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Fast implementations of the

kink-jump-crankshaft and Berg-Foerster-Aragao de Carvalho-

Caracciolo-Froehlich (BFACEF) algorithms are discussed and applied to the study of topologically knot-
ted polymers. The effect of knots on the size scaling laws of polymers is investigated. Finally, a compar-
ison between the size scaling of the kink-jump-crankshaft and BFACF alogorithms is made

PACS number(s): 02.70.Lq, 02.40.—k, 83.10.Nn, 87.10.+e

INTRODUCTION

The statistical behavior of knots in polymers is a fas-
cinating issue that appeals on many levels. It has been
recognized for some time that topological entanglements
and constraints affect the behavior of polymers [1-3],
while knots in DNA have important biological functions
[4]. Knots occur with nontrivial probability [5] and
measurable effects in long polymers [6-8]. Since it is
difficult to incorporate topological constraints into ana-
lytic calculations, computer simulations have played an
important role in the study of knotted polymers. In this
paper, we describe fast implementations of two topology-
preserving polymer Monte Carlo algorithms, which we
then use to study static and dynamic scaling properties of
knotted polymers.

One of the oldest and conceptually simplest algorithms
for polymer Monte Carlo is the Verdier-Stockmayer
kink-jump algorithm combined with an out of plane
crankshaft move (KJC) [9]. Although it has been shown
that the KJC method is nonergodic [10] and thus inap-
propriate for studying static quantities, little is known
about the size of the effects of the nonergodicity. KJC is
still used to study dynamic properties, since it is thought
to mimic the intrinsic dynamics of a polymer in solution
[9]. In fact, it has been proven that the long wavelength
dynamics of KJC are equivalent to the Rouse model of
polymer dynamics [11]. The algorithm is defined as fol-
lows: the polymer is embedded in a simple cubic lattice;
at each time step the algorithm chooses a monomer and
attempts to change its position according to one of two
moves. The moves are a kink-jump and a crankshaft
motion, shown in Fig. 1. The success of a move depends
on the availability of empty lattice sites in the vicinity of
the original monomer. The nonergodicity comes from
the fact that there are certain highly compact
configurations that cannot relax; an example in two di-
mensions is shown in Fig. 1.

While it has been proven that all local length-
conserving algorithms display this kind of nonergodicity
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[10], the Berg-Foerster-Aragao de Carvalho-Caracciolo-
Froehlich algorithm (BFACF) [12—-14] is a simple exten-
sion to the KJC method that has been shown to be ergod-
ic within a fixed knot type [15]. It is thus an ideal tool
with which to study the effects of knots. The difference
between the BFACF algorithm and the KJC method is
that in BFACF the crankshaft move is allowed to col-
lapse, as shown in Fig. 1. The BFACEF algorithm can be
biased in order to prefer a particular length range [17].
In this scheme, a move increasing or decreasing the
length of the polymer is accepted only with a particular
probability 8. If B depends on N, then the algorithm is
biased toward producing certain lengths, but still pro-
vides a uniform distribution for each particular length.
Finally, we note that the BFACF algorithm preserves the
topology of the polymer [15], and it is clear by analogy
that the proof also applies to KJC.

The pivot algorithm [16] has generally been favored
over KJC and BFACEF for high precision numerical stud-
ies of polymer statics, since pivot only costs O (N) for a
global change, while previous implementations of KJC
and BFACF were of order O(N?). However, the pivot
algorithm does not preserve the topology of the polymer.
Other workers using the pivot algorithm to study topolo-
gy have checked potential changes in knot type by calcu-
lating a topological invariant such as the Alexander poly-
nomial at every iteration of the algorithm [17]. This is
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FIG. 1. Illustration of the allowed moves for the kink-jump-
crankshaft (KJC) and BFACF algorithms. Also shown is a
configuration that is “frozen” for the two dimensional KJC al-
gorithm. Similar configurations exist in three dimensions.
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computationally costly and may offset the advantage
gained from using the pivot algorithm. It also has the
caveat that no perfectly discriminating topological invari-
ant has been discovered for knots, so an uncontrolled er-
ror is introduced.

In this paper, we describe an O (N) implementation of
the BFACF and KJC algorithms. This implementation
was used previously to study the static and dynamic
behaviors of knotted polymers as a function of knot type
[18]. Here, we investigate the size scaling laws of fixed
knot types and the nonergodicity of the KJC algorithm.
The former question was first addressed by Janse van
Rensburg and Whittington [17]; we present the first
confirmation of that work and have been able to extend
their results. They used a hybrid pivot-BFACF method,
and their work was done on a large, specialized comput-
er. The fast implementation of the biased BFACF algo-
rithm described here produces comparable results on a
workstation with a small (~ 10 h/knot) amount of CPU
time. This implementation was also used for the KJC al-
gorithm to study the dynamic relaxation time of knotted
and unknotted polymers.

IMPLEMENTATION

Most previous implementations of KJC and BFACF
used a linked list data structure and a hash table to keep
track of the polymer and check for self-intersections, re-
spectively [19]. The drawback to this is that the hash
table checks are of order O (N), where N is the length of
the polymer. While this is not a problem for algorithms
that make large changes, such as the pivot algorithm, for
incremental local changes it becomes costly; the cost of
making a global change with local moves becomes
O(N?). An alternative solution is to keep the entire lat-
tice stored in memory: then checking self-intersection is a
local O(1) procedure. This has generally been rejected
because one expects that the memory costs go as the lat-
tice volume, O(N?). However, that is actually a large
overestimate, since the polymer crumples up into a ball
whose radius of gyration goes as N%®. Then the volume
of the ball is N, which means that the lattice only re-
quires N'® memory. Thus, by using a lattice, one
reduces CPU cost by O (N) at the expense of increasing
memory demand by O(N%%). Memory is cheap in
modern workstations, and studying a quite long polymer
of length N=10000 requires only O (10 megabytes) of
memory, a not unreasonable amount. In this paper we
consider polymers up to length N =800, which requires
O (100 kilobytes).

The last issue to resolve is the cost of choosing a mono-
mer. Since the lattice method does not have the advan-
tage of having all of the locations of the polymer in a list,
it is not trivial to choose a random monomer. Choosing a
random lattice location is not efficient, since the probabil-
ity of finding an occupied location is N/N!8=N"0%
The cost of randomly finding a monomer is thus O (N%8).
However, one can “walk along” the polymer in O(1)
time. One starts at an occupied lattice location, then
walks a small random number (e.g., between 3 and 5) of
monomers further along the polymer to find the next lo-
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cation with which to attempt a KJC or BFACF move.
This costs O (1), and the entire algorithm becomes O (1)
in CPU time to perform a local move.

Since it is a difficult task to try to visualize the
configuration of a complicated knot in three dimensions,
an automated system to implement the initial condition
was developed. To create a three dimensional embedding
of a knot, it is enough to know the projection of the knot
into a plane and the ordering of each self crossing. In
fact, the minimum number of such self crossings is a to-
pological invariant and forms the basis for the knot
classification system: 4, is the first knot with four self-
crossings. Pictorial representations of projections of all
knots up to and including ten crossings are found in
Rolfsen [20]. It is easy to transcribe the projections onto
a two dimensional lattice, and to make a list of the order-
ing of the crossings. With this data, a computer program
can follow the projection and add in the appropriate z
coordinate. It simply follows the knot segments, adding
in a fixed z coordinate. The projection is self-avoiding ex-
cept for crossings, so the embedding will be as well. Ata
crossing, the algorithm checks the list of crossings to see
whether it should go over or under the other segment. If
the z value of the intersecting segment has not been as-
signed yet, the algorithm inserts the previous segment’s z
value. If the z value has been assigned, the algorithm in-
serts the requisite number of z segments to insure that the
next xy segment goes over or under the intersection, as
appropriate. This system allows relatively painless
embedding of knots in three dimensions.

The greatest drawback to the unbiased BFACF has
been considered the long relaxation time, which leads to
large statistical errors. As the relaxation time of the knot
is of intrinsic importance in the KJC method as well, a
brief summary of error calculation is presented here.
Since repeated measurements of an observable A4 (such as
the radius of gyration) are generally correlated, the error
in the measurement is affected by the relaxation time of
the algorithm. This is usually defined in terms of the re-
laxation of the autocorrelation function:

Cat)=CA,A,,,)—C(A)?*. (1)
The standard definition of the integrated autocorrelation
time is
Caa(t)

s 44 . (2)
t=2—oo CAA(O)

(A)=

N]v—‘

If the autocorrelation function is exponential, Eq. (2) will
give the decay constant. More generally, if the long time
behavior is exponential, 7 will be on the order of the long-
est relaxation mode. In the present application, the time
resolution eliminated higher order modes and we simply
fit C 4 ,(2) to an exponential to determine 7.

The statistical uncertainty in a measurement of A4 is

o2 A)= 27(4)

C,400). 3)

We see that the role of the relaxation time is to reduce
the number of statistically independent measurements
from n to n /27 [16].
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Calculating the statistical errors in the BFACEF results
is subtle. Since we are, in generally, concerned with
averaging a quantity over a fixed length, and the length of
the polymer fluctuates during the algorithm, we are not
making consecutive fixed-length measurements in time.
The issue is further complicated by the fact that the dis-
tribution in time of polymers with a fixed length is not
uniform. Hence, to count the effective number of in-
dependent measurements at a fixed length, we counted
the number of occurrences of a particular length that
were separated by at least 27 time steps. To do this we
counted the first occurrence of a particular length, then
counted the next occurrence that was at least 27 later,
and so on. This number was used in place of n /27 in Eq.
(3).

Thermalization time relates closely to the issue of re-
laxation time; since, in general, one starts the algorithm
with the polymer in a state far from equilibrium, how
long must one iterate before correlations due to the initial
state are gone? Madras and Sokol present a good ex-
planation [16], in which the exponential thermalization
time 7., is distinguished from the statistical relaxation 7
defined above. For some algorithms 7,,,>>; for the un-
biased BFACF it has been shown that 7.,= [21].
However, we argue that an extremely biased BFACF is
equivalent to KJC: the allowed moves are essentially the
same if the length of the polymer is not allowed to fluctu-
ate greatly. The relationship between 7, and 7 for KJC
has not been rigorously investigated, but there is indirect
evidence that they are equal. It has been proved that an
analytic model by Rouse is equivalent to the long wave-
length modes of KJC [11]. Numerical integration of the
Rouse equations shows that the thermalization of a poly-
mer from an extended distribution has the same relaxa-
tion time as fluctuations about equilibrium [22], i.e.,
Texp~T. Hence 7.,=~7 for an extremely biased BFACF
as well. Thus, to avoid the impractical thermalization
times of BFACF, one can thermalize a configuration at
an effectively fixed length with an extremely biased
BFACEF, and then open up the bias to take data on a wide
range of lengths.

As a practical check on the previous argument, we
compared the thermalization of an extended distribution
to 7. Specifically, we started the unknot O, in a square
shape in the xy plane, and measured the radius of gyra-
tion as it crumples up into a three dimensional ball under
the action of the extremely biased BFACF algorithm.
The resulting graph of R, versus time was fit to an ex-
ponential; the fitted relaxation time is an estimate of 7y,
We find that in this particular example 7, and 7 agree to
within 10%, providing strong evidence that 7, ,~7.

Since the above arguments are not a rigorous proof, we
chose conservative thermalization times longer than the
standard 207. In the case of KJC we iterated for ~ 1007
before taking data. For the pure BFACF algorithm we
iterated for 5007 before taking data. To prevent this
from being costly, we set the bias of the BFACF to prefer
length 100 polymers during thermalization. This reduced
Texp @ discussed above and let us iterate quickly. After
thermalization, we raised the ceiling on B to 800 and
lowered the basement to 80, which allowed us to take
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data over an order of magnitude different lengths.

All simulations were performed on DEC Alpha and
Sun workstations, and programmed in C. The software
was prototyped on a 486 based PC. For the BFACF mul-
tilength algorithm, we iterated for (1—3)X10° BFACF
attempts per knot after thermalization. For the KJC al-
gorithm, we iterated for up to 10° KJC attempts per knot
after thermalization.

RESULTS

The quantities of interest are both measures of the spa-
tial extent of the equilibrium distribution. The first is the
radius of gyration, defined as

1 X =
R;=F p> (R;—R)?, 4)
i=1
where R; =(X;,Y;,Z;) are the vertices of the polymer and
R is the center of mass. The second is the span, defined
as

§=L(max |X;—X;|+max|Y,— Y, +max|Z,—Z;]) .
ij ij ij

(5)

Both should scale according to the single length scale in
the problem: the length of the polymer. Furthermore,
LeGuillou and Zinn-Justin [23] have worked out the
confluent corrections to scaling, showing that the two
quantities scale as

RZ=N>(Cg+bgN~%),

_ (6)
S=NYDg+fxN~%),

where Cy, Dy, by, and fg are constant coefficients that
may depend on knot type. The estimates of the ex-
ponents from field theory by LeGuillou and Zinn-Justin
are

v=0.5880(0.0015) ,

A=0.047(0.025) .

It should be noted, however, that these are results from
the n-vector model, which is an average over all knotted
configurations, and may not strictly apply to individual
knot classes. A three-parameter fit to the BFACF data
for span and radius of gyration yields the values for v as a
function of knot type shown in Table I. All of the results

(7)

TABLE 1. Fitted values and statistical errors of the scaling
exponent v for the observables radius of gyration and span.
These values are derived from a three-parameter fit to Eq. (6).
The agreement with the predicted theoretical value in Eq. (7) is
good, although v, is systematically above the theoretical value.

Knot type VRg O Rg vy o

0, 0.582 0.013 0.572 0.010
3, 0.603 0.011 0.581 0.009
4, 0.606 0.014 0.578 0.012
5; 0.625 0.012 0.603 0.100
10, 0.640 0.020 0.557 0.019
20, 0.609 0.020 0.553 0.018
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FIG. 2. The radius and gyration and span for several knot
types, plotted to show the effects of the confluent corrections to
scaling. The confluent correction is demonstrated by the depen-
dence on N ~2 after factoring out the excluded volume size scal-
ing. The knots are 0, 3, 4, 5;, 10;, and 20,.
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FIG. 3. The leading coefficient of size scaling for radius of
gyration (top) and span (bottom). Diamonds are the data from
this paper; pluses are the data from Janse van Rensburg and
Whittington [17]. The coefficients were extracted from the
three-parameter fits to Eq. (6), which takes into account
confluent corrections to scaling. There is a clear systematic
dependence on knot type. Knots used in the present study are
0y, 31, 41, 51, 10y, and 20;.
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FIG. 4. Relaxation time as a function of knot length for the
unknot (diamonds). The line is a two-parameter fit whose fitted
scaling exponent v=2.26(0.06) is in excellent agreement with
v=2.20 predicted by the Rouse model.

for the exponent v are close to the field theory value. The
fits held A fixed to its field theory value; it is possible that
A is knot dependent and this may cause systematic errors
in the calculation. However, the results are in reasonable
agreement with the expected values. Letting A be a free
parameter in the fits led to large dependencies between
the coefficients, indicating that the data do not have
enough features to fit four free parameters.

After verifying the scaling exponent, we can study the
leading coefficient; this is best examined through the
confluent corrections. Janse van Rensburg and Whit-
tington found that the coefficients Cx and Dy were in-
dependent of knot type K within the errors of their mea-
surement [17]. However, it must be noted that there ap-
pears to be a weak systematic dependence in their
coefficients. We have duplicated some of their results,
but with smaller error bars, and have extended the mea-
surement to more complex knots 10, and 20,. Figure 2
shows the raw data, while Fig. 3 shows a comparison be-
tween the results. The error bars overlap in almost all
cases, showing consistency between the two studies, and
from the present data a clear systematic dependence upon
knot complexity is evident. Hence the leading coefficient
of scaling depends on the knot type.

We now turn to the dynamic behavior, and study the
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FIG: 5. Comparison between BFACF (dots) and KJC (dia-
monds) of the radius of gyration of the unknot 0;. One sees a
systematic deviation of KJC above BFACF; this is due to
nonergodic swelling of the KJC configurations. However,
within statistical error the scaling exponents agree between the
two algorithms.
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relaxation of the autocorrelation function via the KJC
method. We studied the scaling of relaxation time versus
length for the unknot, as shown in Fig. 4. The scaling ex-
ponent of 7 with respect to polymer length was
2.27(0.06), in excellent agreement with the predicted
Rouse value of 2.20. Previous studies [9] have also found
exponents slightly higher than the predicted value; this is
most likely a finite size artifact of the KJC algorithm.

Finally, it is possible to estimate the effects of nonergo-
dicity in KJC by comparing the static quantities comput-
ed by KJC to those of BFACF (Fig. 5). The values of the
radius of gyration are consistent within the error bars
(not shown for BFACF) but we see that in both cases
KIJC is systematically above BFACF. The scaling law,
however, is still close to the predicted value: the same fit
that was applied to BFACF gives v=0.60(0.04) for KJC,
agreeing with both the BFACF and the field theory
values within its error. Hence, it may be that the KJC
system still obeys the scaling laws, but that the frozen
states can be ‘‘renormalized” into a new “effective” ex-
cluded volume parameter. The fact that the algorithm is
on a lattice is itself a finite size effect, since any frozen
configuration can be unfrozen by rescaling into a finer
grain lattice.

CONCLUSION

We have developed fast implementations of the
BFACF and KJC algorithms for Monte Carlo simulation
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of polymers. These implementations are O(N) faster
than previous implementations, and are as fast as the
pivot algorithm. We used the fact that BFACF and KJC
preserve topology to study static and dynamic properties
of knotted polymers. For size scaling as a function of
length we find scaling exponents consistent with, but not
in total agreement with, field theory predictions. It is
possible that the confluent correction exponent depends
on knot type, a case which is not accounted for in the
field theory predictions and may explain the small
discrepancies. The leading constant of scaling does ap-
pear to depend on knot type, but without resolving the
previous issue it is difficult to draw an unambiguous con-
clusion. We also measured nonergodicity in the KJC al-
gorithm. We find that the sizes of the polymers are sys-
tematically larger than found with BFACF, but that the
scaling exponent is the same. Furthermore, the dynami-
cal exponent agrees well with the Rouse model. Thus, al-
though the nonergodicity of the algorithm prevents its
use in high precision determinations of static scaling ex-
ponents, KJC remains a useful and self-consistent tool for
studying polymer dynamics.
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