics, each physics is represented as a system of non-
linear, time-dependent equations. These equations may be some combination of partial-differential equa-
tions (PDEs), ordinary-differential equations (ODEs), or, more generally, differential and algebraic equa-
tions (DAEs). Here, we restrict our scope to situations where spatial differential operators have been dis-
cretized and only temporal differential operators and/or algebraic constraints remain. This is known as
semi-discretization or the method-of-lines approach in numerical PDE analysis.7

In Gasmi et al.,8 we outlined our chosen taxonomy for the various approaches to multi-physics modeling
and numerical simulation; Figure 1 summarizes that taxonomy. In that paper we focused on loose temporal
coupling of partitioned models, where each module was time integrated separately, but in lock step, and
where information was passed between modules at each time step. For explicit coupling, all modules were
time advanced from known information. For implicit coupling, the time advancement of one or more modules
depends on the data from other modules at the end of a time step. We introduced a predictor-corrector
(PC) approach for implicit coupling. We found that the PC approach was more stable and was, in general,
significantly more accurate than explicit coupling (when one or more modules had an implicit dependence
on other-module solutions). This paper focuses on the modification and extension of the temporal coupling
strategies described in Gasmi et al.8 Namely, we enhance the numerical algorithm to handle non-matching
temporal and spatial meshes. Loose coupling is appealing because it allows modules to use spatial and
temporal grids and ODE/DAE time integrators that are chosen to accurately represent a module’s physics,
and not to accommodate the grid of another module. Further, it allows for the use of existing software
for a particular module. Alternatively, in a tightly coupled system, solutions to all equations must be time
advanced with the same time step and same time integrator; use of existing software is problematic. Readers
are referred to Felippa et al.9 for a discussion of the benefits of loose coupling of partitions over tight
coupling.

Multi−Physics

System

Monolithic

Math Model

Partitioned

Math Model

Tight Coupling

Loose Coupling

Implicitly Coupled

Explicitly Coupled

Figure 1. Schematic illustrating our “taxonomy” for models that describe a multi-physics systems.

In this paper we present our approach for loose coupling of modules where spatial and temporal meshes
are, in general, non-matching. Numerical experiments with simple mechanical models are used to explore
the stability, accuracy, and efficiency of the proposed algorithms. Individual modules are time integrated
with standard explicit time integrators.

II. Formulation

In this section we present a general framework for describing time-dependent partitioned systems that is
adopted by the new modular framework in FAST.6

A. Partitioned-System Representation

We assume that the entire multi-physics system (i.e., the wind turbine) is subdivided into N partitions
as described in Jonkman6 and Gasmi et al.8 Further, we assume that a method-of-lines approach (or
semi-discretization) has been followed, where PDE partition models have been reduced to time-dependent
ODEs, or, more generally, DAEs, through numerical discretization of spatial operators. For example, spatial
differential operators can be approximated through finite-element or finite-difference discretization. Under
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this approach, each partition model can be represented in a general DAE form:

ẋ(i) = X(i)
(

t,x(i),xd,(i), z(i),u(i)
)

, (1)

x
d,(i)

m(i)+1
= Xd,(i)

(

m(i),x(i) ,x
d,(i)

m(i) , z
(i) ,u(i)

)

, (2)

0 = Z(i)
(

t ,x(i) ,xd,(i) , z(i) ,u(i)
)

, (3)

y(i) = Y(i)
(

t ,x(i) ,xd,(i) , z(i),u(i)
)

, (4)

where the superscript i ∈ {1, 2, . . . , N} corresponds to the ith partition; X(i), Xd,(i), Z(i), and Y(i) are multi-
variable vector functions, corresponding to the continuous-state, discrete-state, constraint-state, and output
equations, respectively; x(i), xd,(i), and z(i), are the continuous-state, discrete-state, and constraint-state
dependent variables, respectively; y(i) is the output-vector variable; u(i) is a vector of inputs derived from
outputs (and, in general, inputs) of all coupled partitions. For the discrete states, m(i) denotes the position
in time (t = m(i)∆t(i), for m(i) = {0, 1, . . .}); values are calculated at fixed intervals ∆t(i) and are constant
over m(i)∆t(i) ≤ t < (m(i) +1)∆t(i) (see Jonkman6 for more details). The input to partition i is determined
through the additional implicit input-output relationship

0 = U(i)
(

t ,u(1) , . . . ,u(N) ,y(1) , . . . ,y(N)
)

, (5)

where it is assumed that “mapping” of non-matching inputs and outputs is embodied in the input-output
relationship. Equations (1)–(5) for i ∈ {1, . . . , N} constitute what we consider a partitioned-system repre-

sentation. Simple examples of systems in this partitioned representation can be found in Gasmi et al.8

As described in the Introduction, a goal of the new modularized FAST framework is to allow for non-
matching spatial and temporal meshes. This is aimed at modeling flexibility and simulation efficiency; each
partition can be spatially and temporally refined independently of other partitions. However, partition
coupling can introduce new physics that require additional refinement in time and/or space of the coupled
partitions for stability and/or accuracy requirements. We describe below our methods for non-matching
spatial and temporal meshes.

B. Non-Matching Spatial Meshes: Interface Matching

Here, we focus on partition communication where data transfer occurs through domain interfaces (often
corresponding to the domain boundary), which are zero-, one-, two-, or three-dimensional (0D, 1D, 2D,
or 3D) entities (located in three-dimensional space). For example, a wind turbine blade domain might
be represented as an assembly of 2D-shell and 3D-volume finite elements. Its domain boundary, and its
interface with with other modules, would be surface elements. Alternatively, a blade could be modeled
as an assembly of beam elements, and its interface would be composed of line elements that may interact
with an aerodynamic module, and a point element that may interact with the wind turbine hub module.
Aerodynamic response may be modeled at the blade-interface alone, whereby the model “domain” and
interface are both represented as surface or line elements. For higher fidelity simulations, aerodynamic
response may be modeled with computational fluid dynamics, whereby the fluid domain and its interface
would be represented as volume and surface elements, respectively.

In the new FAST modularization framework, we are confronted potentially with the task of “matching”
extremely disparate meshes. For example, consider the fluid-structure interaction of a simplified submerged
truss structure shown schematically in Figure 2. Here, the hydrodynamic model well describes the true
“wet” boundary of the truss structure. It is composed of line elements for segments between joints and point
elements at joints. These elements take displacement, velocity, and acceleration as their input; lines and
points output distributed and point loads, respectively. The structural model could be simply an assembly of
beam elements with sectional properties that represent the full truss structure. The structural model takes
distributed and point forces as input and outputs displacement, velocity, and acceleration. As shown in the
figure, these domains are highly non-matching.

To facilitate module coupling, we have equipped the FAST code with the interface elements shown in
Figure 3. A spatial mesh consists of a set of nodes, their connectivity (elements), nodal reference locations
(position and orientation), and one or more nodal fields, which include motion, load, and/or scalar quantities.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Hydrodynamic

model

model

Beam structure

Figure 2. A multi-member hydrodynamics partition overlayed on a single-beam structural partition.

Point elements are physically assumed to represent rigid bodies or concentrated (lumped) loads applied on
rigid bodies, Line2 elements are physically assumed to represent beams or distributed loads (per unit length)
applied along beams, surface elements (Tri3 and Quad4) are physically assumed to represent plates/shells
or surface traction loads (per unit area) applied across plates/shells, and volume elements (Tet4, Wedge6,
and Hex8) are physically assumed to represent solids or body loads (per unit volume) applied within solids.
Rotational displacement (orientation) is stored as a direction cosine matrix. Scalar quantities can include,
e.g., color, temperature, or other attributes, independent of motion and load quantities. Details regarding the
computational aspects of creation and manipulation of these entities are described in the FAST programmer’s
handbook.10
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Figure 3. Interface-element types in the modularized FAST framework for coupling partitions.
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Module coupling is embodied in the creation of the “mapped” version of the input-output equation (5)

0 = UM,(i)

(

t ,M1i
u

(

u(1)
)

, . . . ,u(i) , . . . ,MNi
u

(

u(N)
)

,

M1i
y

(

y(1)
)

, . . . ,Mii
y

(

y(i)
)

, . . . ,MNi
y

(

y(N)
)

)

, (6)

where Mji
y and Mji

u are vector functions that map the interface input or output mesh, respectively, of module
j onto the interface input mesh of module i. Equation (6) is written in its most general form. In most cases,
however, it is expected that a partition’s input-output equation will depend only on its input, and the output
from a few, or even one, other partitions. Inputs and outputs are expected to be composed of load, motion,
and reference-position data, as well as scalar quantities.

Our mapping procedures are based on a straight-forward spatial projection between interfaces, and our
guiding principles for transferring loads and motion quantities are

1. Loads (distributed/point forces and moments) are balanced between source and destination meshes.

2. Motion quantities are mapped in a physically relevant manner such that motions are properly preserved;
e.g., rigid-body motions are transferred.

3. Load and motion mappings should be conjugate.

4. When source and destination meshes are identical (same element types and element locations), there
is a one-to-one mapping of load and motion quantities.

It is our goal to create mapping algorithms for all of the entities shown in Figure 3. However, we have cur-
rently created the following algorithms: Point to Point, Line2 to Point, Point to Line2, and Line2 to Line2.
Our mapping approach is related to what is known as consistent interpolation.11, 12 Detailed qualitative de-
scriptions of motion and load mapping are given in Tables 1 and 2, respectively, for Point and Line2 elements;
quantitative theoretical formulations of the algorithms are given in the Appendix. Mapping between indepen-
dent spatial discretizations involves two steps: (1) a mapping search where nearest-neighbor nodes/elements
are found between source and destination meshes and (2) a mapping transfer where nodal field quantities
are transferred to the destination mesh from the mapped nodes of the source mesh. Augmentation of the
source mesh for load quantities of Line2 elements is needed so that loads are properly transferred in the
case of a coarsely discretized source mesh mapped to a finely discretized destination mesh. The mapping
transfers for load quantities of Line2 elements involve lumping distributed source loads to point loads, split-
ting the point loads while transferring to destination loads, and transforming the destination point loads to
distributed loads. This multi-step procedure is used to ensure that the first guiding principle is maintained
even when the source and destination meshes are extremely disparate. (A simple interpolation of distributed
loads would not result in the same total load transfer if the source and destination meshes are not of the
same total length.) All mapping searches are based on the reference configuration of the meshes; as such,
mapping-search procedure between source and destination meshes need only be performed at initialization
and when the reference configuration is changed, or if the intent is for one mesh to move relative to another.
These mappings may violate our fourth guiding principle in the case where a module’s mesh contains multiple
nodes at the same location in space. An example where such a mesh would be appropriate is the case where
a distributed load using Line2 elements is defined with a jump discontinuity. This pitfall can be mitigated
by introducing a small offset between the nodes of the mesh.

C. Non-Matching Temporal Meshes: Time-Step Subcycling

We are interested in solving initial-value problems associated with the partitioned-system representation
given by Eqs. (1)–(5). Time-advancing the partitioned-system solution requires care, as it entails the ma-
nipulation and transfer of data between partitions at each time step. In this section we present in detail the
coupling strategies employed in our numerical investigation. For clarity, we refer to the mathematical model
for a given subsystem as a partition, while the numerical-algorithm implementation for time-advancement
of a partition solution is called a module.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Table 1. Summary description of mapping algorithms for motion and scalar quantities between Point and
Line2 elements (see Figure 3).

Source: Point Source: Line2

Destination:
Point

Algorithm: Point to Point (motion mapping)

Mapping search: For each Point-element node of
the destination mesh, a nearest-neighbor Point-
element node of the source mesh is found in the ref-
erence configuration. A source-mesh Point-element
node may be associated with multiple destination-
mesh Point-element nodes.

Mapping transfer: For each destination-mesh
Point-element node, motion and scalar quantities
are transferred from its mapped source Point-
element node. In the case that the source and
destination Point-element nodes are not coincident
in the current configuration, rotations and mo-
ment arms (including displacements) are used to
augment transferred translations such that overall
motion is maintained.

Algorithm: Line2 to Point (motion mapping)

Mapping search: For each Point-element node of
the destination mesh, a nearest-neighbor Line2 el-
ement of the source mesh is found¶ in the ref-
erence configuration in a manner identical to the
Line2 to Line2 motion-mapping search.

Mapping transfer: For each destination-mesh
Point-element node, motion and scalar quantities
are interpolated (based on projection) and are
transferred from its mapped source Line2 element
in a manner identical to the Line2 to Line2 motion-
mapping transfer.

Destination:
Line2

Algorithm: Point to Line2 (motion mapping)

Mapping search: For each node of the Line2-
element destination mesh, a nearest-neighbor
Point-element node of the source mesh is found in
the reference configuration in a manner identical to
the Point to Point motion-mapping search.

Mapping transfer: For each destination-mesh
Line2-element node, motion and scalar quan-
tities are transferred from its mapped source
Point-element node in a manner identical to
Point to Point motion-mapping transfer.

Algorithm: Line2 to Line2 (motion mapping)

Mapping search: For each Line2-element node of
the destination mesh, a nearest-neighbor Line2 el-
ement of the source mesh is found¶ in the refer-
ence configuration, for which the destination Line2-
element node projects orthogonally onto the source
Line2-element domain. A source-mesh Line2 ele-
ment may be associated with multiple destination-
mesh Line2-element nodes.

Mapping transfer: For each destination-mesh
Line2-element node, motion and scalar quanti-
ties are interpolated (based on projection) and
are transferred from its mapped source Line2
element; orientations are transferred from the
nearest-neighbor node of the mapped source
Line2 element. In the case that the destination
Line2-element node does not lie in its source
Line2-element domain in the current configuration,
interpolated rotations and moment arms (including
displacements) are used to augment transferred
translations such that overall motion is maintained.

¶If a Line2 element is not found, the mapping is aborted with an error.
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Table 2. Summary description of mapping algorithms for load quantities between Point and Line2 elements
(see Figure 3).

Source: Point Source: Line2

Destination:
Point

Algorithm: Point to Point (load mapping)

Mapping search: For each Point-element node of
the source mesh, a nearest-neighbor Point-element
node of the destination mesh is found in the ref-
erence configuration. A destination-mesh Point-
element node may be associated with multiple
source-mesh Point-element nodes.

Mapping transfer: For each source-mesh Point-
element node, forces and moments are transferred
to its mapped destination Point-element node;
forces and moments are superposed when a desti-
nation element has more than one source element.
In the case that the source and destination Point-
element nodes are not coincident in the current
configuration, forces and moment arms (including
displacements) are used to augment transferred
moments such that the overall load balance is
maintained.

Algorithm: Line2 to Point (load mapping)

Mapping search: An augmented Line2-element
source mesh is first formed by splitting the original
Line2-element source mesh at each location where
a destination-mesh Point-element node projects or-
thogonally onto the Line2-element source mesh.
For each node of the augmented Line2-element
source mesh, a nearest-neighbor Point-element
node of the destination mesh is found in the ref-
erence configuration in a manner identical to the
Point to Point load-mapping search.

Mapping transfer: For each Line2 element of
the augmented source mesh, distributed loads
are lumped as point loads at the two nodes (of
the source Line2 element) such that the lumped
loads maintain the overall load balance with the
Line2-element distributed loads; lumped loads
are superposed at nodes shared by multiple
elements in a manner identical to lumping in
the Line2 to Line2 load mapping. The lumped
nodal loads from each Line2-element node of
the augmented source mesh are transferred
to its mapped destination Point-element node in
a manner identical to Point to Point load mapping.

Destination:
Line2

Algorithm: Point to Line2 (load mapping)

Mapping search: For each Point-element node of
the source mesh, a nearest-neighbor Line2 element
of the destination mesh is found‖ in the refer-
ence configuration in a manner identical to the
Line2 to Line2 load-mapping search (but without
augmentation of the source mesh).

Mapping transfer: For each source-mesh Point-
element node, the point load is split based on its
projected location in the mapped destination Line2
element, and is transferred as two point loads at the
destination Line2-element nodes and transformed
to distributed loads in a manner identical to the
Line2 to Line2 load-mapping transfer (but with-
out augmentation and lumping of the source mesh).

Algorithm: Line2 to Line2 (load mapping)

Mapping search: An augmented Line2-element
source mesh is first formed by splitting the original
Line2-element source mesh at each location where
a destination-mesh Line2-element node projects or-
thogonally from the destination mesh. For each
Line2-element node of the augmented source mesh,
a nearest-neighbor Line2 element of the destina-
tion mesh is found‖ in the reference configuration,
for which the source Line2-element node projects
orthogonally onto the destination Line2-element
domain. A destination-mesh Line2 element may
be associated with multiple source-mesh Line2-
element nodes.

Mapping transfer: For each Line2 element of
the augmented source mesh, distributed loads
are lumped as point loads at the two nodes (of
the source Line2 element) such that the lumped
loads maintain the overall load balance with the
Line2-element distributed loads; lumped loads are
superposed at nodes shared by multiple elements.
For each Line2-element node of the augmented
source mesh, the lumped load is split based on
its projected location in the mapped destination
Line2 element, and is transferred as two point loads
at the destination Line2-element nodes. Forces
and moments are superposed when a destination
Line2-element node has more than one source
element. In the case that the source Line2-element
node does not lie in its destination Line2-element
domain in the current configuration, forces and
moment arms (including displacements) are used
to augment transferred moments such that the
overall load balance is maintained. The transferred
point loads are transformed to distributed loads
that maintain the overall load balance.

‖If a Line2 element is not found, the mapping is aborted with an error.
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We consider here a multi-physics system that has been modeled as N coupled partitions. To enhance
modularity, we assume that data may be communicated between modules only at discrete-time stations
at “global” time increments; individual modules may be advanced with shorter increments (i.e., time-step
subcycling). Time advancement of modules in our implicit loose coupling is based on a predictor-corrector
(PC) approach. The approach described here deals with the communication of data between partitions, and
is independent of the underlying ODE or DAE solver employed by each partition. This approach shares
similarities with those described elsewhere.9, 13

Our algorithm can be summarized as follows. Consider the case where all partition solutions are to be
time advanced from tn to tn+1, where tn = n∆tg, n = {0, 1, . . . , nmax} is the global time-step number,
and ∆tg is the constant global time increment. Module inputs (from other modules) are predicted at tn+1

based on polynomial extrapolation, and each module solution is advanced (independently) to tn+1. These
predicted solutions can then be taken as the accepted result (explicit loose coupling), or the step can be
repeated using corrected input values. The approach described here differs from that described in Gasmi et
al.8 in several regards: (i) modules are updated in a “Jacobi” sense as they are updated in parallel, whereas
in Gasmi et al.8 modules are updated in a “Gauss-Seidel” sense14 and each module uses the most up-to-date
information available in its time advance, (ii) module inputs and outputs can be predicted with polynomial
extrapolation of up-to second order rather than only first-order extrapolation, (iii) module solutions can be
time advanced with different time increments, and (iv) modules can interact through non-matching spatial
meshes at their interfaces.

The step-by-step procedure for advancing the solution from tn to tn+1 is described below. We denote this
algorithm PC(jmax), where j is the correction counter and jmax ≥ 0 is the user-defined number of corrector
steps to be taken over each time step. A global time increment, ∆tg, is chosen and the individual-module
time increments are ∆t(i) = ∆tg/n(i), where n(i) is an integer. This choice of time increment values is
designed to accommodate modules with discrete states for which the time increment is fixed.

Known information at start of time step: We assume that the following data are known at time tn:

x(i)
n , ẋ(i)

n , ẋ
(i)

n− 1

n(i)

, . . . , ẋ
(i)
n− m

n(i)
,xd,(i)

n , z(i)n ,y(i)
n ,u(i)

n ,u
(i)
n−1 , . . . ,u

(i)
n−p , (7)

where p is the number of previous inputs (p = 0, 1, or 2), the state-derivative RHS is calculated as

ẋ(i)
n = X(i)

(

tn,x
(i)
n ,xd,(i)

n , z(i)n ,u(i)
n

)

, (8)

for each i ∈ {1, . . . , N}; m indicates the number of previous history points required by the underlying
multi-step DAE- or ODE-solver algorithm; m = 0 for a single-step integrator like Runge-Kutta.

Step 1 (Predict):
(Step 1.a) Let j = 0, where j is the “correction” counter, and predict the input at tn+1 for all partitions
through extrapolation (over constant ∆tg):

u
(i)
n+1,(j−1) = polyfit

(

tn+1,∆tg,u(i)
n ,u

(i)
n−1 , . . . ,u

(i)
n−p

)

, (9)

for each i ∈ {1, . . . , N}, where a subscript in parentheses indicates the correction iteration. Here, extrap-
olation is accomplished by the function polyfit, which is evaluated at the time tn+1. The function polyfit
is based on a pth-order polynomial fit to the p + 1 values that are separated in time by ∆tg, and it has an
O
[

(∆tg)p+1
]

error.

(Step 1.b) Advance the solution of all partitions to yield predicted state and constraint values, i.e.,







x
(i)
n , ẋ

(i)
n , ẋ

(i)

n− 1

n(i)

, . . . , ẋ
(i)
n− m

n(i)
,x

d,(i)
n , z

(i)
n ,

u
(i)
n+1,(j−1) ,u

(i)
n , . . . ,u

(i)
n−p+1 ,X

(i) ,Xd,(i) ,Z(i)







ADV
−−−→

{

x
(i)
n+1,(j) , ẋ

(i)
n+1,(j) ,

x
d,(i)
n+1,(j) , z

(i)
n+1,(j)

}

, (10)

where the notation on the left-hand side explicitly indicates the data accessible to the underlying integrator,
and where X(i), Xd,(i), and Z(i) express access to the continuous-state, discrete-state, and constraint right-
hand sides, respectively; ADV denotes the execution of the underlyingm-step DAE- or ODE-solver algorithm
over a single global time step; n(i) substeps will be taken by module i. In the new FAST modularization,
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data structures are equipped to pass up to p + 1 = 1, 2, or 3 input values to time-advancement routines;

this allows for the routines to use either a single input value at the preferred time (e.g., u
(i)
n+1,(j) for an

implicit integrator; u
(i)
n for an explicit integrator) or to use multiple values to interpolate, e.g., using polyfit,

to preferred time locations (as in high-order Runge-Kutta integrators, or when n(i) > 1 and a module uses
time-step subcycling).

(Step 1.c) Determine the inputs and outputs concurrently for all partitions through a global solve of the
input-output equations at tn+1; i.e., solve

0 = UM,(i)

(

tn+1 ,M
1i
u

(

u
(1)
n+1,(j)

)

, . . . ,u
(i)
n+1,(j) , . . . ,M

Ni
u

(

u
(N)
n+1,(j)

)

,

M1i
y

(

y
(1)
n+1,(j)

)

, . . . ,Mii
y

(

y
(i)
n+1,(j)

)

, . . . ,MNi
y

(

y
(N)
n+1,(j)

)

)

, (11)

y
(i)
n+1,(j) = Y(i)

(

tn+1 ,x
(i)
n+1,(j) ,x

d,(i)
n+1,(j) , z

(i)
n+1,(j) ,u

(i)
n+1,(j)

)

, (12)

for u
(i)
n+1(j), y

(i)
n+1(j) and for all i ∈ {1, . . . , N}. This approach requires, in general, a nonlinear-system solve,

which, for a Newton-Raphson solver, requires the Jacobian of the input-output equations and output-equation
right sides, i.e.,

∂UM,(i)

∂u
(k)
n+1,(j)

,
∂UM,(i)

∂y
(k)
n+1,(j)

,
∂Y(i)

∂u
(i)
n+1,(j)

, (13)

for all i, k ∈ {1, . . . , N}; we note ∂Y(i)

∂y
(k)

n+1,(j)

= 0 for all k ∈ {1, . . . , N} and ∂Y(i)

∂u
(k)

n+1,(j)

= 0 for k 6= i.

If jmax = 0, skip to Step 3.

Step 2 (Correct):
(Step 2.a) Advance the solution to yield corrected states and constraints, i.e.,







x
(i)
n , ẋ

(i)
n , ẋ

(i)

n− 1

n(i)

, . . . , ẋ
(i)
n− m

n(i)
,x

d,(i)
n , z

(i)
n ,

u
(i)
n+1,(j) ,u

(i)
n , . . . ,u

(i)
n−p+1 ,X

(i) ,Xd,(i) ,Z(i)







ADV
−−−→

{

x
(i)
n+1,(j+1) , ẋ

(i)
n+1,(j+1) ,

x
d,(i)
n+1,(j+1) , z

(i)
n+1,(j+1)

}

, (14)

for each i ∈ {1, . . . , N}.

(Step 2.b) Update the outputs and inputs following Step 1.c, yielding y
(i)
n+1,(j+1) and u

(i)
n+1,(j+1), respectively,

for i ∈ {1, . . . , N}.

(Step 2.c) Let j = j + 1. If j < jmax, repeat Step 2. If j = jmax, proceed to Step 3.

Step 3: Save all of the final variables,

x
(i)
n+1 = x

(i)
n+1,(jmax)

, x
d,(i)
n+1 = x

d,(i)
n+1,(jmax)

, z
(i)
n+1 = z

(i)
n+1,(jmax)

,

y
(i)
n+1 = y

(i)
n+1,(jmax)

, u
(i)
n+1 = u

(i)
n+1,(jmax)

, ẋ
(i)
n+1 = ẋ

(i)
n+1,(jmax)

, (15)

for each i ∈ {1, . . . , N}, which completes solution advancement to time tn+1.

III. Illustrative Examples and Results

A. Mapping Examples

In this section we show examples that demonstrate Point to Point and Line2 to Line2 mapping between
non-matching meshes as described in Tables 1 and 2. Figure 4 shows two coupled Point-element meshes in
their reference configurations in three-dimensional (X,Y, Z) space. The mesh in Figure 4(a) is composed of
a single Point element, whose outputs are motions and whose inputs are loads. The mesh in Figure 4(b) is
composed of five Point elements, whose outputs are loads and whose inputs are motions. Figure 5(a) shows
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the Point element moving two units in the positive X direction, with velocity of 0.5 units and no translational
acceleration, and rotating 20◦ about the X axis with rotational velocity of 2 units and rotational acceleration
of 2 units. Figure 5(b) shows how the motions are mapped to the destination Point-element mesh. We note
that the translational velocity is tangential to the line of point elements, and that it linearly increases with
distance from the point that is coincident with the source Point element. Also, the translational acceleration
includes both centripetal and tangential components. Figure 6(b) shows the mesh with five point forces, and
Figure 6(a) shows how those five point forces are mapped to a single point force and a single point moment
on the destination mesh; the net load is balanced between the two meshes.

Figure 7 shows an example of the Line2 to Line2 motion-mapping algorithm described in Table 1. Fig-
ure 7(a) shows the two non-matching meshes in their reference configurations. Figure 7(b) shows how each
node in the destination Line2 mesh is mapped to the source Line2 mesh after the mapping search; interpo-
lated motion values are taken from those mapped locations. Figure 8 shows an example of the Line2 to Line2
load-mapping algorithm described in Table 2. Figure 8(a) shows the two non-matching meshes in their ref-
erence configurations. Figure 8(b) shows how an augmented source Line2 mesh is created by projecting from
each node of the destination Line2 mesh. Note that not all destination-mesh nodes will, or need to, project
onto the source Line2 mesh. Figure 8(c) illustrates how each node of the augmented source Line2 mesh
transfers its lumped load onto the destination mesh, where they are transformed into distributed loads such
that the overall load is balanced.

B. Time-Step Subcycling Examples

1. Uncoupled Models

Figure 9 shows three stand-alone model partitions, each being a variation on the standard damped mechanical
oscillator having some combination of inertial, damping, and stiffness terms. We examine the numerical
solution of Partition 1 coupled to Partition 2 and Partition 1 coupled to Partition 3 below, and test the
time-advancement algorithm described in Section II.C. Details for each partition, including its governing
equation (GE), states, inputs, and outputs, are listed in the figure. We note that the outputs of all three
partitions have direct feed-through of their inputs. Partition 3 has no states, but is defined solely through
its input-output relationship. Dimensionless numerical values for system parameters are listed in Table 3.

Table 3. Parameters associated with the test simulations.

Partition 1 Partition 2 Partition 3

m(1) c(1) k(1) m(2) c(2) k(2) c
(2)
c k

(2)
c m(3)

1.0 0.1 1.0 1.0 0.1 5.0 0.01 1.0 2.0

2. Partition 1 Coupled to Partition 2

We examine here results for Partition 1 coupled to Partition 2 under free-vibration conditions. Coupling is
defined by the following input-output relationships:

u(1) = y(2) , (16)

u(2) =

[

1 0 0

0 1 0

]

y(1) . (17)

The analytically determined benchmark solutions q
(1)
b (t) and q

(2)
b (t) (in a monolithically coupled form)

are shown in Figure 10 for 0 ≤ t ≤ 30 and for initial conditions

q(1)(0) = 1 , q̇(1)(0) = q(2)(0) = q̇(2)(0) = 0 . (18)

We consider numerical solution of the ODEs where Partition 1 is time integrated with either a fourth-order
Adams-Bashforth-Moulton (ABM4) or Runge-Kutta (RK4) time integrator. ABM4 is an explicit multi-step
predictor-corrector algorithm that has an implicit dependence on other-system data (through interaction
forcing). For our numerical tests, the first three time steps are taken to be the benchmark solution for
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Figure 4. Demonstration of the Point to Point mapping algorithm: Reference positions and orientations.
(a) Reference position and orientation of a Point interface element, which has motion output and point
force/moment input. (b) Reference positions and orientations of nodes along an assembly of five Point interface
elements, which have motion inputs and point force/moment outputs.
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(a) Source: Point element
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(b) Destination: Point elements

Figure 5. Demonstration of the Point to Point mapping algorithm: Motion mapping. (a) The Point element
moves two units in the positive X direction with velocity of 0.5 units and no translational acceleration, and
rotates 20◦ about the X axis with rotational velocity of 2 units and rotational acceleration of 2 units. (b) Point
element after motions have been mapped from the Point element to the Point elements: translational velocity
(light-purple arrows), translational acceleration (green arrows), rotational velocity (blue arrows), rotational
acceleration (orange arrows hidden by blue arrows).
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(b) Source: Point elements

Figure 6. Demonstration of the Point to Point mapping algorithm: Load mapping. (b) Nodes of Point elements
show values of forces (turquoise arrows). (a) Destination Point force and moment (red arrow) after mapping
of point forces from assembly of source Point elements. The net force and moment in the destination Point
element is identical to that of the source Point elements.
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Source
Destination

(a) Reference configuration

Source
Destination

(b) Motion transfer

Figure 7. Line2 to Line2 motion mapping: (a) Two Line2 non-matching meshes in their reference configura-
tions; (b) each destination Line-element node is mapped to a source Line2 element, from which motions are
interpolated.

Source
Destination

(a) Reference configuration

Source
Destination

(b) Mesh augmentation

Source
Destination

(c) Lumped-load transfer

Figure 8. Line2 to Line2 load mapping: (a) Two Line2 non-matching meshes in their reference configurations;
(b) augmentation of the source mesh based on destination-mesh node locations (augmented nodes denoted as
squares); (c) transfer of lumped nodal loads from the augmented source mesh to the destination mesh.
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k(1)

c(1)

m(1)

q(1)(t)

f(1)(t)

GE : m(1)q̈(1) + c(1)q̇(1) + k(1)q(1) = f (1)

x(1) =
[

q(1) q̇(1)
]T

, xd,(1) = ∅ , z(1) = ∅ ,

u(1) =
[

f (1)
]

,

y(1) =
[

q(1) q̇(1) q̈(1)
]T

=

[

x(1)

(

u(1) −
[

k(1) c(1)
]

x(1)
)

/m(1)

]

(a) Partition 1

k(2)k(2)
c

c(2)
c(2)c

m(2)

q(2)c (t) q(2)(t)

f(2)(t)

GE : m(2)q̈(2) +
(

c(2) + c(2)c

)

q̇(2) +
(

k(2) + k(2)c

)

q(2) =

c(2)c q̇(2)c + k(2)c q(2)c

x(2) =
[

q(2) q̇(2)
]T

, xd,(2) = ∅ , z(2) = ∅ ,

u(2) =
[

q(2)c q̇(2)c

]T

,

y(2) =
[

f (2)
]

=
[

k
(2)
c c

(2)
c

] (

x(2) − u(2)
)

(b) Partition 2

m(3)

q̈(3)c (t)

f(3)(t) GE : m(3)q̈(3)c = −f (3)

x(3) = ∅ , xd,(3) = ∅ , z(3) = ∅ ,

u(3) =
[

q̈(3)c

]

, y(3) =
[

f (3)
]

= −u(3)/m(3)

(c) Partition 3

Figure 9. Schematics of three uncoupled model partitions. Governing equations (GEs), states, constraints,
inputs, and outputs are shown.

error-free initialization of ABM4. In productions runs, a single-step integrator (e.g., Runge-Kutta) would
be used to initialize the multi-step integrator. Extrapolation and interpolation via the function polyfit is
accomplished with p = 2. Partition 2 is time integrated with ABM4.

Numerical simulations with the uncoupled Partition 1 and Partition 2 and ABM4 integration showed that

the critical time increments for numerically stable solutions were ∆t
(1)
c ≈ 0.92 and ∆t

(2)
c ≈ 0.37, respectively;

Partition 2 is significantly more stiff than Partition 1 (k(2)/k(1) = 5), and thus has a more restrictive critical
time increment. For lock-step coupled simulations (∆t(1) = ∆t(2); n(1) = n(2) = 1, PC(1)), the critical time

increment was the same as ∆t
(2)
c . However, for simulations with time-step subcycling with n(1) = 1 and

n(2) = 3, the global critical time increment was about 0.77. For these subcycling ratios, ∆t(1) = ∆tg = 0.77,
∆t(2) = ∆t(1)/3 = 0.26. Thus, with time-step subcycling, stable solutions could be achieved where each
model was time advanced with increments close to their uncoupled limits.

Figure 11 shows normalized root-mean-square (RMS) error of the numerical solutions as a function of
global time increment for the displacement of Partition 1 and Partition 2 over the time interval 0 ≤ t ≤ 30.
Normalized RMS error for nmax numerical response values qn were calculated as

ǫ (q) =

√

∑nmax

k=0 [qk − qb(tk)]
2

∑nmax

k=0 [qb(tk)]
2 . (19)

Also shown in Figure 11 are dotted lines indicating third-orderO
(

∆t3
)

and fourth-orderO
(

∆t4
)

convergence
rates. Figure 11(a) shows error for lock-step time integration. For explicit coupling, PC(0), only third-order
accuracy is achieved. This is because the interaction terms were extrapolated with third-order accuracy.
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Figure 10. Benchmark solutions for Partition 1 and Partition 2 displacements when coupled.

However, with one correction per time step, PC(1), the fourth-order accuracy of the underlying algorithms
is restored. Figure 11(b) shows error with time-step subcycling. Here, for both PC(0) and PC(1), only
third-order convergence is obtained, though PC(1) provides significantly more accuracy. These data are
limited to third-order convergence because, while Partition 2 is being updated at subintervals, it is relying
on interpolated or extrapolated data from Partition 1. While time-step subcycling allowed for individual
models to run with larger time increments, overall accuracy was roughly equivalent to that for PC(0) with
lock-step time integration, while time-step subcycling was less accurate than lock-step integration with
PC(1). Further, for a given ∆tg, time-step subcycling requires 3 times more ABM4 time-step updates than
in lock-step integration.
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Figure 11. Normalized RMS error of q(1)(t) (solid lines) and q(2)(t) (dashed lines) displacement histories for
Partition 1 coupled to Partition 2 for 0 ≤ t ≤ 30. Partitions 1 and 2 were both time integrated with ABM4.
Dotted lines show ideal third-order and fourth-order convergence rates.

Figure 12 shows normalized RMS for RK4 integration of Partition 1 and ABM4 integration of Partition 2.

Here, the critical time increment for stable integration of the uncoupled Partition 1 was ∆t
(1)
c ≈ 2.9. Again,

lock-step time integration of the coupled system was limited to ∆t
(2)
c ≈ 0.37, while time integration with time-

step subcycling with n(1) = 1 and n(2) = 8 allowed stable time integration with ∆tg = 1.9. Figure 12 shows
that for both lock-step and time-step-subcycling integration, numerical solutions are limited to third-order
accuracy. This is because the RK4 integration is limited by the accuracy of extrapolation or interpolation of
interaction terms. Going from PC(0) to PC(1) decreases the error, but does not affect the convergence rate.
Here, while time-step subcycling allowed for individual models to run with larger time increments, overall
accuracy was largely unchanged, while, for a given ∆tg, time-step subcycling requires 8 times more ABM4
time-step updates than in lock-step integration.
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Figure 12. Normalized RMS error of q(1)(t) (solid lines) and q(2)(t) (dashed lines) displacement histories for
Partition 1 coupled to Partition 2 for 0 ≤ t ≤ 30. Partitions 1 and 2 were time integrated with RK4 and ABM4,
respectively. Dotted lines show ideal third-order and fourth-order convergence rates.

3. Partition 1 Coupled to Partition 3

We examine here results for Partition 1 coupled to Partition 3 under free-vibration conditions. Coupling is
defined by the following input-output relationships:

u(1) = y(3) , (20)

u(3) =
[

0 0 1
]

y(1) . (21)

This coupling is effectively that of a rigid-body connection between the two masses. As such, rigorous
solution of the input-output equations is necessary for numerical stability and accuracy.

The analytically determined benchmark solution q
(1)
b (t) (in a monolithically coupled form) is shown in

Figure 13 for 0 ≤ t ≤ 30 and for initial conditions

q(1)(0) = 1 , q̇(1)(0) = 0 . (22)

Because Partition 3 is a pure inertial element, there is no associated stiffness or critical time increment.
Numerical simulations were performed with ABM4 integration of Partition 1 and Partition 3 was calculated
in lock step. Figure 14 shows normalized RMS error of q(1)(t) with PC(0) and PC(1). As expected, only
third-order accuracy is achieved with PC(0) due to the accuracy limitation of our extrapolation. However,
PC(1) achieves desired fourth-order accuracy, albeit PC(1) requires twice as much computational effort
compared to PC(0) for a given time increment.
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Figure 13. Benchmark solution for Partition 1 when coupled to Partition 3.
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Figure 14. Normalized RMS error of q(1)(t) displacement histories for Partition 1 coupled to Partition 3
calculated with ABM4 (Partition 1) for 0 ≤ t ≤ 30. Dotted lines show ideal third-order and fourth-order
convergence rates.

IV. Conclusion and Future Work

In this paper we described methods for numerical time integration of mechanical systems composed
of loosely coupled partitions in the FAST modular wind turbine CAE tool. The methods described are
appropriate for time integration of modules that have non-matching spatial and temporal grids. We described
a suite of element types for defining the discrete spatial interface of a module, which is required to interact
with other modules. We provided detailed descriptions of the load and motion algorithms between 2-node
line elements and point elements. A significant feature of these algorithms is in their ability to couple
highly disparate spatial meshes. For non-matching temporal grids, we introduced a time-step subcycling
algorithm with a predictor-corrector option, which allows each module to be time advanced with a time
increment close to is uncoupled “preferred” increment. Numerical experiments showed that partitions with
significantly different critical increments could be stably integrated with large sub-cycling ratios. However,
the most accuracy was achieved when modules were time integrated in lock step. Future work includes
finalization of the mapping algorithms for all of the element types shown in Figure 3. We will also examine
the combined use of our algorithms for more complex systems, where non-matching spatial and temporal
grids are present. Future work will also study the numerical accuracy, stability, and efficiency of other
coupling examples.

Appendix: Equations for Mapping Algorithms

A. Introduction

This appendix describes in detail the theoretical formulation of the mapping algorithms for Point to Point,
Line2 to Line2, Point to Line2, and Line2 to Point, based on the algorithms outlined in Tables 1 and 2. The
mapping search algorithms are presented first in Sections B though D, and are followed by mapping transfer
algorithms in Sections E through G. Separate subsections are given for the algorithms of motion and scalar
quantities and the algorithms of load quantities. Please note the following conventions used throughout this
appendix:

• All vectors are 3×1 and are denoted with an over arrow. Variables without an over arrow denote
scalars or 3×3 matrices.

• All vectors are expressed in the global inertial-frame coordinate system (not in a local coordinate
system).

• All nodal position and motion quantities are absolute (expressed in the global inertial frame), except for
the translational displacements of a node, which are expressed relative to the node reference position.

• All nodal rotations are expressed as 3×3 direction cosine matrices (containing the three components of
each of three orthogonal unit vectors of a local coordinate system) and large rotations are permitted
without a loss of accuracy (no small-angle assumptions are employed). While direction cosine matrices
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take nine dependent values to express three independent angles, direction cosine matrices are chosen
to express nodal rotations because (1) they uniquely represent a given rotation unlike other rotational
parameterizations, such as Euler angles, which depend on the rotation sequence, and (2) they can be
used directly through matrix multiplication in the mapping transfer without computationally expensive
trigonometric operations. All direction cosine matrices are absolute and orthonormal, and are defined
such that premultiplication with a vector expressed in the global inertial-frame transforms the vector
to a local coordinate system. Because a direction cosine matrix is orthonormal, the matrix inverse is
the transpose of the matrix, so, premultiplication of the matrix-transpose with a vector expressed in a
local coordinate system transforms the vector to the global inertial frame.

• No Line2 elements of the destination or source meshes can connect collocated nodes to avoid division-
by-zero errors in the mapping-search equations; see Eqs. (25), (26), and (28) below.

Notation

~aD and ~aS : Translational acceleration (absolute) of a node of the destination and source meshes, respec-
tively

d: distance

~FD and ~FS : Concentrated (lumped) force of a node of the destination and source meshes, respectively

~fD and ~fS : Distributed force (per unit length) of a node of a Line2 element of the destination and source
meshes, respectively

I: Identity matrix

ℓ
D

and ℓ
S
: Normalized location within a Line2 element of the destination and source meshes, respec-

tively

~MD and ~MS : Concentrated (lumped) moment of a node of the destination and source meshes, respectively

~mD and ~mS : Distributed moment (per unit length) of a node of a Line2 element of the destination and
source meshes, respectively

~pD and ~pS : Displaced position (absolute) of a node of the destination and source meshes, respectively

~pDR and ~pSR: Reference position (absolute) of a node of the destination and source meshes, respectively

SD and SS : Scalar quantity of a node of the destination and source meshes, respectively

~uD and ~uS: Translational displacement (relative) of a node of the destination and source meshes, respec-
tively

~vD and ~vS : Translational velocity (absolute) of a node of the destination and source meshes, respectively

XY Z: Axes of the global inertial frame

~αD and ~αS : Rotational acceleration (absolute) of a node of the destination and source meshes, respec-
tively

θD and θS : Displaced rotation (absolute orientation; direction cosine matrix) of a node of the destination
and source meshes, respectively

θDR and θSR: Reference rotation (absolute orientation; direction cosine matrix) of a node of the destination
and source meshes, respectively

~ωD and ~ωS : Rotational velocity (absolute) of a node of the destination and source meshes, respectively
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B. Point to Point Mapping Search

1. Motion and Scalar Quantities

For each Point-element node of the destination mesh, a nearest-neighbor Point-element node of the source
mesh is found in the reference configuration. A source-mesh Point-element node may be associated with
multiple destination-mesh Point-element nodes. That is, for each node of the destination mesh, the node
of the source mesh that is the minimum distance away is found, calculated as distance in the reference
configuration, d ≥ 0, where

d =
∥

∥~pSR − ~pDR
∥

∥

2
, (23)

‖ · ‖2 denotes the vector two-norm (vector magnitude), and ~pDR and ~pSR contain the X,Y, Z coordinates
(absolute, relative to the global inertial-frame origin) of a node of the destination mesh and source mesh in
its reference (undisplaced) position, respectively.

2. Load Quantities

For each Point-element node of the source mesh, a nearest-neighbor Point-element node of the destination
mesh is found in the reference configuration. A destination-mesh Point-element node may be associated
with multiple source-mesh Point-element nodes. That is, for each node of the source mesh, the node of the
destination mesh that is the minimum distance away is found, calculated as distance d ≥ 0 from Eq. (23)
above, is found in the reference configuration.

C. Line2 to Line2 Mapping Search

1. Motion and Scalar Quantities

For each Line2-element node of the destination mesh, a nearest-neighbor Line2 element of the source mesh is
found in the reference configuration, for which the destination Line2-element node projects orthogonally onto
the source Line2-element domain. A source-mesh Line2 element may be associated with multiple destination-
mesh Line2-element nodes. That is, for each node of the destination mesh, an orthogonal projection is made
onto all possible Line2 elements of the source mesh and the Line2 element of the source mesh that is the
minimum distance away is found, calculated as distance in the reference configuration, d ≥ 0, where

d =
∥

∥

∥
~pDR − ~pSR

1

(

1− ℓ
S
)

− ~pSR
2 ℓ

S
∥

∥

∥

2
. (24)

Here, subscripts 1 and 2, respectively, denote the 1st and 2nd nodes of the Line2 element of the source mesh,

0 ≤ ℓ
S
≤ 1 is the normalized location within the Line2 element of the source mesh where the orthogonal

projection intersects, where

ℓ
S
=

(

~pSR
2 − ~pSR

1

)

·
(

~pDR − ~pSR
1

)

(

~pSR
2 − ~pSR

1

)

·
(

~pSR
2 − ~pSR

1

) , (25)

and ~pSR
1

(

1− ℓ
S
)

+ ~pSR
2 ℓ

S
is the absolute position of the intersection point in the reference configuration.

(Only projections between and including a Line2 element’s two nodes are considered.) The terms
(

1− ℓ
S
)

and ℓ
S
in Eq. (24) are the linear shape functions of the 1st and 2nd nodes, respectively, of the Line2 element

of the source mesh evaluated at the intersection point. In Eq. (25), · denotes the vector dot product. If there
is no Line2 element of the source mesh that a given node of the destination mesh projects onto, whereby

0 ≤ ℓ
S
≤ 1, the mapping is aborted with an error.

2. Load Quantities

An augmented Line2-element source mesh is first formed by splitting the original Line2-element source mesh
at each location where a destination-mesh Line2-element node projects orthogonally from the destination
mesh. That is, for each Line2 element of the destination mesh and for both nodes of that element, a plane
normal to the element and including the node is formed and all possible points where Line2 elements of the
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source mesh intersect this plane are found in the reference configuration. The normalized locations within a

Line2 element of the source mesh where this plane is intersected, 0 < ℓ
S
< 1, are given by

ℓ
S
=

(

~pDR
2 − ~pDR

1

)

·
(

~pDR − ~pSR
1

)

(

~pDR
2 − ~pDR

1

)

·
(

~pSR
2 − ~pSR

1

) . (26)

The augmented source mesh is formed by introducing a new node in the original source mesh at each

intersection point with reference position ~pSR
1

(

1− ℓ
S
)

+ ~pSR
2 ℓ

S
and splitting the associated element in the

original source mesh in two. (Only intersections between a Line2 element’s two nodes are considered. To
avoid introducing collocated nodes, new nodes are not introduced at the original node reference positions,

ℓ
S
= 0 or ℓ

S
= 1.) No new nodes are introduced if no Line2 element of the source mesh intersect this plane.

For each Line2-element node of the augmented source mesh, a nearest-neighbor Line2 element of the
destination mesh is found in the reference configuration, for which the source Line2-element node projects
orthogonally onto the destination Line2-element domain. A destination-mesh Line2 element may be associ-
ated with multiple source-mesh Line2-element nodes. That is, for each node of the augmented source mesh,
an orthogonal projection is made onto all possible Line2 elements of the destination mesh and the Line2
element of the destination mesh that is the minimum distance away is found, calculated as distance in the
reference configuration, d ≥ 0, where

d =
∥

∥

∥
~pSR − ~pDR

1

(

1− ℓ
D
)

− ~pDR
2 ℓ

D
∥

∥

∥

2
, (27)

and where 0 ≤ ℓ
D

≤ 1 is the normalized location within the Line2 element of the destination mesh where
the orthogonal projection intersects, which is calculated as

ℓ
D

=

(

~pDR
2 − ~pDR

1

)

·
(

~pSR − ~pDR
1

)

(

~pDR
2 − ~pDR

1

)

·
(

~pDR
2 − ~pDR

1

) . (28)

(Only projections between and including a Line2 element’s two nodes are considered.) If there is no Line2
element of the destination mesh that a given node of the augmented source mesh projects onto, whereby

0 ≤ ℓ
D
≤ 1, the mapping is aborted with an error.

D. Point to Line2 and Line2 to Point Mapping Search

1. Motion and Scalar Quantities

In the Point to Line2 mapping search for motion and scalar quantities, for each node of the Line2-element
destination mesh, a nearest-neighbor Point-element node of the source mesh is found in the reference con-
figuration in a manner identical to the Point to Point motion-mapping search (see Section B.1).

In the Line2 to Point mapping search for motion and scalar quantities, for each Point-element node of the
destination mesh, a nearest-neighbor Line2 element of the source mesh is found in the reference configuration
in a manner identical to the Line2 to Line2 motion-mapping search (see Section C.1).

2. Load Quantities

In the Point to Line2 mapping search for load quantities, for each Point-element node of the source mesh, a
nearest-neighbor Line2 element of the destination mesh is found in the reference configuration in a manner
identical to the Line2 to Line2 load-mapping search (see Section C.2, but without augmentation of the source
mesh).

In the Line2 to Point mapping search for load quantities, an augmented Line2-element source mesh is
first formed by splitting the original Line2-element source mesh at each location where a destination-mesh
Point-element node projects orthogonally onto the Line2-element source mesh. That is, for each node of
the destination mesh, an orthogonal projection is made onto all possible Line2 elements of the source mesh
in the reference configuration. The normalized locations within a Line2 element of the source mesh where

the orthogonal projection intersects, 0 < ℓ
S

< 1, are given by Eq. (25). The augmented source mesh
is formed by introducing a new node in the original source mesh at each intersection point with reference
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position ~pSR
1

(

1− ℓ
S
)

+~pSR
2 ℓ

S
and splitting the associated element in the original source mesh in two. (Only

projections between a Line2 element’s two nodes are considered. To avoid introducing collocated nodes, new

nodes are not introduced at the original node reference positions, ℓ
S
= 0 or ℓ

S
= 1.) No new nodes are

introduced if there are no orthogonal projections onto a Line2 element of the source mesh.
For each node of the augmented Line2-element source mesh, a nearest-neighbor Point-element node of

the destination mesh is found in the reference configuration in a manner identical to the Point to Point
load-mapping search (see Section B.2).

E. Point to Point Mapping Transfer

1. Motion and Scalar Quantities

For each destination-mesh Point-element node, motion and scalar quantities are transferred from its mapped
source Point-element node. In the case that the source and destination Point-element nodes are not coincident
in the current configuration, rotations and moment arms (including displacements) are used to augment
transferred translations such that overall motion is maintained.

The mapping transfer of translational displacement is given by

~uD = ~uS +
[

I −
(

θS
)T

θSR
]

(

~pSR − ~pDR
)

, (29)

where ~uD and ~uS are 3 × 1 vectors containing the X,Y, Z translational displacements (relative to the node
reference position) of a node of the destination mesh and mapped node of the source mesh, respectively,a I
is the 3×3 identity matrix, θSR is the reference rotation (direction cosine matrix) of the mapped node of the
source mesh, θS is the displaced rotation (direction cosine matrix) of the mapped node of the source mesh,
and T denotes the transpose of a matrix. The second term on the right-hand side (RHS) of Eq. (29) represents
the translation displacement of a node of the destination mesh due to rigid-body rotation of the mapped
node of the source mesh from its reference orientation and is zero if the reference and displaced rotations of

the mapped node of the source mesh are coincident (no rotational displacement), whereby
(

θS
)T

θSR = I,
or if the reference positions of the node of the destination mesh and mapped node of the source mesh are
coincident, whereby ~pDR = ~pSR.

The mapping transfer of displaced rotation is given by

θD = θDR
(

θSR
)T

θS , (30)

where θDR is the reference rotation (direction cosine matrix) of a node of the destination mesh and θD is
the displaced rotation (direction cosine matrix) of that node. The node of the destination mesh need not
have the same reference orientation of the mapped node of the source mesh, but the node of the destination
mesh will still rotate the same amount as the mapped node of the source mesh (as a rigid body). The node
of the destination mesh is not rotated if the reference and displaced rotations of the mapped node of the
source mesh are coincident (no rotational displacement).

The mapping transfer of translational and rotation velocities is given by

~vD = ~vS +
[(

~pSR + ~uS
)

−
(

~pDR + ~uD
)]

× ~ωS , (31)

~ωD = ~ωS , (32)

where ~vD and ~vS are the translational velocities of a node of the destination mesh and mapped node of the
source mesh, respectively, and ~ωD and ~ωS are the rotational velocities of a node of the destination mesh
and mapped node of the source mesh, respectively, and × denotes the vector cross product. The second
term on the RHS of Eq. (31) represents the translation velocity of a node of the destination mesh due to
the displaced offset between the node of the destination mesh and mapped node of the source mesh and the
rotational velocity of the mapped node of the source mesh.b The node of the destination mesh will rotate
the same as the mapped node of the source mesh (as a rigid body).

aThe absolute displaced positions of a node of the destination and source meshes, respectively, are related to the reference
position and relative translational displacement of the node by ~pD = ~pDR + ~uD and ~pS = ~pSR + ~uS , respectively.

bRearrangement of Eq. (29) reveals that
(

~pSR + ~uS
)

−
(

~pDR + ~uD
)

=
(

θS
)T

θSR
(

~pSR − ~pDR
)

, so, the term involving
translational displacements of the nodes of the destination and source meshes in Eq. (31) and other mapping-transfer equations
could alternatively be written in terms of rotations of the source mesh.
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The mapping transfer of translational and rotation accelerations is given by

~aD = ~aS +
[(

~pSR + ~uS
)

−
(

~pDR + ~uD
)]

× ~αS + ~ωS ×
{[(

~pSR + ~uS
)

−
(

~pDR + ~uD
)]

× ~ωS
}

, (33)

~αD = ~αS , (34)

where ~aD and ~aS are the translational accelerations of a node of the destination mesh and mapped node of
the source mesh, respectively, and ~αD and ~αS are the rotational accelerations of a node of the destination
mesh and mapped node of the source mesh, respectively. The second term on the RHS of Eq. (33) represents
the tangential acceleration of a node of the destination mesh due to the displaced offset between the node
of the destination mesh and mapped node of the source mesh and the rotational acceleration of the mapped
node of the source mesh. The third term on the RHS of Eq. (33) represents the centripetal acceleration of
a node of the destination mesh due to the displaced offset between the node of the destination mesh and
mapped node of the source mesh and the rotational velocity of the mapped node of the source mesh. The
node of the destination mesh will rotate the same as the mapped node of the source mesh (as a rigid body).

The mapping transfer of scalar quantities is given by

SD = SS , (35)

where SD and SS are arrays of one or more scalar quantities of a node of the destination mesh and mapped
node of the source mesh, respectively.

2. Load Quantities

For each source-mesh Point-element node, forces and moments are transferred to its mapped destination
Point-element node; forces and moments are superposed when a destination element has more than one
source element. In the case that the source and destination Point-element nodes are not coincident in the
current configuration, forces and moment arms (including displacements) are used to augment transferred
moments such that the overall load balance is maintained.

The mapping transfer of concentrated (lumped) forces and moments,

~FD =
∑

~FS , (36)

~MD =
∑

{

~MS +
[(

~pSR + ~uS
)

−
(

~pDR + ~uD
)]

× ~FS
}

, (37)

where ~FS and ~FD are the concentrated forces of a node of the source mesh and mapped node of the
destination mesh, respectively, and ~MS and ~MD are the concentrated moments of a node of the source mesh
and mapped node of the destination mesh, respectively. The second term on the RHS of Eq. (37) represents
the additional moment of the mapped node of the destination mesh due to the displaced offset (moment
arm) between the node of the source mesh and mapped node of the destination mesh and the concentrated
force of the node of the source mesh.c The summations in Eqs. (36) and (37) denote the superposition of
loads when a destination element has more than one mapped source element.

F. Line2 to Line2 Mapping Transfer

1. Motion and Scalar Quantities

For each destination-mesh Line2-element node, motion and scalar quantities are interpolated (based on
projection) and are transferred from its mapped source Line2 element; orientations are transferred from the
nearest-neighbor node of the mapped source Line2 element. In the case that the destination Line2-element
node does not lie in its source Line2-element domain in the current configuration, interpolated rotations
and moment arms (including displacements) are used to augment transferred translations such that overall
motion is maintained.

The mapping transfer of all motion and scalar quantities, except displaced rotation, via interpolation
based on the projected location in the source Line2 element, is given by

(

·
)

=
(

·
)

1

(

1− ℓ
S
)

+
(

·
)

2
ℓ
S
, (38)

cWhile it is rare for a single mesh to contain both motion and load quantities, the mapping transfer for moments uses both
load and translational displacement quantities. In the actual source-code implementation, this is achieved by sending multiple
meshes (one with load quantities and another with motion quantities) to the mapping-transfer routine for load quantities.
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where the
(

·
)

on the left-hand side (LHS) of Eq. (38) is a placeholder for ~uD, ~vD, ~ωD, ~aD, ~αD, or SD from

the LHS of Eqs. (29) and (31) through (35), respectively, and
(

·
)

on the RHS of Eq. (38) is a placeholder for
the corresponding RHS of Eqs. (29) and (31) through (35), with subscripts 1 and 2, respectively, denoting

the 1st and 2nd nodes of the mapped Line2 element of the source mesh. ℓ
S
used in Eq. (38) was solved via

Eq. (25) from the Line2 to Line2 mapping search for motion and scalar quantities (see Section C.1). The

motion quantities are not interpolated if the projection lies on a node, whereby ℓ
S
= 0 or ℓ

S
= 1 .

A direction cosine matrix cannot be interpolated (because the resulting matrix would no longer be
orthonormal), so instead, the displaced rotations are transferred from the nearest-neighbor node of the
mapped source Line2 element per Eq. (39), which is based on Eq. (30), with NINT

(

·
)

denoting the nearest-
integer function.d

θD =







θDR
(

θSR
1

)T
θS1 , for NINT

(

ℓ
S
)

= 0 ,

θDR
(

θSR
2

)T
θS2 , for NINT

(

ℓ
S
)

= 1 .
(39)

2. Load Quantities

The fields of the new nodes of the augmented source mesh are first populated via interpolation of the fields
from the original nodes of the source mesh. That is, Eq. (38) (where

(

·
)

is a placeholder) is used to calculate

~uS , ~fS , and ~mS at the new nodes of the augmented source mesh, where ℓ
S
was solved via Eq. (26) from

the Line2 to Line2 mapping search for load quantities (see Section C.2), ~fS is the distributed force (per unit
length) of a node of a Line2 element of the source mesh, and ~mS is the distributed moment (per unit length)
of a node of a Line2 element of the source mesh.

For each Line2 element of the augmented source mesh, distributed loads are lumped as point loads at the
two nodes (of the source Line2 element) such that the lumped loads maintain the overall load balance with
the Line2-element distributed loads; lumped loads are superposed at nodes shared by multiple elements.
For each Line2-element node of the augmented source mesh, the lumped load is split based on its projected
location in the mapped destination Line2 element, and is transferred as two point loads at the destination
Line2-element nodes. Forces and moments are superposed when a destination Line2-element node has more
than one source element. In the case that the source Line2-element node does not lie in its destination
Line2-element domain in the current configuration, forces and moment arms (including displacements) are
used to augment transferred moments such that the overall load balance is maintained. The transferred
point loads are transformed to distributed loads that maintain the overall load balance.

The lumping of distributed forces and moments to concentrated point forces and moments at the two
nodes of each Line2 element of the augmented source mesh is given by

~FS
1 =

∑

∥

∥~pSR
2 − ~pSR

1

∥

∥

2

6

(

2~fS
1 + ~fS

2

)

, (40)

~FS
2 =

∑

∥

∥~pSR
2 − ~pSR

1

∥

∥

2

6

(

~fS
1 + 2~fS

2

)

, (41)

~MS
1 =

∑

∥

∥~pSR
2 − ~pSR

1

∥

∥

2

6

{

2~mS
1 + ~mS

2 +
[(

~pSR
2 + ~uS

2

)

−
(

~pSR
1 + ~uS

1

)]

×

(

~fS
1 + ~fS

2

2

)}

, (42)

~MS
2 =

∑

∥

∥~pSR
2 − ~pSR

1

∥

∥

2

6

{

~mS
1 + 2~mS

2 −
[(

~pSR
2 + ~uS

2

)

−
(

~pSR
1 + ~uS

1

)]

×

(

~fS
1 + ~fS

2

2

)}

, (43)

where the second term on the RHS of Eqs. (42) and (43) represents the additional lumped moment of a node
of the source mesh due to the distributed force. As shown by Eqs. (40)–(43), both nodal distributed loads of
a given Line2 element contribute to the lumped load of each node of that element. The summations in Eqs.
(40)–(43) denote the superposition of loads when a given node of the source mesh is connected to multiple
elements. Equations (40)–(43) were derived by integrating the nodal linear shape functions multiplied by
the distributed loads (including moment arms for moments) along each source element.

dFuture work may consider deriving three independent rotational parameters from the direction cosine matrix of each node
of the mapped Line2 element of the source mesh, interpolating the rotational parameters, forming a direction cosine matrix
from the interpolated rotational parameters, and transferring this direction cosine matrix to the destination node.
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The mapping transfer of lumped load quantities via splitting based on the projected location in the
mapped destination Line2 element is given by

(

·
)

1
=
∑

(

·
)

(

1− ℓ
D
)

, (44)

(

·
)

2
=
∑

(

·
)

ℓ
D
, (45)

where
(

·
)

on the LHS of Eqs. (44) and (45) is a placeholder for ~FD and ~MD from the LHS of Eqs. (36)

and (37), respectively, and
(

·
)

on the RHS of Eqs. (44) and (45) is a placeholder for the corresponding
RHS of Eqs. (36) and (37) (but without the summations), with subscripts 1 and 2, respectively, denoting

the 1st and 2nd nodes of the mapped Line2 element of the destination mesh. ℓ
D

used in Eqs. (44) and (45)
was solved via Eq. (28) from the Line2 to Line2 mapping search for load quantities (see Section C.2). The

load quantities are not split if the projection lies on a node, whereby ℓ
D

= 0 or ℓ
D

= 1. The summations in
Eqs. (44) and (45) denote the superposition of loads when a destination element has more than one mapped
source element.

To transform the lumped nodes of the destination mesh to distributed loads,

~FD
1 =

∑

∥

∥~pDR
2 − ~pDR

1

∥

∥

2

6

(

2~fD
1 + ~fD

2

)

, (46)

~FD
2 =

∑

∥

∥~pDR
2 − ~pDR

1

∥

∥

2

6

(

~fD
1 + 2~fD

2

)

, (47)

~MD
1 =

∑

∥

∥~pDR
2 − ~pDR

1

∥

∥

2

6

{

2~mD
1 + ~mD

2 +
[(

~pDR
2 + ~uD

2

)

−
(

~pDR
1 + ~uD

1

)]

×

(

~fD
1 + ~fD

2

2

)}

, (48)

~MD
2 =

∑

∥

∥~pDR
2 − ~pDR

1

∥

∥

2

6

{

~mD
1 + 2~mD

2 −
[(

~pDR
2 + ~uD

2

)

−
(

~pDR
1 + ~uD

1

)]

×

(

~fD
1 + ~fD

2

2

)}

, (49)

are solved inversely, where ~fD is the distributed force (per unit length) of a node of a Line2 element of
the destination mesh, and ~mD is the distributed moment (per unit length) of a node of a Line2 element
of the destination mesh. Akin to Eqs. (40)–(43) for the source mesh, Eqs. (46)–(49) express the lumping
of distributed forces and moments to concentrated point forces and moments at the two nodes of each
Line2 element of the destination mesh. (As implied by the summations in Eqs. (46)–(49), which denote
the superposition of loads when a given node of the destination mesh is connected to multiple elements,
the inverse of Eqs. (46)–(49) depends on the element connectivity; the inverse of Eqs. (46)–(49) cannot be
expressed in closed form until the element connectivity is defined.)

G. Point to Line2 and Line2 to Point Mapping Transfer

1. Motion and Scalar Quantities

In the Point to Line2 mapping transfer for motion and scalar quantities, for each destination-mesh Line2-
element node, motion and scalar quantities are transferred from its mapped source Point-element node in a
manner identical to Point to Point motion-mapping transfer (see Section E.1).

In the Line2 to Point mapping transfer for motion and scalar quantities, for each destination-mesh Point-
element node, motion and scalar quantities are interpolated (based on projection) and are transferred from
its mapped source Line2 element in a manner identical to the Line2 to Line2 motion-mapping transfer (see
Section F.1).

2. Load Quantities

In the Point to Line2 mapping transfer for load quantities, for each source-mesh Point-element node, the
point load is split based on its projected location in the mapped destination Line2 element, and is trans-
ferred as two point loads at the destination Line2-element nodes and transformed to distributed loads in a
manner identical to the Line2 to Line2 load-mapping transfer (see Section F.2, but without augmentation
and lumping of the source mesh).

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

23



In the Line2 to Point mapping transfer for load quantities, the fields of the new nodes of the augmented
source mesh are first populated via interpolation of the fields from the original nodes of the source mesh.
That is, Eq. (38) (where

(

·
)

is a placeholder) is used to calculate ~uS , ~fS , and ~mS at the new nodes of the

augmented source mesh, where ℓ
S
was solved via Eq. (25) as discussed in the Line2 to Point mapping search

for load quantities (see Section D.2).
For each Line2 element of the augmented source mesh, distributed loads are lumped as point loads at

the two nodes (of the source Line2 element) such that the lumped loads maintain the overall load balance
with the Line2-element distributed loads; lumped loads are superposed at nodes shared by multiple elements
in a manner identical to lumping in the Line2 to Line2 load mapping (see Section F.2). The lumped nodal
loads from each Line2-element node of the augmented source mesh are transferred to its mapped destination
Point-element node in a manner identical to Point to Point load mapping (see Section E.2).
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