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ABSTRACT OF THE DISSERTATION 

 

Fast Monte Carlo Simulations for Quality Assurance in Radiation Therapy 
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Monte Carlo (MC) simulation is generally considered to be the most accurate method for dose 

calculation in radiation therapy. However, it suffers from the low simulation efficiency (hours to 

days) and complex configuration, which impede its applications in clinical studies. The recent 

rise of MRI-guided radiation platform (e.g. ViewRay’s MRIdian system) brings urgent need of 

fast MC algorithms because the introduced strong magnetic field may cause big errors to other 

algorithms. My dissertation focuses on resolving the conflict between accuracy and efficiency of 

MC simulations through 4 different approaches: (1) GPU parallel computation, (2) Transport 

mechanism simplification, (3) Variance reduction, (4) DVH constraint. Accordingly, we took 

several steps to thoroughly study the performance and accuracy influence of these methods. As a 

result, three Monte Carlo simulation packages named gPENELOPE, gDPMvr and gDVH were 

developed for subtle balance between performance and accuracy in different application 

scenarios. For example, the most accurate gPENELOPE is usually used as "golden standard" for 

radiation meter model, while the fastest gDVH is usually used for quick in-patient dose 

calculation, which significantly reduces the calculation time from 5 hours to 1.2 minutes (250 
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times faster) with only 1% error introduced. In addition, a cross-platform GUI integrating 

simulation kernels and 3D visualization was developed to make the toolkit more user-friendly. 

After the fast MC infrastructure was established, we successfully applied it to four radiotherapy 

scenarios: (1) Validate the vender provided Co60 radiation head model by comparing the dose 

calculated by gPENELOPE to experiment data; (2) Quantitatively study the effect of magnetic 

field to dose distribution and proposed a strategy to improve treatment planning efficiency; (3) 

Evaluate the accuracy of the build-in MC algorithm of MRIdian’s treatment planning system. (4) 

Perform quick quality assurance (QA) for the “online adaptive radiation therapy” that doesn’t 

permit enough time to perform experiment QA. Many other time-sensitive applications (e.g. 

motional dose accumulation) will also benefit a lot from our fast MC infrastructure. 
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Chapter 1: Introduction 
The term “Monte Carlo method” has been well known since the 1940s when scientists working 

on the nuclear-weapon project began to use it to simulate how particles transport and interact in 

such a beyond-experiment scenario. Nowadays, Monte Carlo method has been greatly advanced 

since then and widely used to solve complex problems involving multiple independent variables 

where conventional “deterministic method” would cost formidable memory and computational 

time. Its application to radiation therapy was first introduced in the 1950s [1, 2], but it has not 

been as widely used as its competitor, “convolution-superposition method” [3], even though 

Monte Carlo method is well acknowledged as the most accurate approach [4, 5] for radiation 

dose calculation. The key obstacle turns out to be the low computational efficiency of 

conventional Monte Carlo packages. The recent rise of MRI-guided radiation platform (e.g. 

ViewRay’s MRIdian system [6]) brings urgent need of fast Monte Carlo algorithms because the 

introduced strong magnetic field may cause significant errors to other algorithms. Therefore, a 

large percent of this dissertation will focus on improving the efficiency of Monte Carlo dose 

calculation via four approaches, i.e. (1) GPU parallel computation, (2) Transport simplification, 

(3) Variance reduction, and (4) DVH-constraint. The accelerated calculation will not only benefit 

the existing applications, but also enable new researches in time-sensitive scenarios (e.g. 

motional dose accumulation).  

This chapter contains a general introduction to the history of Monte Carlo method and its 

application to the quality assurance (QA) procedure in radiation therapy. In addition, it covers 

some technical features of our target platform, MRIdian system by ViewRay, and explains the 
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motivations of the above four accelerating methods. Finally, it provides a structure overview of 

this dissertation so readers know what to expect in the rest chapters. 

1.1 History of Monte Carlo simulation 
The idea of using randomness to solve deterministic problems can be traced back at least to the 

eighteenth century, to Georges Louis LeClerc, Comte de Buffon (1707-1788), an influential 

French scientist [7]. He created a famous study method called “Buffon’s needle”, which uses 

repeated needle tosses onto a lined background to estimate π. He proved the probability that each 

time a needle would intersect a line was 2/ π. He tested his theory by throwing baguettes over his 

shoulder on to a tile floor. The needle or the baguette had to be the same length as the distance 

between the lines. 

In the 19th and early 20th centuries, simulation was increasingly used as an experimental 

means of confirming theory, analyzing data, or supplementing intuition in mathematical statistics. 

However, it is significantly different from typical modern Monte Carlo simulations. The early 

simulations dealt with previously understood deterministic problems. Modern simulation inverts 

the process, treating deterministic problems by first finding a probabilistic analog and solving the 

problem probabilistically. 

This form of simulation was first developed and used systematically during the Manhattan 

Project(1940s), the American World War II effort to develop nuclear weapons. It was applied to 

investigate radiation shielding and the distance that neutrons would likely travel through various 

materials. It was named after the Monte Carlo Casino in Monaco due to its probabilistic nature.  

Monte Carlo simulation is now a widely-used scientific tool for problems that are 

analytically intractable and for which experimentation is too time-consuming, costly, or 
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impractical. Researchers explore complex systems, examine quantities that are hidden in 

experiments, and easily repeat or modify experiments. However, Monte Carlo simulation also 

has its own disadvantages: it can require huge computing resources; it doesn't give exact 

solutions; results are only as good as the model and inputs used; and simulation software, like 

any software, is prone to bugs.  

The first attempt to employing Monte Carlo methods in radiation dose calculation dates to 

1950s when Robert R. Wilson published his method using a “spinning wheel of chance” [1, 2]. 

Although apparently quite tedious, Wilson’s method was still an improvement over the analytic 

methods of the time—particularly in studying the average behavior and fluctuations about the 

average. The first use of an electronic computer in simulating high-energy cascades by Monte 

Carlo methods was reported by Butcher and Messel [8] in 1960. For the last 60 years, several 

outstanding Monte Carlo packages (e.g. EGSnrc [9], MCNP [10], GEANT4 [11], PENELOPE 

[12], etc.) for phone-electron transport were developed and tested with cooperation of many 

research institutions.  

The theory of Monte Carlo transport became very mature in 1990s and hasn’t changed 

much since then. The simulation efficiency heavily relies on the improvement of modern CPU’s 

speed. People often use large CPU clusters to achieve desired simulation speed. The CPU 

clusters, however, are very not easily affordable in the clinical environment. In 2010s, the 

appearance of general-purpose programming language on GPU greatly lowered the 

computational cost of parallel Monte Carlo simulation, and enabled more clinical applications. 

Nowadays, clinically feasible Monte Carlo simulations are drawing more attentions since the 

recent rise of MRI guided radiation therapy introduces a strong magnetic field which may cause 

significant errors to other algorithms. 
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1.2 Workflow of radiation therapy 
Figure 1.1 shows the simplified workflow of current radiation therapy. When a patient is 

diagnosed with cancer tumor and is recommended for radiation therapy, the therapist will first 

take a Computed Tomography (CT) scan of the patient to generate 3-dimensional density 

information called “phantom”. The phantom is then dissected and marked at different regions. 

The therapist may also take MRI scan of the patient to assist the dissection as MRI has much 

better tissue contrast. These information is imported into the so called “Treatment Planning 

System” (TPS) to generated an appropriate treatment plans that optimizes the radiation dose 

distribution within the tumor by properly configuring the angles and shapes of multiple 

photon/electron beam. Before the treatment plan can be delivered to patient, we perform a 

procedure called “Quality Assurance” (QA) to ensure the plan works as we expect through a set 

of radiation experiments. Otherwise, any error could cause severe damage to the patients’ normal 

tissue. After QA, the therapist puts the patient into a treatment machine to deliver the radiation 

according to the plan. This machine is usually a conventional “linear accelerator” (LINAC) or a 

novel MRI-guided Co60 radiation machine called MRIdian (produced by ViewRay). After 

certain period, the therapist will take another MRI/CT scan to evaluate the tumor response to the 

treatment. These new images are imported into TPS to adjust plan for next treatment fraction. 

We repeat this workflow loop to fight against the cancer.  

The experimental QA procedure, however, has several limitations. First, the measurement 

devices are not ideal for QA purpose. Figure 1.2 shows the three typical devices to measure dose 

distributions in point, 2D and 3D. The ion-chamber has high accuracy but it’s volume is usually 

bigger than a voxel in TPS, and its output shows slightly dependence on the magnetic fields’ 

orientation. The radiographic film has very high spatial resolution, but the Ag+ material inside 
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will cause low-energy dose overresponse problem. The arch-check is made of diodes array which 

is configured at low spatial resolution, and the nature of diodes will result in severe orientation 

dependence and low accuracy. Second, the phantom for radiation experiment cannot be patient 

specific as building a specific dummy for each patient is impractical. Currently, we use unified 

phantoms radiated by patient specific treatment plans. The measurements are then compared to 

the results given by TPS. Third, the measurements cannot cover the all the points. Even the arch-

arch is limited to a 2D surface curved in 3D space. Fourth, performing experiments takes much 

longer time than running a Monte Carlo simulation. 

 

Figure 1.1 Simplified workflow of modern radiation therapy. 



6 
 

Nowadays, online adaptive radiation therapy (ART) is being popularized in clinical practice 

as it takes tumor’s response into consideration but doesn’t cost much time. It acquires patient’s 

new phantom, adjust treatment plan, perform QA, and deliver radiation dose while keeping the 

patient onboard since the second treatment fraction. The whole preparation time before delivery 

has a narrow window of about 26 minutes. The QA procedure via experiment cannot be 

completed in such a brief time, so it requires a fast Monte Carlo simulation to finish the task.  

   

Figure 1.2 Devices to measure dose: (left) ion-chamber, point dose; (middle) radiographic film, 2D dose; 

(right) arch-check, surface dose in 3D. 

 

1.3 MRgRT: MRIdian platform 
The MRIdian by ViewRay [6] is an innovative platform that combines the real-time MR imaging 

and radiation delivery. As shown in figure 1.1, the MRIdian system integrates a 0.35 T whole-

body MR imaging system into an RT delivery system consisting of a rotating gantry with three 

Co60 heads spaced 120° apart that can provide a maximum combined dose rate of 550 cGy/min 

at the isocenter. Its MR imaging system can generate 5 frames of planar MR image per second, 

and provides near real time delivery guidance. Once the imaging system detects the tumor is far 

from the beam center due to respiration or gastrointestinal motility, it will inform the delivery 

system to shut down the beam temporarily and wait until the tumor moves back to the beam 

center.  
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This mechanism greatly improves the delivery error and reduces the damage to patients’ 

normal tissue. However, it also increases the treatment time as the tumor could be off the beam 

center for a large portion of total time if a strict “gating” criteria is applied. Therefore, ViewRay 

is developing next generation of MRIdian by replacing the Co60 head by compact LINAC that 

can provide much higher radiation flux rate.  

1.4 Ways to improve efficiency 
Monte Carlo radiation transport simulation is generally considered to be the most accurate 

method for dose calculation in radiation therapy [4, 5]. Well-known Monte Carlo packages such 

as MCNP [10] Geant4 [11] EGS4/EGSnrc [9, 13] and PENELOPE [12, 14] have been 

demonstrated to agree excellently with experimental data under a wide range of conditions. For 

example, EGSnrc was shown to pass the Fano cavity test at the 0.1% level [5]. Here, we 

categorize these platforms as “accuracy-oriented”. While these packages are highly accurate, 

they typically require long simulation time to finish a sufficient number of histories in order to 

achieve adequate statistical uncertainty. 

Three general approaches have been considered for accelerating Monte Carlo calculations: 

(1) simplifying particle transport mechanisms, thus reducing the necessary time for each particle 

history, (2) using variance reduction techniques such as particle splitting, Russian roulette, and 

interaction forcing to reduce the total history number required to achieve a given uncertainty and 

(3) enhancing the computational capability by parallelizing the simulation on multiple CPU or 

GPU threads [15].  Packages like VMC [16-18] and DPM [19] applied approaches (1) and (2) to 

achieve clinically desired speeds, but sacrificed generality and absolute accuracy by dropping 

simulation of positrons and using simpler cross-section profiles, among other simplifications. 

gDPM [20, 21] further utilized approach (3) (i.e. GPU parallelism) to obtain higher efficiency 
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compared to the original DPM, while GPUMCD [22] performed similar simplification to DPM 

and was directly oriented to GPU implementation. GMC [23] was developed based on Geant4 

but it results in larger discrepancy from Geant4 than expected (2%/2 mm gamma passing rate is 

91.74% for IMRT plans). Accuracy was possibly compromised for GMC by the fact that Geant4 

uses a lot of virtual functions and class inheritances that make implementing a faithful adaptation 

from C++ to CUDA difficult. Here, we categorize these implementations as “efficiency-

oriented”. 

Another approach may be applied to further accelerate the QA procedure. We can perform 

detailed simulation in the important target regions, and only do rough estimation in the rest 

voxels. As the important regions used to calculate “Dose Volume Histograms” (DVHs) only take 

a small proportion of the whole volume, the simulation time can be significantly reduced. We 

named this patient QA specific method as “DVH constraint”. 

1.5 Overview of the dissertation 
Chapter 2 covers some basic knowledge of Monte Carlo simulations regarding to both photon 

and electron transport. Chapter 3 discusses how to build the GPU accelerated Monte Carlo dose 

calculation package gPENELOPE. It starts with the introduction of the GPU architecture and 

CUDA programming language. It then introduces the optimized workflow for GPU implantation 

and the method to validate gPENELOPE. Finally, it discusses three applications of gPENELOPE 

in radiation therapy. Chapter 4 further applied transport simplification and variance reduction to 

build a faster code gDPMvr. It includes thorough benchmarks to study the performance and 

accuracy influence of these methods. Chapter 5 introduces "DVH constraint" to further 

accelerate the dose calculation for DVH-oriented QA. Chapter 6 provides three powerful 

geometry modules to handle practical applications. Chapter 7 gives a brief glimpse of two 



9 
 

graphic user interfaces aiming to lower the level of difficulty for average users. Chapter 8, in the 

end, summarize the results of we have achieved and discusses potential developments of fast 

Monte Carlo simulation in the future. 
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Chapter 2: Monte Carlo basics 
This chapter gives a basic introduction of Monte Carlo simulation. We will discuss random-

sampling methods, transport models, and various photon and electron interactions. 

2.1 Random-sampling methods 
The most essential part of Monte Carlo simulation is to obtain a large number of random 

variables obeying given probability distribution functions (PDF). This process is called “random-

sampling”. For the sampling of continuous variables, we usually start from a group variables 

linearly distributed in the interval (0,1). Therefore, a good “pseudorandom number generator” 

(PRNG) is worth some discussion. Then Inverse-transform method and rejection method are 

introduced to perform the sampling of continuous variables. For discrete distributions, we will 

introduce “summation method” for simple cases and “Walkers’ aliasing method” for optimized 

performance.  

2.1.1 Pseudo random number generator 

The model of a pseudo random number generator is that given an initial value, we can get a large 

sequence of numbers that behaves like random numbers. The sequence is allowed to repeat after 

a large period. Usually the larger period, the better statistical properties. Although the sequences 

that are closer to truly random can be generated using hardware random number generators, 

pseudorandom number generators are more practical with respect to their speed in number 

generation and their reproducibility.  

Linear congruential generator 

The easiest and fastest PRNG among the applicable ones is so-called linear congruential 

generator, which is defined by the following recurrence relation: 
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𝑋𝑛 = (𝑎𝑋𝑛−1 + 𝑐) 𝑚𝑜𝑑 𝑚, 𝜉𝑛 = 𝑋𝑛/𝑚 (2.1) 

where {𝑋} is the integer sequence of pseudo random values, a, c and m are carefully chosen 

integer constant, and {𝜉} is the desired random number sequence uniformly distributed in (0,1). 

One good instance of the constant a, c and m would be 75, 0, and 231 − 1. It’s exactly the 

famous 16807 (= 75) PRNG [24], which has a recurrence period of the order of 109. However, 

the value is far too short considering that modern Monte Carlo simulations of radiation therapy 

may require as many as 109 tracks to reach desired uncertainty. A more sophisticated 

congruential generator was proposed by L’Ecuyer [25] (1988) as follow: 

 

(2.2) 

This C++ implementation requires two numbers to initiate the PRNG, and its sequence period is 

of the order of 1018, which is virtually inexhaustible in a simulation costing 109 tracks. The 
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famous Monte Carlo package PENELOPE chose this method to generate random number 

sequences.  

Mersenne Twister 

Though the last version linear congruential generator has a very easy implementation and a long  1018 period, its statistical property is not as good as the famous Mersenne twister [26] method, 

which even has a huger 219937 − 1 recurrence period. For more precise simulation (e.g. the 

radiation source model), Mersenne twister generator seems to be a better choice. The C++ 11 

standard library has included a template of Mersenne twister generator.  

PRNG on GPU: cuRand 

As GPU acceleration will be utilized throughout the four optimization stages in this dissertation, 

it’s necessary to have a close look at the random number library provided by NVIDIA’s CUDA 

development toolkit. We need to warp two functions i.e. curand_init() and curand_uniform() 

and maintain a status struct curandState in C++ as shown in code block (1.2). The function 

curand_init() guarantee that PRNGs initialized with different seeds will be uncorrelated and 

curand_uniform() implemented a XORWOW generator [27] optimized for GPU. Compared to 

the implementation in code block (1.2), GRNG is a little slower due to larger status struct (means 

longer memory access latency), but has better statistical properties. We will adapt this method 

when we move to the second optimization stage – transport simplification – to compensate 

possible accuracy losses.  
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(2.3) 

 

2.1.2 Continuous variable: inverse-transform sampling 

Given a continuous random variable x, the cumulative distribution function of x is defined as 

Φ(𝑥) = ∫ p(𝑥′)d𝑥′𝑥
𝑥𝑚𝑖𝑛  (2.4) 

which is a non-decreasing function of x, and then it has an inverse function Φ−1(ξ). The 

transform ξ = Φ(x) maps x to a new random variable ξ ∈ (0,1). The PDF of ξ, 𝑝𝜉(𝜉), must hold 

the relationship with p(x) due to the conservation of probability: 

𝑝𝜉(𝜉)𝑑𝜉 = p(x)dx (2.5) 

Therefore, we’ll have  

𝑝𝜉(𝜉) = p(x)/(𝑑𝜉𝑑𝑥) = 𝑝(𝑥)/(𝑑Φ(𝑥)𝑑𝑥 ) = 𝑝(𝑥)/𝑝(𝑥) = 1 (2.6) 

It’s clear that the new variable 𝜉 distributes uniformly between 0 and 1. On the contrary, if we 

are given a set of uniformly distributed random number 𝜉 ∈ (0,1) (via PRNG introduced in 
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section 2.1.1), the random number 𝑥 = Φ−1(𝜉) will obey the desired PDF p(x), and accomplish 

the sampling procedure. 

2.1.3  Continuous variable: rejection sampling  

The inverse-transform sampling introduced in section 2.1.2 is simple and efficient. However, it’s 

only applicable when p(x) can be integrated in analytical form and Φ−1(𝜉) is easy to resolve. 

Most practical PDFs cannot fulfil the above requirement so another more general method called 

rejection sampling is created to address the drawback.   

Suppose we have an analytically non-integral PDF p(x) as shown in Figure 2.1. The key 

point is to find another analytically integral PDF q(x) and an appropriate number M so that 

M*q(x) > p(x) validates for all x. The sampling of each random variable x will work as follow: 

(1) Using inverse-transform method to sample one random number  x~p(x) 

(2) Sample one uniformly distributed random variable ξ~U(0,1) 

(3) If ξ < 𝑝(𝑥)𝑀∗𝑞(𝑥), accept x; else reject x, and go to step (1). 

 

Figure 2.1 Illustration of rejection sampling 

To ensure the sampling process has a high efficiency, we need to choose M and q(x) properly so 

that the area covered by M*q(x) is as close as possible to the area covered by p(x). 
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2.1.4  Discrete variable: reverse-transform sampling 

We can treat discrete distribution as the general continuous distribution multiple Dirac delta 

functions as equation (1.7). 

𝑝(𝑥) = ∑ 𝑝𝑖𝛿(𝑥 − 𝑖)𝑁
𝑖=1  (2.7) 

The corresponding accumulative distribution function is  

Φ(𝑥) = ∑ 𝑝𝑖[𝑥]
𝑖=1  (2.8) 

where [x] means the integer part of x. The inverse function of (1.8) leads to the following 

sampling formula: 

x = 𝑗 𝑖𝑓 Φ𝑖−1 < 𝜉 < Φ𝑖 (2.9) 

Where Φ𝑖 = ∑ 𝑝𝑖𝑗𝑖=1  means the discrete accumulated probability. If the number N of the x values 

is large, we can use binary search to reduce the searching complexity from O(N) to log(N). In 

real Monte Carlo simulations, however, the discrete sampling happens so frequently that we’ll 

turn to Walker’s aliasing method introduced in next section.  

2.1.5  Discrete variable: Walker’s aliasing method 

The idea underlying Walker’s method [28] can be easily understood by graphical arguments [29]. 

Let us represent the discrete PDF as a histogram constructed with N bars of width 1/N and 

heights N𝑝𝑖. The histogram then can be cut off at convenient heights and the resulting pieces can 

be arranged in such a way that each vertical line crosses at most two different pieces (Figure 2.2). 

This struct can be setup by selecting the lowest and the highest bars in the histogram, say the lth 

and jth, respectively, and by cutting the highest bar off to complete the lowest one., which 
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subsequently is kept unaltered. We label the added piece with the “alias” value 𝐾𝑙 = 𝑗, and 

introduce the cutoff value 𝐹𝑙 defined as the height of the lower piece in the lth bar. This lower 

piece keeps the label l. Iteration of this process eventually leads to the complete square after N-1 

steps. Note that the probability 𝑝𝑖 can be reconstructed from alias and cutoff values: 

N𝑝𝑖 = 𝐹𝑖 +  ∑(1 − 𝐹𝑗)𝑗≠𝑖 𝛿(𝑖, 𝐾𝑗) (2.10) 

Walker’s sampling method works as follows: We sample two independent random numbers 𝜉1 

and 𝜉2, and define the random point (𝜉1, 𝜉2), which is uniformly distributed in the square. If 

(𝜉1, 𝜉2) lies over a piece labelled with the index i, we take x = i as the selected value.  

 

Figure 2.2 Graphical representation of the inverse transform method (top) and Walker's aliasing method 

(bottom) for random sampling from a discrete distribution. In this example, the random variable can take 

the values i = 1, 2, 3 and 4 with relative probabilities 
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The sampling process can be optimized to required only one random variable: (1) Generate 

a random number ξ and set R = ξN + 1, (2) Set i = [R] and  r = R − I, (3) If  r > 𝐹𝑖, deliver x =𝐾𝑖 , (4) Else deliver x = i. This method only needs one random number and one comparison at 

the cost of doubling the storage compared to the reverse transform method. The sampling 

performance is quite satisfactory. However, the calculation of alias and cutoff values is fairly 

involved and this limits its application to distributions that remain constant during the simulation. 

2.2  Radiation transport model 
In this section, we describe the model for Monte Carol simulation of radiation transport. 

2.2.1  Scattering model 

Let us limit our considerations to homogeneous random scattering media, where the molecules 

are distributed at the random with uniform density. The number of molecules per unit volume 

can be easily derived as 

𝑁 = 𝑁𝐴 𝜌𝐴𝑀 (2.11) 

where 𝑁𝐴 is Avogadro’s number and ρ is the mass density of the material. In each interaction, 

the particle may lose energy W and change its direction of momentum (described by polar 

scattering angle θ and azimuthal scattering angle ϕ. For simplicity, we assume that the particle 

interacts with the medium through two independent mechanisms “A” and “B”. The scattering 

model is then completely specified by the molecular differential cross section (DCS) 

d2𝜎𝐴,𝐵𝑑𝑊𝑑Ω (𝐸; 𝑊, 𝜃) (2.12) 
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where dΩ is a solid angle element in the direction (θ, ϕ). Note that the DCSs explicitly depend 

on the particle energy E. Since the molecules in the medium are oriented at random, the DCS is 

usually independent of the azimuthal angle. The total cross sections are 

 

(2.13) 

And the PDFs of the energy loss and the polar scattering angle are normalized to be 

 

(2.14) 

The azimuthal scattering angle is uniformly distributed in the interval (0, 2π), i.e. p(ϕ) = 12π. 

The total cross section for all kinds of interaction is 

𝜎𝑇(𝐸) = 𝜎𝐴(𝐸) + 𝜎𝐵(𝐸) (2.15) 

The probability of occurring that kind of interaction is given as 

𝑝𝐴,𝐵(𝐸) = 𝜎𝐴,𝐵(𝐸)/𝜎𝑇(𝐸) (2.16) 

We can use inverse-transform method to sample which kind of interaction to happen. 

2.2.2  Random tracks 

Each particle track starts off at a given position, with initial direction and energy in accordance 

with the characteristics of the radiation source. Each simulated track can be viewed as a series of 

states 𝑟𝑛, 𝐸𝑛, 𝑑̂𝑛, where 𝑟𝑛 is the position of the n-th scattering event and 𝐸𝑛, 𝑑̂𝑛 are the energy 

and direction cosines of the directions of the direction of movement just after that event. 
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Figure 2.3 (left) The model for analyzing the probability of being scattered. (right) Angular deflection in 

single-scattering events. 

To get an intuitive picture of the microscale scattering, we can imagine each molecule as a 

sphere distributed uniformly in the medium (Figure 2.3 left). The particle will have the 

probability of being scattered proportional to the ratio of cross section area to total area it can see. 

Suppose the number of incident particles is J, the number of scattered particle dJ after passing a 

slab medium of cross section A and of width ds can be expressed as follow: 

𝑑𝐽 = 𝐽 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 = 𝐽 𝑛𝜎𝑇𝐴 = 𝐽𝑁𝜎𝑇𝑑𝑠 (2.17) 

where 𝑁 ≡ 𝑛𝐴𝑑𝑠 is number of molecules per unit volume defined in equation (2.11). This 

differential equation yields an exponential decaying solution: 

𝐽(𝑠) = 𝐽0𝑒−𝑁𝜎𝑇𝑠 (2.18) 

this indicates that the PDF of free jumping distance s (without being scattered) follows a similar 

form: 

𝑝(𝑠) = 𝑁𝜎𝑇𝑒−𝑁𝜎𝑇𝑠 (2.19) 
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The mean free path length then is evaluated as: 

𝜆𝑇 = ∫ 𝑝(𝑠)𝑠𝑑𝑠∞
0 = 1𝑁𝜎𝑇 (2.20) 

From equation (2.15), we can deduce that 

𝜆𝑇−1(𝐸) = 𝜆𝐴−1(𝐸) + 𝜆𝐵−1(𝐸) (2.21) 

The PDF of equation (2.19) can also be expressed as 

𝑝(𝑠) = 𝑒− 𝑠𝜆𝑇/𝜆𝑇  (2.22) 

Then we can easily apply inverse-transform method by solving 𝑝(𝑠) = 𝜉 to sample the free 

jumping distance s 

𝑠 =  −𝜆𝑇𝑙𝑛𝜉  (2.23) 

After the particle flies such a distance s, the interaction occurs at the position 

𝑟𝑛+1 = 𝑟𝑛 + 𝑠𝑑̂𝑛 (2.24) 

The type of interaction (A or B) is selected via discrete inverse-transform method based on the 

probability given by equation (2.16). The energy loss W and polar scattering angle 𝜃 are sampled 

from the PDF given in equation (2.12). The azimuthal scattering is generated trivially as 𝜙 =2𝜋𝜉 according to the uniform distribution in (0, 2π). After sampling the values of W, 𝜃 and 𝜙, 

the energy is reduced to 𝐸𝑛+1 = 𝐸𝑛 − 𝑊, and the new direction of momentum 𝑑̂𝑛+1(𝑢′, 𝑣′, 𝑤′) 

is obtained by performing a rotation of 𝑑̂𝑛(𝑢, 𝑣, 𝑤) by polar scattering angle 𝜃 and azimuthal 

angle 𝜙 (Figure 2.3 right). It can be derived the new cosine components can be expressed as 
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(2.25) 

These expressions are indeterminate when |𝑤| ≅ 1. In the case, we will simply set 

 (2.26) 

Note that equations (2.25) are not very stable numerically so it’s necessary to renormalize 𝑑̂𝑛+1 

periodically.  

We will repeat this jump and knock steps to generate simulation tracks. A track is finished 

either when it leaves the material or when the energy goes below the pre-defined energy 

threshold 𝐸𝑎𝑏𝑠, which is the energy where particles are assumed to be effectively absorbed 

locally in the medium 

2.3  Photon interactions 
In this section, we’ll briefly discuss four kinds of interactions occurring in the simulation of 

photons, i.e. Rayleigh scattering, photoelectric absorption, Compton scattering, and electron-

positron pair production (Figure 2.4). We will focus on the DCSs for different interactions and the 

efficient sampling algorithms. Other interactions, such as photonuclear absorption, occur with 

much smaller probability and can be ignored for most practical purposes [30].  
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Figure 2.4 Four types of photon interactions with matter. 

2.3.1  Rayleigh scattering 
Rayleigh scattering is the process by which photons are scattered by bound atomic electrons 

without excitation of the target atom, i.e. the energies of the incident and scattered photons are 

the same. The DCS is given approximately by [31] 

 
(2.27) 

where  

 

(2.28) 

is the Thomson DCS for scattering by a free electron at rest, θ is the polar scattering angle and F(q, Z) is the atomic factor. The quantity 𝑟𝑒 is the classical electron radius and q is given by 

 
(2.29) 

And F(q, Z) is given by  
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(2.30) 

For such a complex distribution, we have to use rejection method to sample the deflection cosθ.  

2.3.2  Photoelectric absorption 
In the photoelectric effect, a photon of energy E is absorbed by the target atom, which makes a 

transition to an excited state. The photon beams found in radiation transport studies have 

relatively low photon densities and, as a consequence, only single photon absorption is observed. 

Figure 2.5 shows the various notations for inner atomic electron shells and allowed radiative 

transitions between these shells.  

 

Figure 2.5 Various notations for inner atomic electron shells (left) and allowed radiative transitions (right) 

to these shells 

 

The angular DCS is given by Sauter as 
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(2.31) 

where α is the fine-structure constant, 𝑟𝑒 is the classical electron radius and  

 

(2.32) 

We can define a new variable ν = 1 − cos𝜃𝑒 to simplify the PDF so rejection sampling can be 

applied. 

2.3.3 Compton scattering  

Compton scattering is the most important scattering event for photon interaction because in the 

energy range of radiation therapy, the cross-section of Compton scattering is largest among the 

four main interactions. The DCS for Compton interaction is given by Brusa in 1996 [32]  as 

 
(2.33) 

where 𝑟𝑒 is the classical electron radius, 𝐸𝑐 is defined as  

𝐸𝑐 ≡ 𝐸1 + (1 − 𝑐𝑜𝑠𝜃)𝐸/(𝑚𝑒𝑐2) (2.34) 

and S(E, θ) is defined as 

 
(2.35) 

which represents atom binding effect. The final sampling equation can be expressed as  

 
(2.36) 
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where τ ≡ 1/(1 + κ(1 − cosθ)), and t ≡ (𝑝𝑧/𝑚𝑒𝑐)2. Then the scattering angle and energy loss 

can be determined by conservation of momentum and energy: 

 

 

(2.36) 

2.3.4 Pair production  

When the photon energy is high enough (greater than 2𝑚𝑒𝑐2), it is possible for this photon to 

annihilate into an electron and a positron. This process is called pair production. The Nethe-

Heitler DCS [33] derived from the Born approximation is 

 
(2.37) 

Similarly, we need to use rejection method to sample the distribution of ϵ. The angular PDF is 

given [34, 35] as 

 (2.38) 

where a is normalization constant and  

 
(2.39) 

The sampling of deflection can be easily deduced via inverse-transform method as follow: 

 
(2.40) 
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2.4  Electron/positron interactions 
In this section, we’ll briefly discuss four kinds of interactions occurring in the simulation of 

photons, i.e. elastic scattering, inelastic absorption, Bremsstrahlung emission, and positron 

annihilation (Figure 2.6). In principle, the simulation methods are similar to those of photon 

interactions [12]. However, the mean free path and energy loss between two interactions of a 

charged particle is much smaller than these of a photon. The charged particle may undergo order 

of 106 discrete interactions before coming to a complete stop. The number of photon interaction, 

on the other hand, is only order of 102 for one track. Therefore, it’s impractical to simulate the 

charged particle in a detailed way as photon.  

 

Figure 2.6 Four types of electron interactions with matter 

 

Fortunately, most of these interactions are elastic or semi-elastic, which means no energy or 

a tiny amount of energy is transferred to the surrounding material, and direction of movement is 
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only slightly scattered. This allows us to group many of those elastic/semi-elastic events into one 

condensed history (CH). This method was introduced by Berger in 1963 and is called CH 

technique ever since. Present-day CH implementations divide the interactions of charged particle 

into “hard” and “soft” events. The two interaction types are usually distinguished by a pre-

defined energy loss threshold 𝐸𝑐 and scattering angle threshold Θ𝑐. That is, those losing energy 

less than 𝐸𝑐 or being scattered with angle smaller than Θ𝑐 are called soft events, and the rest are 

called hard events. For hard events, we perform explicit detailed simulation like photon. For soft 

events, we group many continuous ones of them, and calculate the total energy loss based on 

“Continuous energy loss model”, the total scattering angle based on the “multiple scattering 

theory”, and the simulated path with “random hinge technique”. This strategy is called mixed 

simulation scheme [36]. 

2.4.1 Continuous energy loss 

During a CH-step the charge particle continuously loss energy due to soft interactions. The 

average energy loss dE per CH step length ds at point r is given by the restricted linear stopping 

power as follows: 

L(𝐫, E, 𝐸𝑐, 𝑘𝑐) = − 𝑑𝐸𝑑𝑠 = 𝐿𝑐𝑜𝑙(𝒓, 𝐸, 𝐸𝑐) + 𝐿𝑟𝑎𝑑(𝒓, 𝐸, 𝑘𝑐) (2.41) 

where 𝐿𝑐𝑜𝑙(𝒓, 𝐸, 𝐸𝑐) and 𝐿𝑟𝑎𝑑(𝒓, 𝐸, 𝑘𝑐) are restricted linear collision and radiation stopping 

powers. They can be calculated using the collision cross section and the bremsstrahlung 

production cross section by 

𝐿𝑐𝑜𝑙(𝒓, 𝐸, 𝐸𝑐) = N(r)∫ 𝑑𝐸′𝐸𝑐0  𝐸′𝜎𝑐𝑜𝑙(𝒓, 𝐸, 𝐸′) 

𝐿𝑟𝑎𝑑(𝒓, 𝐸, 𝑘𝑐) = N(r)∫ 𝑑𝑘′𝑘𝑐0 𝑘′𝜎𝑟𝑎𝑑(𝒓, 𝐸, 𝑘′) 

(2.42) 
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where 𝑁(𝒓) is the number of scattering targets per unit volume at point 𝒓. Note the stopping 

power integration is restricted to energies below 𝐸𝑐 and 𝑘𝑐.  

The step length s for an electron with initial energy 𝐸0 that loses energy Δ𝐸 due in CH 

scheme can be calculated by  

𝑠 = − ∫ 𝑑𝐸𝐿(𝒓, 𝐸, 𝐸𝑐 , 𝑘𝑐)𝐸1𝐸0 = ∫ 𝑑𝐸𝐿(𝒓, 𝐸, 𝐸𝑐 , 𝑘𝑐)𝐸0𝐸1  (2.43) 

where 𝐸1 = 𝐸0 − Δ𝐸 is the electron energy at the end of the CH step. The function 𝐿(𝒓, 𝐸, 𝐸𝑐, 𝑘𝑐) should change accordingly if a boundary to a region with different material is 

crossed.  

Obviously, the continuous energy loss model is an approximation in average sense. Analog 

Monte Carlo simulation shows that the real step end energies are random obeying a distribution 

with a mean value of E1. This effect is known as energy straggling. In the mixed simulation 

scheme, the soft and hard energy straggling are handled in different approaches, where hard 

energy straggling is simulated explicitly with corresponding effects correctly taken into account, 

while soft energy straggling is simply neglected or simulated by an adequate straggling 

distribution function.  

The strategy of ignoring soft energy straggling is valid and effective if we choose the 

parameter 𝐸𝑐 and step size small enough. In this case, energy straggling is dominated by the 

explicitly modeled hard events with energy transfer larger than 𝐸𝑐 and the soft energy 

fluctuations have a negligible impact on the simulation result.  
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2.4.2 Multiple Scattering 

Different from the real curved path of charged particle, the simulated path is a simple straight 

line during one CH step (Figure 2.7). The combined effect of many small-angle soft collisions is 

simulated by sampling the angular deflection based on a dedicated multiple scattering theory.  

We will introduce a simple Gaussian distribution developed by Fermi and Eyges [37] 

𝑝(𝜃, 𝜙)𝑑𝜃𝑑𝜙 = 𝜃π 𝜃2(𝑠)̅̅ ̅̅ ̅̅ ̅ exp (− 𝜃2 𝜃2(𝑠)̅̅ ̅̅ ̅̅ ̅) 𝑑𝜃𝑑𝜙 (2.44) 

where 𝜃 is the polar multiple scattering angle, 𝜙 is the azimuthal scattering angle, and 𝜃2̅̅ ̅ is the 

mean square deflection angle after step length s. This PDF leads to two separate cumulative 

probability functions  

𝑃(𝜃) = 1 − exp (− 𝜃2 𝜃2̅̅ ̅(𝑠)) , 𝑃(𝜙) = 𝜙2𝜋 (2.45) 

The corresponding inverse-transform sampling forms are  

𝜃 = √− 𝜃2̅̅ ̅(𝑠)𝑙𝑛 𝜉1 , 𝜙 = 2𝜋𝜉2 (2.46) 

where 𝜉1 and 𝜉2 are uniform random numbers ∈ [0,1]. We need to enforce that 𝜃 ≤ 𝜋 so we 

should reject the sampling result in equation (2.46) if 𝜃 > 𝜋. 

The quantity  𝜃2̅̅ ̅(𝑠) can be calculated using the linear scattering power 𝑇𝑠(𝒓, 𝐸) at point r. 

 𝜃2̅̅ ̅(𝑠) = ∫ 𝑑𝑠′𝑇𝑠(𝑠′, 𝐸)𝑠
0  (2.47) 

The Gaussian PDF in equation (2.44) can give a good approximation for small cumulative 

scattering angle 𝜃. Large scattering angles, however, are underestimated using this distribution. 

A much more accurate multiple scattering theory is developed by Goudsmit and Saunderson [38] 
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to provide good approximation even for large scattering angle. All modern Monte Carlo 

simulation packages adapt this algorithm for accuracy concern. However, the calculation 

expense is much higher than the simple Gaussian PDF.  

 
 

Figure 2.7 (left) Real curved electron path vs simulated electron path as a straight line. The accumulated 

scattering angle is applied at the end of this CH step. (right) The scattering angle is applied at a random 

point along the path, i.e. through random hinge method. 

 

2.4.3 Random hinge 

As shown in Figure 2.7 (left), the simplest multiple scattering scheme is to move the electron in a 

straight line until the final position and then apply the scattering of momentum. It’s obvious that 

the electron range is over estimated since the real electron path is curved. In fact, the real 

electron range fluctuates around some man value, and this effect is called range straggling. Note 

that range straggling is independent of the energy loss of electron so it should not be confused 

with the energy straggling discussed in last section.  

To overcome the range overestimation, many Monte Carlo codes employ a path length 

correction (PLC) algorithm. Besides, a transverse displacement (TD) algorithm is included to 

handle the transverse fluctuations of the real electron end position relative to the lateral position 

as simulated during the CH step. A simple PLC and TD algorithm, called random hinge method, 

is demonstrated in Figure 2.7 (right). This method divides the whole step length into two sub 
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steps ξs and (1 − 𝜉)𝑠, where 𝜉 is a uniform random number ∈ (0,1). The multiple scattering 

angle is applied when the electron has advance ξs distance instead of at the end of current CH 

step. Though this method is very simple, it provides fairly good approximation to the real paths 

in an average sense and then is implemented in modern Monte Carlo packages such as 

PENELOPE [12] and XVMC [39]. Another similar random hinge approach determines the hinge 

point based on the energy interval instead of step length, and could achieve higher accuracy 

(implemented in DPM [19]).  

The problems and algorithms discussed in this section could be neglected if the charged 

particle transport steps are limited to very small distance. However, the simulation becomes 

extremely inefficient in this way. We must carefully balance the max CH step length and those 

correction algorithms to achieve the maximum simulation efficiency.  
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Chapter 3: GPU acceleration 
In charter 1, we reviewed the recent development of MRI-guided radiation therapy, and the 

increasing demand of the capability of performing fast Monte Carlo simulations. We proposed 

four approaches to further increase the simulation efficiency. After reviewing all the essential 

components of Monte Carlo simulation in chapter 2, we will build our own fast MC codes from 

deploying GPU parallel computation first. We choose to start with GPU acceleration instead of 

other methods because GPU parallelization will not compromise the accuracy as long as the 

RNGs supplying the simulation are irrelevant with each other. 

3.1 GPU architecture vs CPU architecture 
Graphic processing unit (GPU) was originally designed to rapidly manipulate and alter memory 

to accelerate the creation of images in a frame buffer intended for output to a display device. It 

has numbers of arithmetic logic units (ALUs), super long instruction pipeline, simple controlling 

unit, and very limited amount of caches. Its memory access pattern is characterized by “single 

instruction multiple data” (SIMD), so it usually has very high memory throughput. Though the 

performance of each ALU in GPU is not impressive, the large “core” number leads to a great 

overall performance advantage compared to its component, i.e. central process unit (CPU). 

Central processing unit (CPU) is the heart of modern computers and is designed for more 

general purposes. It doesn’t have numbers of cores, but each core contains complex structures 

and can deliver very impressive performance. It has sophisticated controllers to reduce band 

latency via “branch prediction” and to reduce data latency via “data forwarding”. It also has 

multiple layers of cache to further reduce the data access latency. 
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Figure 3.1  (left) The architecture of GPU (right) The architecture of CPU 

 

Figure 3.1 summarizes the architectures of GPU and CPU. It’s obvious that GPU contains 

numbers of ALUs, while CPU has sophisticated ALU, controllers and plenty of caches.  

 

Figure 3.2 Floating-Point Operations per Second for the CPU and GPU 
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Most popular Monte Carlo simulation packages were targeted to execute on CPU platform 

because it’s easy to program and can achieve relative good performances. However, GPU can 

deliver much higher performance if all its ALUs can effectively utilized (see Figure 3.2). As the 

fast radiation dose calculation demands keep increasing nowadays, GPU acceleration becomes 

an attractive approach to improve the simulation performance, though it’s more much more 

difficult to tune and optimize the codes on GPU than on CPU.  

3.2 Introduction of CUDA 
For programs running on CPU, there are many high-level general-purpose programming 

languages such as Fortran, C++, etc. For a long time, however, no corresponding programming 

languages exist for generating machine codes running on GPU. In November 2006, NVIDIA 

launched “Compute Unified Device Architecture” (CUDA), a general purpose parallel 

computing platform and programming model that leverages the parallel compute engine in 

NVIDIA GPUs to solve complex computational problems in a more efficient way than on a CPU. 

This new GPU programming language is actually a full extension of C and a partial extension of 

C++. So programmers familiar with C/C++ should find it easy to write CUDA programs. In the 

following sub-sections, we will introduce the basic concepts of CUDA programming.  

3.2.1  CUDA Kernel 

A complete sample of CUDA codes usually includes two parts: GPU specific codes and general 

CPU codes. A CUDA program, like many others, starts executing the part of CPU codes, which 

should later call the GPU codes, i.e. CUDA kernels to run parallel simulations. A CUDA kernel, 

marked by __gloable__ declaration specifier, is a function that can be concurrently executed by a 

large number of GPU threads. When invoking this kernel, we must specify the number of threads 

by block number and block size within the <<<...>>> execution configuration syntax as follow: 
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(3.1) 

3.2.2  Thread Hierarchy 

There could be thousands of or even more threads executing concurrently on GPU, so it’s better 

to manage these threads in groups to maximize resource utilization. As discussed in section 3.1, 

GPU is designed in SIMD model for higher performance-power ratio. On CUDA platform, 32 

threads are grouped into a “warp” for SIMD purpose. That is, the GPU will have maximum 

performance if the 32 threads execute the same instruction code (may access different data). If 

the warp bifurcates through if/swich statements, the execution will be serialized and become less 

efficient. A number of warps are then correlated to form a “block”, which is executed on a single 

“streaming multiprocessors” (SMs) of NVIDIA’s GPU. Different blocks may be executed 

concurrently on the same SM or on several different SMs depending on available computing 

resources. Threads within a block can cooperate by sharing data through some shared memory 

and by synchronizing their execution to coordinate memory accesses. More precisely, one can 

specify synchronization points in the kernel by calling the __syncthreads() intrinsic function; 

__syncthreads() acts as a barrier at which all threads in the lock must wait before any is allowed 

to proceed. Moreover, a number of blocks form a grid, which could be one, two, or three 

dimensional.  
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3.2.3  Memory Hierarchy 

CUDA threads may access data from multiple memory spaces during their execution as 

illustrated by Figure 3.3. Each thread has private local memory. Each thread block has shared 

memory visible to all threads of the block and with the same lifetime as the block. All threads 

have access to the same global memory. 

 

Figure 3.3 Memory architecture corresponding to thread architecture in CUDA 

 

There are also two additional read-only memory spaces accessible by all threads: the 

constant and texture memory spaces. The global, constant, and texture memory spaces are 

optimized for different memory usages. Texture memory also offers different addressing modes, 
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as well as data filtering, for some specific data formats. The global, constant, and texture 

memory spaces are persistent across kernel launches by the same application. 

Global memory 

Global memory resides in device memory and device memory is accessed via 32-, 64-, or 128-

byte memory transactions. These memory transactions must be naturally aligned: Only the 32-, 

64-, or 128-byte segments of device memory that are aligned to their size (i.e., whose first 

address is a multiple of their size) can be read or written by memory transactions. When a warp 

executes an instruction that accesses global memory, it coalesces the memory accesses of the 

threads within the warp into one or more of these memory transactions depending on the size of 

the word accessed by each thread and the distribution of the memory addresses across the threads. 

In general, the more transactions are necessary, the more unused words are transferred in 

addition to the words accessed by the threads, reducing the instruction throughput accordingly. 

Global memory has the largest size (order of GB) among all the available memories on 

GPU. However, it is off-chip memory with long memory access latency (400 ~ 600 clock cycle) 

and is only cached by very small L2 cache, so the cache mechanism does not work effective as 

CPU that has multiple layers of cache structure.   

Local memory 

Local memory accesses only occur for some automatic variables. Automatic variables that the 

compiler is likely to place in local memory are: (1) Arrays for which it cannot determine that 

they are indexed with constant quantities, (2) Large structures or arrays that would consume too 

much register space, (3) Any variable if the kernel uses more registers than available (known as 

register spilling). 
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The local memory space resides in device memory, so local memory accesses have same 

high latency and low bandwidth as global memory accesses and are subject to the same 

requirements for memory coalescing. Local memory is however organized such that consecutive 

32-bit words are accessed by consecutive thread IDs. Accesses are therefore fully coalesced as 

long as all threads in a warp access the same relative address (e.g., same index in an array 

variable, same member in a structure variable). 

Shared memory 

Because it is on-chip, shared memory has much higher bandwidth and much lower latency (20 ~ 

40 clock cycle) than local or global memory. To achieve high bandwidth, shared memory is 

divided into equally-sized memory modules, called banks, which can be accessed simultaneously. 

Any memory read or write request made of n addresses that fall in n distinct memory banks can 

therefore be serviced simultaneously, yielding an overall bandwidth that is n times as high as the 

bandwidth of a single module. However, if two addresses of a memory request fall in the same 

memory bank, there is a bank conflict and the access has to be serialized. The hardware splits a 

memory request with bank conflicts into as many separate conflict-free requests as necessary, 

decreasing throughput by a factor equal to the number of separate memory requests. If the 

number of separate memory requests is n, the initial memory request is said to cause n-way bank 

conflicts. BTW, the size of shared memory for each SM is 64 KB or 96KB for latest NVIDIA 

GPUs. 

Constant Memory 

The constant memory space resides in device memory and is cached in the constant cache. A 

request is then split into as many separate requests as there are different memory addresses in the 

initial request, decreasing throughput by a factor equal to the number of separate requests. The 
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resulting requests are then serviced at the throughput of the constant cache in case of a cache hit, 

or at the throughput of device memory otherwise. The size limit of constant memory for single 

CUDA instance is 64 KB, and the size of cache behind it is merely 8 KB. 

Texture and Surface Memory 

The texture and surface memory spaces reside in device memory and are cached in texture cache, 

so a texture fetch or surface read costs one memory read from device memory only on a cache 

miss, otherwise it just costs one read from texture cache. The texture cache is optimized for 2D 

spatial locality, so threads of the same warp that read texture or surface addresses that are close 

together in 2D will achieve best performance. The texture cache is actually shared with L1 cache, 

whose size is 24 KB. 

3.2.4  Difficulties of GPU programming 

Firstly, modern GPUs are designed in SIMD (single instruction multiple data) architecture 

instead of MIMD (multiple instruction multiple data) due to efficiency and complexity reasons. 

If threads diverge to different instruction flows through if/switch statements, the GPU work 

scheduler will simply execute the instruction flow in series and become less efficient. In general, 

more deeply nested diverging statements will result in lower efficiency. However, the algorithms 

behind each particle interaction are typically very sophisticated and the bifurcation caused by 

if/switch statements occurs frequently.  

Secondly, GPU programming needs to handle several types of memories so it’s not 

convenient as CPU which has unified memory access model. The memory hardware in GPU is 

not ideal for Monte Carol simulation either. The largest device memory (~GB) is only cached by 

a very small L2 cache, and so cache miss happens frequently and thus causes a long memory 

accessing latency. Shared and constant memories are hundreds of times faster than device 
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memory, but have a size (~KB) far less than that is necessary for Monte Carlo simulation that 

usually include large material data tables.  

Therefore, we need to design dedicated MC algorithms suitable for GPU’s SIMD feature 

and allocated the scarce fast memory carefully to improve the simulation efficiency. 

3.3 Prototype: PENELOPE 
It is obviously unwise to build a complex MC system from scratches. Instead, we should pick 

one mature MC system as prototype and develop GPU implementation based on it. In chapter 1, 

we introduced several outstanding “accuracy-oriented” Monte Carlo packages such as MCNP [10], 

Geant4[11], EGS4/EGSnrc [13], and PENELOPE [12]. Among these we choose PENELOPE as 

the prototype for five compelling reasons as follows: 

(1) It has a compact simulation kernel of roughly 3,000 FORTRAN lines. This saves a lot of 

work when adapting PENELOPE to GPU version. 

(2) It has been well validated by various experiments. This guarantees the GPU version is also of 

high accuracy. 

(3) It includes very detailed documents. We can easily find everything about the physics model 

and codes implementation details behind it. 

(4) It includes build-in support of simulation of charged particles in magnetic field. The 

ViewRay’s MRIdian platform we are working on introduced a 3.5 Tesla magnetic field for 

MR imaging. It’s convenient to have a module to refer to when building our own MC engine.  

(5) It covers 280 common materials and can generate data tables for new materials via 

composing from weighted elements.  
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Items (1) and (2) are the key reasons for PENELOPE to win over other opponents, and the rest 

offer us more convenience to develop the clinically applicable GPU MC system. We name it as 

gPENELOPE in order to honor the contribution of the original PENELOPE codes. 

3.4 PENELOPE in C++: cPENELOPE 
PENELOPE was implemented in FORTRAN 77 with an archaic programming style (e.g. many 

antiquated “GOTO” statements). Although GPU programming for FORTRAN is available 

through the PGI compiler (via collaboration with NVIDIA), it lacks good object-oriented 

programming support and some general libraries, so convenient features like batch work and file 

compression cannot be implemented easily. Moreover, as the MRIdian head model was 

developed in C++, rewriting the PENELOPE kernel in C++ first will more readily enable its 

application to MRIdian platform. In this section, we will discuss the how to translate 

PENELOPE into C++ language, i.e. cPENELOPE, and the method to validate the build. 

3.4.1  Rewrite PENELOPE in C++ 

To build PENELOPE in C++, we first extracted all relevant material data tables to a class called 

Material, and assigned shared data to global variables. All “jump” and “knock” functions were 

rewritten as member functions of this class in an optimized logic sequence. The lengthy code for 

generating data tables (over 7,000 lines) did not need to be translated to C++; instead, we added 

an interface function in PENELOPE that we compiled to a DLL module. We can call this DLL in 

C++ to preprocess materials and export the relevant data table to a file that will be addressed to 

memory by the C++ code later.  

The original PENELOPE only supports single–thread processes, while multithreading 

through OpenMP is necessary to fully exploit modern multi-core CPUs. We ensure that all 

kernel functions are thread-safe by managing thread-related variables accordingly in a single 
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class. We additionally exploit MPI (with a set of workload balancing functions for optimizing 

overall performance) to enable parallel simulation on a distributed network. The random number 

generators (RNGs) are kept thread-private and are initiated with independent seeds, which are 

provided by a different type of RNG (e.g. 16807 RNG [24]) in our implementation. 

3.4.2  User-friendly features 

The original PENELOPE configuration file has strict formatting restrictions that consequently 

require changes to the source code when adding or deleting certain configuration items. We thus 

developed an elegant script module that supports “C"-style free writing, declaring nested cells, 

and macro definitions for ease of use (Figure 3.4). 

 

Figure 3.4 The sample of “C”-style configuration script 

A powerful log module was also developed to manage file records, run batch tasks, 

implement dose reuse, and provide e-mail notifications. We also developed a binary file manager 

module powered by real-time compressing and decompressing algorithms (lz and quicklz) to 
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handle large phantom and dose output files that would otherwise cost a lot of storage space and 

bandwidth for synchronizing remote simulations. 

3.4.3  Transport in heterogeneous phantom 

The original PENELOPE was originally designed for simulation in homogenous materials. 

However, the heterogeneous phantoms captured from CT scan of human body is more common 

in radiation therapy. These phantoms can be approximated by a 3D density grid made up of 

numbers of tiny homogenous cubic voxels (order of mm width). Then PENELOPE is able to 

simulate particle transport in this grid through a dedicated boundary crossing (BC) algorithm. 

However, the computation cost of BC algorithms is usually not cheap, and a better algorithm 

called Woodcock tracking [40] was invented to avoid boundary crossing of photons.  

For photon simulation, we added Woodcock tracking to the original PENELOPE to treat a 

heterogeneous phantom as uniform. In order to obtain an invariant MFP λ = 𝑚0/(𝜌𝑖σ) across 

the whole phantom (𝑚0 is the molecular mass, 𝜌𝑖 is the voxel density, and σ is the total 

scattering cross-section), we add a virtual scattering cross-section 𝜎𝑖 in each voxel i to maintain 𝜌𝑖(𝜎 + 𝜎𝑖) = 𝜌max 𝜎 constant everywhere. Then the probability for this virtual scattering to 

happen is p(𝜎𝑖) =  𝜎𝑖𝜎 + 𝜎𝑖 = 1 − 𝜌𝑖𝜌max (3.2) 

If this virtual interaction is sampled during a “knock” event, we just continue to propagate the 

photon without changing direction or losing energy since the virtual event is not real. A 

shortcoming of this technique is that it could result in low efficiency for a phantom composed 

mainly of low density material (e.g. lung) because the virtual interaction will most likely be 

sampled thus wasting random numbers without any energy transfer. We thus instead try to 
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improve the sampling efficiency by forcing the real interactions to always happen, with the 

secondary particles’ weight reduced by factor 𝜌𝑖/𝜌𝑚𝑎𝑥  and only 𝜌𝑖/𝜌𝑚𝑎𝑥 of the primary photons’ 

status (energy and direction) being changed. This ensures the probability distribution of 

deposited energy is unbiased. 

For electron and positron simulation, PENELOPE applied the “mixed” condensed history 

scheme, which treats large energy transfer collisions in an analogue way and uses the continuous 

slowing down approximation (CSDA) [41] to model small-loss collisions. Since the CSDA range 

s̄ is much smaller than the photon’s mean free path , we implemented a simple grid detection 

algorithm to trace the CSDA jump between heterogeneous voxels. Unlike photons, electrons and 

positrons will cross just a few voxels before being completely stopped. Though soft collisions 

occur at a high frequency, most of these are determined not to cross the voxel boundary by a 

rapid test that roughly estimates the nearest distance to the boundary, and so the necessary time 

for calculating exact crossing points at voxel boundaries is actually not expensive. 

3.4.4  Transport in magnetic field 

Given that the CSDA range s̄ of electrons and positrons is typically very small, the magnetic 

field in each voxel can be treated as uniform in most applications. The particles will undergo 

spiral motion in a uniform field B at the relativistic angular velocity 

𝜔→ = − 𝑒 𝐵→𝛾𝑚𝑒 (3.3) 

where e denotes elementary charge, me is electron mass, and γ is the Lorentz factor. The 

corresponding location after advancing length s in a uniform phantom can be easily evaluated as 

shown in the PENELOPE user manual to be 

𝑟→(𝑠) = 𝑟→0 + 𝑠𝑣̂0 − 𝑠𝑣0 𝑣→0⊥ + 1𝜔 [1 − cos (𝑠𝜔/𝑣0)](𝜔̂×𝑣→0⊥) + 1𝜔 sin (𝑠𝜔/𝑣0)𝑣→0⊥ (3.4) 
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where r0 is the initial particle location and v0 is the particle velocity (with v0⊥ being the velocity 

component perpendicular to B). For a heterogeneous voxelized phantom, however, the 

intersection between the spiral curve and the voxel boundary must be calculated due to variation 

of the density in each voxel. Accurate evaluation is messy and inefficient due to many inverse 

trigonometric function calls. As the CSDA range s̄ is relatively small in comparison to the spiral 

radius R, we can approximate the spiral motion by small straight-line segments that change 

direction gradually. Taking the allowed error in one segment move to be max, the maximum 

segment length sm is expressed as 𝑠𝑚 = √(𝑅 + Δ𝑚𝑎𝑥)2 − 𝑅2 ≈ √2𝑅Δ𝑚𝑎𝑥 (3.5) 

If s > sm, we only advance a distance sm and change direction by angle θ ≈ sm/R (continuing until 

s is exhausted). This straight-line advancing procedure uses the same voxel tracking 

implementation as the situation without magnetic field. While moving a distance s may cross a 

voxel boundary, the particle direction may point back to the original voxel when v ∙ (v + dv) < 0, 

and so the current voxel index must be corrected accordingly. 

3.4.5  Validate cPENELOPE 

Before adapting the C++ implementation onto a GPU, we must validate that the C++ version 

produced identical results to the original FORTRAN code. We setup a simple cone beam 

incident on a cubic water phantom (Figure 3.5), ran the two versions with various incident 

energies, angles, and cutoff energies in single-thread mode, and then exported the particle status 

of 108 serial steps for comparison. Considering the possible runtime library differences between 

C++ and FORTRAN, we set the allowed error of position, direction, and energy for each step to 

be 10-10 cm, 10-10 and 10-10 keV, respectively. We obtained 100% identical step-status outputs, 

suggesting that our C++ code is completely equivalent to the original FORTRAN code.  
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Figure 3.5 The setup with cone beam and cubic water phantom to test the output of cPENELOPE 

 

3.5 cPENELOPE to gPENELOPE 
Upon confirming the integrity of our C++ code, we proceeded to port the C++ code to CUDA, a 

C-extended GPU programming language. Though CUDA greatly simplified parallel 

programming on GPUs, it suffers from two main restrictions introduced in section (3.24) when 

comparing to CPU programming. As the PENELOPE includes sets of very large data table, it’s 

very difficult to optimize the memory access pattern. Therefore we decided to devote the 

majority of our effort to reduce the thread divergence by designing dedicated workflow 

optimized for GPU. 

3.5.1  GPU workflow 

In all Monte Carlo codes, instruction divergence is common so we aim to improve efficiency by 

minimizing the number of nested diverging statements in each CUDA kernel function. Instead of 

organizing all the simulation code in one kernel function, we decided to split the code into 

several independent kernel functions which process different types of scattering events and let 

the CPU call these kernel functions in a loop within a main function as shown in Figure 3.6. 
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Figure 3.6 Workflow of gPENELOPE including (a) Initialization (b) Generate photons (c) Copy photons 

to GPUs (d) GPU kernel calls: RA, CO, PH and PP are short for Rayleigh, Compton, photoelectric and 

pair production while EL, IN, BR, SI, AN are short for elastic, inelastic, bremsstrahlung, shell ionization 

and annihilation respectively. The “kernel-by-kernel” calls in sequence can help reducing instruction 

divergence. (e) Clean up. 

 

As shown in Figure 3.6(a), the program reads and parses the configuration file which 

includes details regarding the GPU devices, phantom (geometry and materials), and source head. 

The program then calls a DLL (see section 3.4.1) to generate necessary data tables for relevant 

materials. These data and phantom information are then copied to GPU device memory with 

pointers to large arrays and some small data tables being copied to constant memory on the GPU 

instead for improving accessing speed. In addition, a random number generator and particle stack 
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is initiated for each GPU thread. As our workstation includes multiple GPU cards, we next 

launch multiple threads through OpenMP to call GPU kernel functions on each card 

simultaneously. 

Meanwhile, the main thread launches another thread calling the vender-provided head 

source module to prepare incident photons as shown in Figure 3.6 (b). As specified in Figure 

3.6(c), photons are then copied to the main GPU and in turn transferred to other GPUs in order to 

save I/O time. The GPU kernel function start() is then called to guide photons to the phantom via 

free propagation. As summarized in Figure 3.6(d), distinct “jumping” kernels for photons and 

charged particles are called to advance relevant particles and label them with the type of 

interaction that will happen next. These interaction kernel functions are called sequentially such 

that particles labeled with a different interaction type will simply exit their threads. Though this 

schedule does not completely resolve the instruction divergence problem, it lowers the level of 

nested diverging statements, and thus reduces the total pausing time. After all interaction kernels 

finish, we refill the current particle variable either from the stack storing secondary particles or 

the incident photon buffer array, thus improving efficiency by enabling constant renewal of 

particles on all threads. 

In addition, we provide an option for toggling positron simulation as the primary photon 

energy of 60Co is just slightly higher than the threshold for pair production (twice the electron 

rest mass). We also allow for source particle reuse as occasionally the head model lags the GPU 

and cannot provide new particles at a sufficient rate. Our simulation comparisons show that the 

dose differences in “hot areas” (D > 10%  Dmax) caused by reusing source particles are almost 

totally (99.73%) within the targeted 1% uncertainty for a large (109) history number. Moreover, 
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we setup the RNGs to refill their buffers after N loops in order to reduce instruction divergence, 

where N is the average number of loop iterations when an RNG buffer is exhausted. 

3.5.2  MRIdian head model 

The vendor-provided MRIdian head model provides phase space data including the energy 

spectrum and flux for a given solid angle for the 60Co source. Each IMRT beam consists of a 

collection of segments configuring the MLC shape and beam-on time. In our code, each segment 

is treated as a simulation unit and the history number assigned to each unit is weighted by its 

beam-on time. The MLC shape determines how many photons will be exported from the 60Co 

head for each history, which is a non-fixed number due to the patient-specific MLC 

configuration.  

To maximize its efficiency, the GPU should process a fixed number N of photons per batch. 

Therefore, we designed a class to buffer the photons supplied by the head in a multi-threading 

queue such that N photons are fetched in a batch by the GPU when the class is filled with 

slightly over N photons. The excess photons are then moved to the head of the queue to continue 

the buffering. 

3.5.3  Performance benchmark 

The hardware for our tests is a server that includes an Intel Xeon E5 2630 v3 CPU and an 

NVIDIA Tesla K80 GPU card. The CPU can provide 16 true simultaneous threads, giving an 

overall processing rate of 47 thousand histories per second. The GPU achieves a simulation rate 

of 245 thousand histories per second, which is about 5 times faster than the CPU platform. In 

other words, gPENELOPE can finish simulating one treatment plan in one hours while 

cPENELOPE has to spend 5~6 hours. Considering the original PENELOPE engine only supports 

one thread, our GPU code can roughly accelerate PENELOPE by a factor of 80.  
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3.6 Validate gPENELOPE 
Before gPENELOPE can be used any application, we must verify that it keeps the same accuracy 

of the original PENELOPE. In this section, we will define the criteria of comparing two sets of 

3D dose, and perform single-thread and multi-thread dose comparisons to prove gPENELOPE 

works as we expected. 

3.6.1  3D dose comparisons 

For 3D comparisons, we use both gamma passing rates and statistical histograms to reveal 

differences between Monte Carlo systems. The gamma index for each voxel 𝑟 is defined by [42]   

γ(𝑟) = min{Γ(𝑟, 𝑟′)} ∀{𝑟′}, 
Γ(𝑟, 𝑟′) = √|𝑟 − 𝑟′|2Δ𝑑2 + (𝐷(𝑟) − 𝐷′(𝑟′))2Δ𝐷2  

(3.6) 

where |𝑟 − 𝑟′| represents the distance between voxels 𝑟 and 𝑟′, Δ𝑑 is the distance-to-agreement 

(DTA) value, and Δ𝐷 is the dose tolerance value. We label a gamma index at voxel 𝑟 as passing 

if γ(𝑟) ≤ 1.0, and count the passing rate for those voxels where D(𝑟) > 𝑡 · 𝐷𝑚𝑎𝑥, where 𝑡 is a 

dose threshold. Higher gamma passing rates for smaller Δ𝑑 and Δ𝐷 tolerances usually suggest 

stronger agreement between two dose distributions. Here we use strict criteria (DTA = 0, i.e. 

grid-to-grid comparison, Δ𝐷 = 0.5𝐷𝑚𝑎𝑥, threshold D(𝑟) > 0.1𝐷𝑚𝑎𝑥) to amplify the differences 

as the three Monte Carlo engines behave quite similarly to each other. 

A statistical histogram, on the other hand, visually indicates the distribution of dose 

differences spanning all voxels. Here we define a statistical variable z-score for each voxel as 

z(𝑟) = 𝐷𝑡𝑒𝑠𝑡(𝑟) − 𝐷𝑟𝑒𝑓(𝑟)𝐷𝑟𝑒𝑓(𝑟) ∙ 1𝜎𝑡𝑜𝑡 (3.7) 
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where 𝐷𝑡𝑒𝑠𝑡(𝑟) and 𝐷𝑟𝑒𝑓(𝑟) are test and reference dose at voxel 𝑟 respectively, and 𝜎𝑡𝑜𝑡 is the 

standard deviation of the distribution (𝐷𝑡𝑒𝑠𝑡(𝑟) − 𝐷𝑟𝑒𝑓(𝑟))/𝐷𝑟𝑒𝑓(𝑟) spanning all voxels, which 

functions as a normalization factor and an indicator of the difference level. If two engines are 

identical, the histogram of z-scores will be a standard Gaussian distribution, and 𝜎𝑡𝑜𝑡 will 

approach√𝜎𝑡𝑒𝑠𝑡2 + 𝜎𝑟𝑒𝑓2 , where 𝜎𝑡𝑒𝑠𝑡 and 𝜎𝑟𝑒𝑓 are the uncertainties achieved by the two 

algorithms in question. 

Aside from accuracy, we also performed detailed efficiency comparisons between Monte 

Carlo engines. Since the uncertainty 𝜎 is approximately proportional to 1/√𝑁 where 𝑁 is the 

history number which is in turn proportional to simulation time T, i.e. 𝜎 ≅ 1/√η𝑇, we define 

this constant of proportionality η as the calculation efficiency: 

η ≅ 1𝜎2𝑇 (3.8) 

As the dose uncertainty 𝜎𝑖 varies by voxel, 𝜎 is calculated by squared root averaging, i.e. 

𝜎 = √∑ 𝜎𝑖2𝑁𝑖=1𝑁  (3.9) 

where 𝑁 is the number of voxels whose dose is above a given threshold (D(𝑟) > 0.1𝐷𝑚𝑎𝑥 in our 

tests). 

3.6.2  Comparisons in single thread 

In section 3.4.5, we showed that C++ PENELOPE performs equivalently to the original code 

written in FORTRAN by a detailed step-by-step comparison. Here we apply a similar approach 

to convincingly show that gPENELOPE performs equivalently to C++ PENELOPE in single-

thread operation. We simulate a complex lung IMRT plan (shown in Figure 3.7) using both 
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platforms and output particle statuses (position, velocity and energy) in 107 knocking steps for 

comparison. The maximum and average differences are summarized in Table 3.1. The energy 

difference |dE| is negligible in comparison to the incident energy (>1 MeV). 

 

Table 3.1 Particle status differences of 107 steps between gPENELOPE and C++ PENELOPE 𝑚𝑎𝑥(|𝑑𝑥⃗|) = 1.42×10−8𝑐𝑚 𝑚𝑎𝑥(|𝑑𝑣|) = 1.82×10−9 𝑚𝑎𝑥(|𝑑𝐸|) = 2.25×10−5𝑒𝑉 𝑚𝑒𝑎𝑛(|𝑑𝑥⃗|) = 4.54×10−14𝑐𝑚 𝑚𝑒𝑎𝑛(|𝑑𝑣|) = 1.26×10−14 𝑚𝑒𝑎𝑛(|𝑑𝐸|) = 7.29×10−9𝑒𝑉 

 

We additionally run 106 histories to check differences in dose distributions directly, which 

turn out to be max(|dD|) = 7.63  10-5 Gy, mean(|dD|) = 6.78  10-8 Gy, σ(dD) = 7.17  10-7 Gy. 

The prescription dose for this patient is 50 Gy. That is, the maximum relative dose error is 1.36  

10-9. Considering the possible runtime library differences between the GPU and CPU, the status 

tracking and dose deposition comparisons together show that gPENELOPE and C++ 

PENELOPE can effectively be considered identical in single-thread mode.  

 

   

Figure 3.7 Dose distributions for a lung case calculated by C++ PENELOPE (left) and gPENELOPE 

(middle). The two distributions are identical within 1%. The frequency distribution of z-scores in 

comparison to a standard normal distribution (right). 
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3.6.3  Comparisons in multithreads 

Though impractical to compare particle status with gPENELOPE in multi-threaded operation 

(considering thousands of threads simultaneously), we can compare dose distributions generated 

by gPENELOPE and C++ PENENLOPE directly. We thus run a large number of histories (4  

109) to ensure that the target area (D > 10%  Dmax region) reaches less than 0.5% uncertainty so 

that the maximum allowed difference would be less than 1% if gPENELOPE behaves 

equivalently to C++ PENELOPE. Comparing doses in these voxels, we found that 

max(|𝑑𝐷|)max(𝐷𝑟𝑒𝑓) = 0.93%, 𝑚𝑒𝑎𝑛(|𝑑𝐷|)max(𝐷𝑟𝑒𝑓) = 0.12%, 𝜎(𝑑𝐷)max(𝐷𝑟𝑒𝑓) = 0.15% (3.10) 

where 𝐷𝑟𝑒𝑓 is the dose calculated by C++ PENELOPE. The results indicate the equivalency 

assertion between gPENELOPE and PENELOPE is valid. In addition, we compared the 

frequency distribution of z-scores to a standard normal distribution as shown in Figure 3.7(c). 

This comparison indicates that the z-score distribution follows a standard normal distribution. 

Since gPENELOPE is effectively equivalent to C++ PENELOPE in single-thread mode, 

and dose distributions generated by the two agree well within expected statistical uncertainties in 

multi-thread operation, we safely deduce that gPENELOPE is a faithful adaptation of 

PENELOPE that does not compromise accuracy. 

3.7 Application 1: validate MRIdian head model 
Beyond demonstrating that the gPENELOPE simulation kernel is both fast and accurate, we 

must confirm that the entire validation system is correctly modeled (especially the 60Co head) in 

order to ensure safe deployment in the clinic. We thus investigate several vital comparisons to 

experimental measurements to validate its overall accuracy. 



54 
 

3.7.1  Depth dose 

Measurements were performed in a cubic water phantom (303030 cm3) placed at SSD = 100 

cm using small, medium and large field sizes (4.24.2 cm2, 10.510.5 cm2 and 27.327.3 cm2). 

The data was collected using an Extradin A18 ion chamber. Note that the chamber is manually 

positioned at different depths as an MRI compatible beam scanning device is not commercially 

available now. Considering the cylindrical dimensions of the ion chamber (radius = 2.5 mm, 

height = 6.4 mm), we set the voxel size of the phantom to be 333 mm3 in simulation, and run 

109 histories to ensure sufficiently small statistical uncertainty (<0.5% for D > 50%Dmax region). 

Figure 3.8 (a) shows comparisons between simulation and experimental data, yielding less than 1% 

difference. 

3.7.2  Off-axis profile 

We used EBT2 radiochromic films placed at depths of 5, 10 and 15 cm to sample planar doses 

for comparisons to simulation results. As shown in Figure 3.8 (b) (c) (d), the simulated dose 

profiles agree well with measured data to within 2% or 2 mm distance-to-agreement (DTA). 
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(a)  (b) 

 
(c) (d) 

Figure 3.8 Percentage-depth-dose comparisons between gPENELOPE and ionization chamber 

measurement (spline interpolated) for field sizes 4.24.2, 10.510.5 and 27.327.3 cm2 at 100 cm SSD 

(a). Off-axis profile comparisons between gPENELOPE and radiochromic film measurement for field 

sizes 2.12.1, 4.24.2, 10.510.5, and 21.021.0 cm2 at depths of 5 (b), 10 (c) and 15 cm (d) at 100 cm 

SSD. 

 

3.7.3  Output factor 

Both square and rectangular field output factor measurements were performed in a cubic water 

phantom (303030 cm3) placed at SSD = 100 cm. The Extradin A18 ion chamber was placed at 

5 cm below the surface, i.e. the isocenter. Note that in order to verify the small field output factor, 
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we closed the central ten leaves incrementally from 10.5 to 0.6 cm, as recommended by 

ViewRay. As shown in Table 3.2, the calculated output factors match well with experimental data 

(<2%). 

Table 3.2 Output factor comparison for square and rectangular fields 

Field shape Size (cm2) OF (gPEN) OF (Exp) Diff. (%) 

Square field 

4.2  4.2 0.8839 0.8780 0.67 

6.3  6.3 0.9414 0.9380 0.36 

10.5  10.5 1.0000 1.0000 NA 

14.7  14.7 1.0293 1.0410 -1.12 

27.3  27.3 1.0624 1.0700 -0.71 

Rectangular field 

0.6  10.5 0.2103 0.2070 1.58 

0.8  10.5 0.2839 0.2825 0.51 

1.0  10.5 0.3607 0.3568 1.08 

1.5  10.5 0.5256 0.5246 0.19 

2.0  10.5 0.6741 0.6721 0.30 

2.5  10.5 0.7953 0.7859 1.19 

3.0  10.5 0.8730 0.8583 1.71 

4.0  10.5 0.9222 0.9119 1.13 

6.0  10.5 0.9636 0.9582 0.56 

8.0  10.5 0.9837 0.9822 0.16 

10.5  10.5 1.0000 1.0000 NA 

 

3.7.3  AAPM TG-119 

The AAPM Task Group 119 (TG-119) recommends that six cases be considered (two non-IMRT 

and four IMRT) for IMRT commissioning, including AP-PA, Bands, Multi-target, C-shape, 

Head & Neck, and Prostate. These treatment plans were planned using MRIdian’s inverse 

treatment planning system and delivered to a 303015 cm3 water-equivalent plastic phantom 

containing ionization chambers and EDR2 radiographic film. 

TG-119 point dose 
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All point dose measurements were made using an ADCL calibrated ionization chamber (Extradin 

A18). The dose at each plan’s isocenter (except C-shape) is measured to evaluate high dose 

accuracy while a few adjacent points are chosen to examine low dose accuracy. 

 

Table 3.3 TG-119 point dose comparisons: gPENELOPE vs. ionization chamber (IC) 

TG-119 plans Location IC (Gy) gPENELOPE (Gy) Diff. (%) 

AP-PA Isocenter 1.988 1.991 0.16 

Bands Isocenter 1.422 1.426 0.31 

Multi-target Isocenter 2.085 2.058 -1.29 

Multi-target 4 cm superior 1.062 1.038 -2.22 

Multi-target 4 cm inferior 0.621 0.593 -4.43 

C-shape 2.5 cm anterior 2.152 2.131 -0.96 

C-shape 1 cm posterior 0.917 0.882 -3.77 

Head & neck Isocenter 2.215 2.265 2.26 

Head & neck 5 cm posterior 0.917 0.919 0.27 

Prostate Isocenter 1.817 1.85 1.82 

Prostate 4.5 cm posterior 0.372 0.374 0.62 

 

Table 3.3 compares calculated doses from gPENELOPE to experimental measurements. For 

flat high-dose regions, gPENELOPE gives excellent agreement with measurements (error < 0.31% 

for non-IMRT plans, and error < 2.26% for IMRT plans). All results for the low-dose points are 

within the TG-119 confidence limit of 4.5%, with Multi-target (4 cm inferior) and C-shape (1 cm 

posterior) yielding the largest discrepancies. By examining the dose distributions, we find that 

the two points are located in high-gradient regions (c.f.  Figure 3.9(e), (f)) where small chamber 

positioning error could induce large measurement difference. For these two cases, we use DTA 

instead to evaluate gPENELOPE performance where we search around the dose matrix grid with 

interpolation to find the nearest point that has the exact same dose as measurement, with DTA 
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defined as the distance from this point to the measurement point. Calculated DTAs are less than 

half of the voxel size (0.91 and 1.42 mm, respectively). 

TG-119 film dose 

For the 6 plans listed above, radiographic film measurements were made at the isocenter parallel 

to the coronal plane. Films were digitized and then exported to perform gamma analysis using 

gamma parameters recommended by TG-119: (a) absolute dose comparison, (b) 3% dose 

difference threshold, (c) global normalization for percent dose difference, (d) 3 mm DTA 

threshold, and (e) 10% low dose threshold. The gamma passing rates are 100.0%, 96.2%, 95.5%, 

97.7%, 99.9% and 94.4% for AP-PA, Bands, C-shape, Head & neck, Multi-target and Prostate 

cases respectively, yielding a mean value of 97.3%  2.3% (1 SD), which is within the TG-119 

recommended confidence limit of 88%.  Figure 3.9 summarizes the agreement between 

gPENELOPE and experiment using isodose line overlay. For IMRT plans, only the low dose 

contours (around 10%) show relatively obvious disagreements. 
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Figure 3.9 Isodose and profile comparison between gPENELOPE and radiographic film measurement: (a) 

AP-PA, (b) Prostate, (c) C-shape, (d) Multi-target, where solid lines represent gPENELOPE and dashed 

lines represents film measurement. (e) Profile of C-shape along the right-to-left central axis, (f) Profile of 

Multi-target along the inferior-to-superior central axis. Note that the circled points are located in the high 

gradient region. 

 

3.8 Application 2: Magnetic effect on MRIdian 
By integrating an MR scanner into the radiation delivery system, the MRIdian system must 

consider magnetic field effects on dose distributions. Raaijmakers [43] performed a detailed 

simulation study using Geant4 of magnetic field effects on dose distributions for a 6 MV LINAC 

beam. Although the field strength of the MR scanner on MRIdian is relatively weak (0.35 T), the 
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electron return effect (ERE) might still be non-trivial because the lower energy of a primary 

photon from the 60Co source tends to result in a smaller spiral radius. 

 
 

(a) 
 

(b) 

 
(c) 

Figure 3.10 Water-lung-water phantom, 60Co beam and magnetic field configuration. Voxel size is 1× 1×1 

mm3. (b) Central axis depth dose profiles. Larger magnetic field results in larger dose distortion. (c) Dose 

distributions for configuration in (a) at indicated magnetic field strengths. 

 

In homogeneous phantoms, dose distortion caused by ERE is generally negligible; however 

it will become apparent in heterogeneous phantoms at the interfaces. Here we simulate the 

radiation delivery for a 101016 cm3 water-lung-water phantom, where the lung tissue is 

represented by an 8 cm slab of water with a density of 0.25 g/cm3 (Figure 3.10  (a)). A 4.24.2 

cm2 60Co beam consisting of 109 photons was incident on the phantom, and a small dose scoring 
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voxel size was set to 111 mm3 to probe for dose distortion. The simulation was repeated with 

0.35, 0.75, 1.5 and 3 T magnetic field strengths and the corresponding central axis depth dose 

profiles were compared as shown in Figure 3.10 (b). The results are similar to those of 

Raaijmakers except that the distortion layer is much thinner than for the 6 MV LINAC beam. 

The dose wash images in the x-z plane are presented in Figure 3.10 (c). Besides stronger dose 

accumulation effect, the lateral dose shift will also become more obvious as the magnetic field 

strength goes up. 

The simulation suggests that the 0.35 T magnetic field has a minor effect on the dose 

distribution in a heterogeneous phantom (spike-shape dose accumulation < 3% of max dose 

within a 3 mm thin layer accompanied by a 1 mm lateral shift), which is consistent with Wooten 

et al. [44]’s experimental results using radiographic film. Wooten et al. noted that such 

perturbation effect would be mitigated by multiple overlapping beams, as in the case of an IMRT 

plan for instance. It is interesting that this effect would become almost imperceptible when the 

voxel size increases to 333 mm3, which is the voxel size that most clinics use in treatment 

planning. 

3.9 Application 3: validate MRIdian’s treatment plans 
The KMC algorithm on the MRIdian TPS adopted many approximations and variance reductions 

[39] to increase calculation speed. KMC’s accuracy should thus be confirmed using a third-party 

Monte Carlo system devoid of approximations through 3D dose comparisons. Thus we selected 

16 recent patient plans (from the ViewRay patient registry at Washington University in St. Louis) 

created by the MRIdian TPS with treatment sites including stomach (4), lung (2), liver (3), 

adrenal gland (2), pancreas (2), spleen (1), mediastinum (1), and breast (1). 3D gamma analysis 

results (2%/2 mm DTA and 10% threshold criteria) and histograms of z-scores (in comparison to 
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standard normal distributions) are listed in Table 3.4. The table shows that KMC matches 

gPENELOPE well (15 out of 16 plans with dose gamma passing rates  98% and most closely 

fitting Gaussian distributions) except that KMC occasionally tends to result in a little higher dose 

than gPENELOPE. Some z-score distributions (second lung case, first pancreas case, and the 

breast case) are noticeably offset from the standard distribution, thus indicating that the physical 

modeling is somewhat affected by the approximations and variance reductions implemented by 

KMC for calculating a complex 60Co IMRT plan. The statistical gamma passing rates are as high 

as 99.1%  0.6% for the two dose distributions, proving that KMC generally predicts dose 

consistent with our “accuracy-oriented” Monte Carlo engine. During MRIdian’s commissioning, 

Wooten et al. designed a custom heterogeneity phantom to acquire ionization chamber 

measurements [44]. They report that the mean ionization chamber measured dose for 27 

measurements for 5 plans is within 1% vs. KMC. 

 

Table 3.4 Gamma passing rates (2%/2 mm and 10% threshold) and z-scores distributions comparing 

gPENELOPE and MRIdian’s KMC 

Stomach  = 97.7% Stomach  = 98.6% Stomach  = 99.0% Stomach  = 99.4% 

Lung  = 99.6% Lung  = 98.8% Liver  = 99.7% Liver  = 99.3% 
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Liver  = 99.9% Adrenal  = 99.1% Adrenal  = 98.5% Pancreas  = 98.7% 

Pancreas  = 98.5% Spleen  = 99.4% Mediastinum  = 99.2% Breast  = 99.4% 

  

3.10 Discussion and conclusion 
The recent clinical use of the MRIdian radiation therapy system represents a significant advance 

in cancer care, enabling clinicians, for the first time, to deliver highly conformal IMRT with real-

time MRI guidance. However, the rapid advances in the technology to deliver such radiation 

treatments seem to have not been paralleled by corresponding advances in the ability to verify 

these treatments subject to a permanent magnetic field. For conventional IMRT, despite its 

widespread utilization at modern radiation therapy clinics, precise dosimetric commissioning 

remains a challenge [45]. In the era of MRI- guided IMRT, the permanent magnetic field is 

augmenting another dimension of error and uncertainty to the already error-prone IMRT process.  

As a result of many limitations to experimental approaches, largely due to the dearth of 

appropriate multidimensional water-equivalent dosimeters, a hybrid approach that includes a 

computational component is needed for MRI-IMRT commissioning and validation. For example, 

Ding et al. [46] studied the feasibility of using a Monte Carlo method to commission stereotactic 

radiosurgery beams shaped by micro multi-leaf collimators. This hybrid approach is especially 
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valuable for MRI-IMRT where the Monte-Carlo method may be the only method that is capable 

of dealing with complex dose deposition in a heterogeneous medium subject to a magnetic field 

[47, 48].  The Monte-Carlo methods like KMC, on the other hand, may require many 

approximations in order to be practical in the clinic, and these approximations may not be 

thoroughly communicated to an end-user for proprietary reasons. We therefore developed a fast, 

GPU-accelerated Monte Carlo dose calculation system based on PENELOPE. Unlike some other 

GPU implementations, the accuracy of our adaptation is at the same level as the original code. 

Our implementation achieved 80 times faster speed than the original PENELOPE 

implementation. Furthermore, we integrated the 60Co head model of the MRIdian system into our 

system and performed a series of experimental benchmarks to examine the accuracy of the entire 

system. Finally, when comparing to MRIdian’s KMC for a number of patients that span multiple 

disease sites, an average of 99.1%  0.6% gamma passing rates at 2%/2 mm provides another 

layer of confidence in treating patients that may benefit from IMRT with simultaneous MRI 

guidance. 

In the clinic, gPENELOPE should be applicable to nearly any application requiring high 

dose accuracy, such as beam modeling [49], IMRT optimization [50], dosimeter response 

modelling [51, 52], dose validation [53], dose accumulation [54] among others. As an example, 

due to the three-source nature of the MRIdian system, quasi-3D dosimeters, such as ArcCHECK 

(Sun Nuclear Corp., Melbourne, FL), are quite useful for dosimetry measurements. However, the 

combined field size dependence and angular dependence of an ArcCHECK have been reported 

to be on the order of 10-15% for a LINAC delivery. This can be corrected by using look-up 

tables as a function of beam angle and field size, for which the beam angle must first be 

determined using a virtual inclinometer in the ArcCHECK software. However, this cannot be 
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corrected for the MRIdian system due to the simultaneous delivery of all three sources. One 

possibility to solve this problem is to model the dosimeter response using gPENELOPE so that 

the radiation transport in the diodes and surrounding buildup/backscatter material can be 

explicitly simulated. As a result, dose to individual diodes instead of to water can be calculated 

and subsequently compared to diode’s raw response during measurements. By doing this, we can 

not only convert the ArcCHECK from a relative, 3D dosimeter to an absolute one; more 

importantly, tighter criteria can be used for the gamma analysis, for example, 2%/2 mm. Nelms 

et al. [55] have recently made a convincing case that adoption of more sensitive metrics/tighter 

tolerances enables continual improvement of the accuracy of radiation therapy dose delivery not 

only at the end-user level, but also at the level of product design by the manufacturer. This is 

especially important for MRI-guided IMRT which is at the early stage of its clinical 

implementation. 

In conclusion, a GPU version of PENELOPE has been developed with its accuracy 

completely faithful to the original code. The comparisons with MRIdian dose calculation results 

suggest that MRIdian’s fast dose calculation for the 60Co source subject to a 0.35 T magnetic 

field is accurate using 2%/2 mm criteria. gPENELOPE will be useful for many MRI-IMRT 

applications including dose validation and accumulation, IMRT optimization, and dosimetry 

system modeling. 
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Chapter 4: Transport simplification & variance 

reduction 
In charter 3, we deployed GPU parallelization to build a fast Monte Carlo dose calculation 

engine, i.e. gPENELOPE. The advantage of gPENELOP is that it runs 5 times faster than 

PENELOPE without compromising any accuracy. However, this engine is not fast enough for 

many time sensitive applications, such as the QA of online adaptive radiation therapy (ART), 

motional dose accumulation, etc. In this chapter, we will apply transport simplification and 

variance reduction all together to build an extremely fast MC engine, gDPMvr, and discuss its 

application to the online ART. 

4.1 Introduction of online ART 
Online adaptive radiation therapy (ART) enables treatment adjustment based on on-board 

imaging immediately before treatment delivery to account for physical or functional changes to 

the target volume and organs at risk [47, 56]. However, with the patient on the treatment couch it 

is not feasible to validate the newly created intensity modulated radiation therapy (IMRT) plan 

using conventional patient-specific quality assurance (QA) approaches that rely heavily on 

comparison between planned dose and dose measured in a physical phantom. An alternative 

approach is performing a second dose calculation for the plan with an independently 

commissioned dose calculation engine to verify the dose distribution provided by the online 

treatment planning system [57]. A fast Monte Carlo platform for independently verifying dose 

distributions in MRI-guided ART is preferable to accurately simulate charged particle transport 

in external magnetic fields [43]. Venerable Monte Carlo simulation packages such as GEANT4 

[58], EGS4/EGSnrc [59], and PENELOPE [60] have been demonstrated to agree excellently 

with experimental data under a wide range of conditions, but these packages typically require 
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many hours or even days to achieve an adequate statistical uncertainty (e.g. 1%), which is far 

beyond the time constraint imposed by an online adaptive scheme. Ideally we need a fast Monte 

Carlo engine that can complete a 3D dose calculation in a few minutes while maintaining 

sufficiently high accuracy. 

Three approaches have been considered for improving Monte Carlo calculation efficiency 

[4] including: (1) simplifying particle transport mechanisms, thus reducing the necessary time for 

each particle history [19], (2) using variance reduction techniques such as particle splitting, 

Russian roulette, and interaction forcing to reduce the total history number required to achieve a 

given uncertainty [39], and (3) enhancing computational capability by parallelizing the 

simulation with multiple CPU or GPU threads [20-23]. Approaches (1) and (2) alter the physical 

mechanisms of particle transport, and thus may compromise accuracy. 

To facilitate computational dosimetry for the MRIdian system (ViewRay, Inc., Cleveland, 

OH), the only MRI-guided radiotherapy (MRgRT) system currently in clinical use, we recently 

developed and experimentally validated a GPU-accelerated Monte Carlo dose calculation 

package called gPENELOPE based on PENELOPE that employs approach (3) only [61] [62]. 

This package can simulate a tri-60Co IMRT plan subject to a 0.35 T magnetic field in about one 

hour with less than 1% average local uncertainty in a volume where the dose is greater than 10% 

of the dose maximum [61]. While substantially faster than PENELOPE, gPENELOPE is still not 

fast enough for online adaptive plan verification.  

An alternative fast Monte Carlo code is the Dose Planning Method (DPM) [19] that 

employs a simplified coupled electron–photon transport scheme in order to achieve high 

computational performance. More recently, DPM was accelerated via a GPU implementation, 



68 
 

gDPM [20]. According to our benchmarks, the mean time for calculating dose to <1% local 

uncertainty is 13.8 minutes using gDPM for 18 clinical MRIdian IMRT plans. While 

substantially faster than gPENELOPE, the median time for online re-adaptation measured at our 

institution to date is 26 minutes [56]. A faster dose calculation platform – likely with additional 

simplifications – is thus required for consideration in our ART protocol. 

In this study, we incorporate the vendor-provided MRIdian head model into DPM and allow 

for consideration of magnetic fields.  We then accelerate the code via GPU implementation, 

yielding an MRIdian-specific version of gDPM (referred to as gDPM for simplicity in this 

manuscript).  In addition to GPU acceleration (i.e. gDPM), we further accelerate gDPM by 

introducing 1) variance reduction techniques and 2) additional physical simplifications enabled 

by details of the MRIdian platform to enable fast and accurate Monte Carlo dose calculation for 

online ART. We present detailed comparisons of the resulting code, gDPMvr, against 

gPENELOPE and gDPM in a variety of phantoms to demonstrate that gDPMvr achieves the 

required calculation efficiency for ART while maintaining sufficient accuracy to engender 

physicists’ confidence in adaptive plan QA. 

4.2 Transport simplification 
Compared to the general-purpose package PENELOPE, DPM includes a number of 

simplifications and optimizations for dose calculation in a patient [19]. (1) DPM covers a 

narrower range of energy so all relevant cross-sections can be obtained using spline or linear 

interpolation instead of having to perform interpolation on a logarithmic scale, thus enabling 

faster data access. (2) DPM ignores several types of interaction with either low probability of 

occurrence in the energy range of interest or little impact on the final dose, such as Rayleigh 

scattering and inner shell ionization. (3) DPM modifies the pair-production mechanism by 
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tracking the positron as an electron and emitting two annihilation photons in randomly selected 

opposite directions to compensate for the latent energy from the positron. This simplification 

reduces the data table and code length by almost a third. (4) DPM uses simpler physics models to 

describe scattering events. Taking Compton scattering as an example, DPM applies the Klein-

Nishina formula [63] which treats the electrons as free and at rest despite the fact that electrons 

are bound to atoms in a shell structure with specific energies. (5) DPM uses a random energy 

hinge for multiple electron scattering instead of a random step hinge used in PENELOPE. This 

modification enables larger path lengths in multiple scattering events, thereby improving 

simulation efficiency.  

Like PENELOPE, DPM uses a “mixed” scheme for electron transport by treating large 

energy transfer collisions in an analogue sense and using the continuous slowing down 

approximation (CSDA) to model small-loss collisions. For online adaptive treatments on the 

MRIdian system, two facts can be exploited to simplify this scheme. First, 60Co emits two 

gamma rays with energies of just 1.17 and 1.33 MeV, much lower than the photon energy 

generated by a typical LINAC. Second, our clinic uses a voxel size of 3×3×3 mm3 for treatment 

planning. Figure 4.1 (a) shows how an electron’s CSDA range varies with energy in water. For 

gamma rays emitted by 60Co decay, secondary electrons will never travel a distance of more than 

two voxels. Our simulation profiles with gPENELOPE also show that approximately 80% of 

secondary electrons have energy less than 743 keV, i.e. the threshold energy for travelling one 

voxel distance. The remaining secondary electrons are mostly generated around the beam 

entrance, which is usually far away from the target region as shown in Figure 4.1 (b). In other 

words, most electrons will exhaust all their energy in their voxel-of-origin and neighboring voxel, 

and so detailed analogue simulation is hardly necessary for determining in which voxel an 
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electron deposits its energy. We therefore can just apply the CSDA approximation in order to 

greatly simplify the code at the expense of minor accuracy loss. Since the CSDA implementation 

is simple and fast, we can process secondary electrons immediately in each photon event, instead 

of storing them in stacks for subsequent processing. Likewise, the 1.33 MeV maximum photon 

energy allows for a single pair-production event at most per history, and so similarly no stack 

structure is required. Eliminating stack requirements mitigates the thread divergence 

phenomenon on GPUs, and hence improves execution efficiency.  

 (a) 
(b) 

Figure 4.1 (a) CSDA range of an electron vs. kinetic energy in water. (b) Dose distribution calculated for 

a clinical IMRT plan. The iso-dose lines are shown relative to the maximum dose. The area enclosed by 

the red lines indicate the area of energy deposition by photons with energies greater than 743 KeV. 

 

In summary, Compton scattering is modeled via the Klein-Nishina equation, pair production 

is modeled by sampling energy uniformly between 0 and EP - 2ES where EP is the photon energy 

and Es the electron rest mass energy, and the photoelectric effect is modeled by simply changing 

the particle property label from photon to electron. Woodcock tracking [40] is applied to handle 

photon transport in a heterogeneous phantom effectively. As mentioned above, only the CSDA 
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scheme is used to handle electron transport with changes in direction being derived from a 

random energy hinge. A fixed energy loss segment Ed (e.g. 200 KeV) is split in two sub-steps 

[19]  

𝐸𝐴 =  𝜉𝐸𝑑 and 𝐸𝐵 =  𝐸𝑑 − 𝐸𝐴, (4.1) 

where ξ is a random number distributed uniformly between 0 and 1. The electron will first 

advance a certain distance that exhausts 𝐸𝐴 energy along the initial direction, then get deflected 

by multiple-scattering and advance another distance that exhausts 𝐸𝐵 along the new direction. If 

the electron’s initial energy 𝐸𝑒 < 𝐸𝑑, then 𝐸𝑑 is replaced by 𝐸𝑒 in the above equation. 

4.3 gDPM with variance reduction 
To further improve computational efficiency, we applied particle splitting and Russian roulette 

variance reduction methods proposed by Kawrakow et al. [39], which can significantly reduce 

the necessary number of photon scattering events. Suppose we split the incident photon into 𝑁𝑆 

photons. The sampled distance to the interaction site of the i-th photon can then be set as 

𝑠𝑖 = −𝜆log (1 − 𝜉 + 𝑖𝑁𝑆 ) (4.1) 

where ξ is a uniform random number between 0 and 1 and λ is the mean free path of photon. This 

equation distributes 𝑁𝑆 photons along the initial trajectory according to a log distribution at the 

expense of a single random number ξ. These photons undergo the same interaction with the 

weight assigned to produced secondary particles reduced to1/𝑁𝑆. Only one primary photon is 

randomly selected to continue its history and its weight is recovered to 1. The idea of this method 

is to generate 𝑁𝑆 electrons spread along a path for one photon interaction, saving approximately (𝑁𝑆 − 1)/𝑁𝑆 of the photon simulation time. Since the cost of photon scattering is much more 

expensive than the concise CSDA model of electron transport, this method significantly 



72 
 

improves overall efficiency. Although the approximation inappropriately assumes that secondary 

electrons at these sites share the same energy and direction, the defect is blurred by a large 

history number of random scatterings in the subsequent electron transport. Benchmarks confirm 

that these variance reduction methods can effectively improve the calculation speed at the 

expense of minor loss in accuracy 

4.4 GPU implementation: gDPMvr 
In contrast to CPU architecture, the GPU was originally designed for parallel graphic processing 

where single float precision is sufficient. On modern GPUs, single precision float operation is 

usually 2-3 times faster than double precision. To maximize performance, we decided to use 

single precision float numbers throughout our GPU code. Resulting accuracy loss has been 

proven to be negligible [21]. 

In the original DPM implementation, spline interpolation is employed to calculate cross-

sections. Though more accurate, spline interpolation costs four times the memory required by 

linear interpolation. In GPU architecture, device memory is large but also has a long accessing 

latency since it is only cached by a small L2 cache. Shared and constant memory are hundreds of 

times faster than device memory but have limited sizes. As shared memory cannot persist across 

different thread blocks, the best choice for cross-section tables is constant memory whose size is 

unfortunately only 64 KB for most Nvidia GPU devices. If spline interpolation were to be used, 

data tables would need to be loaded to device memory, and performance would be seriously 

compromised. Therefore, we decided to employ linear interpolation to shrink the data table size 

and thus utilize constant memory. Our simulation results presented later show marginal effects 

on final dose. 
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The workflow of our gDPMvr implementation is shown in Figure 4.2. The program first 

reads and parses the configuration file which includes details regarding the GPU devices, 

phantom (geometry and materials), and source head. It then loads the DPM data tables, creates a 

digital phantom, allocates GPU memories and copies data tables to GPU devices as shown in 

Figure 4.2 (a). It also initializes the random number generator for each thread with a unique seed. 

The K80 GPU card (Nvidia), on which we develop and test gDPMvr, includes two GPU devices. 

To enable multiple GPU support, our program launches multiple threads through OpenMP to call 

GPU kernel functions on each device simultaneously.  

Meanwhile, the main thread launches another thread calling the vender-provided head 

source module to prepare one batch of incident photons as shown in Figure 4.2 (b). As specified 

in Figure 4.2 (c), the photons are first copied to the main GPU and then transferred to other GPUs 

to save I/O time. The GPU kernel function start() is called to guide photons to the phantom via 

free propagation, a reasonable approximation in air. The simulation kernel thread, as shown in 

Figure 4.2 (d), will split one incident photon 𝑁𝑆 times in a loop, with each photon jumping 

distance 𝑠𝑖 given by equation (4.1).  

If not exiting the phantom, the program will test whether a Woodcock virtual event is 

selected. If yes, no scattering will happen. Otherwise, one event among Compton scattering, pair-

production and photoelectric interaction will be selected based on their cross sections. 

Meanwhile, one or two electrons will be generated and then processed by using the CSDA 

scheme immediately. Since our electron transport model is fairly simple, it will not cause serious 

thread divergence on GPUs and thus it is not necessary to separate photon and electron transport 

as in the scheme used by gDPM (requiring 𝑁𝑆 times bigger stacks and causing heavy data access 

with variance reduction).  
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If the energy of the surviving photon is above a specified cut-off energy, we repeat the 

splitting process. Otherwise, we refill the current particle variable either from pair-production 

storage or the incident photon buffer array, thus improving efficiency by enabling constant 

renewal of particles on all threads. We collect the dose and calculate the accumulated uncertainty 

after each batch is finished. When a given number of histories is finished or a specified 

uncertainty is reached, we merge the dose on each GPU device and free allocated memories as 

shown in Figure 4.2 (e). 

(d) GPU Kernel(a) Initialization

(c) Copy photons to GPUs

(b) Generate photons

(e) Clean up

Initialize Phantom

Allocate memory and copy 

data to GPUs

Init CPU and GPU RNGs

Enough history/uncertainty

Each openMP thread deals

With one GPU device

load DPM data tables

Wait for source ready signal

Main GPU

Copy particle to main GPU

Call start() kernel to fetch particles 

and guide them to phantom

Copy particle from main GPU

when main GPU's data is ready

Wait until all openMP 

threads are finished

Call SourceHead.dll to generate 
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Wait until all openMP 

threads are finished

Merge and output Dose

Clean up and exit
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Figure 4.2 Workflow of gDPMvr including 5 modules: (a) Initialization, (b) Generate photons, (c) Copy 

photons to GPUs, (d) GPU kernel, and (e) Clean up. 

 



75 
 

Incident photons are generated by a vendor provided DLL module running on a CPU. In 

certain cases, the head model lags the GPU and cannot provide new particles at a sufficient rate. 

Our code provides an option to automatically balance the GPU and CPU workload by reusing 

certain photons. Simulation comparisons show that the dose differences caused by reusing source 

particles in “hot areas” (D > 0.1𝐷𝑚𝑎𝑥) are mostly (99.73%) within the targeted 1% uncertainty 

for a large (109) history number [61]. 

4.5 Accuracy and performance benchmarks 
Our previously developed dose calculation system gPENELOPE [61] has been validated to be as 

accurate as the original PENELOPE code with significantly improved efficiency. We thus 

consider gPENELOPE as the standard throughout these comparisons. To evaluate efficiency and 

accuracy changes introduced by the variance reduction (rarely used in GPU code), we decided to 

cross-compare the results of gDPM and gDPMvr as well. For short we denote gPENELOPE as 

gPEN, the dose differences D(gDPM) − D(gPEN) as err1, D(gDPMvr) − D(gPEN) as err2, and D(gDPMvr) − D(gDPM) as err3 in the following figures. All simulations are performed on a 

single K80 GPU card (including two units) produced by NVIDIA. 

4.5.1  Phantoms 

As shown in Figure 4.3, four different types of phantoms [58] were used to compare the accuracy 

and performance of the two DPM-based codes, gDPM and gDPMvr, to gPENELOPE. The first 

three phantoms are all synthetic phantoms sharing the same dimensions of 30.3×30.3×30.3 cm3. 

The first is a homogeneous water phantom and the second is a slab of uniform lung in water 

whose density is set to 0.3 g/cm3 according to PENELOPE’s material database. The third 

phantom additionally includes a uniform tumor cube (2.1×2.1×2.1 cm3) with a density of 0.7 

g/cm3. In addition, we exported 15 patients’ planning CT data from MRIdian’s treatment 
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planning system, with sites including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas 

(2), spleen (1), and mediastinum (1). Calculating dose using the four types of objects provides a 

comprehensive evaluation of how well these algorithms perform in uniform, partially 

heterogeneous, and highly heterogeneous objects irradiated simultaneously by three 60Co sources 

subject to a 0.35 T magnetic field. The voxel size in all cases is set to 3×3×3 mm3, the same as 

that we use in the clinic on MRIdian. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.3 Phantoms used to evaluate accuracy and performance of gDPM, gDPMvr, and gPENELOPE. 

(a) 30.3×30.3×30.3 cm3 uniform water phantom, (b) water-lung-water phantom where lung’s height is 9.9 
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cm, (c) water-lung-tumor-water phantom where tumor size is 2.1×2.1×2.1 cm3, and (d) patient. Voxel 

sizes are all set to 3×3×3 mm3. 

 

4.5.2  Homogeneous water phantom 

Figure 4.4 compares vertical and lateral dose profiles in a homogeneous water phantom for three 

field sizes. All the profiles from the three codes agree with each other to within 0.8%. Figure 4.5 

compares the histograms of z-scores. For field sizes of 2.1x2.1 cm2 and 4.2x4.2 cm2, the 

histograms for all three algorithms are close to Gaussian. For a field size of 10x10 cm2, 

systematic differences are observed: gDPM and gDPMvr score less dose than gPEN, which may 

be a result of the different ways of handling below-threshold energy photons in DPM (ignore) 

and PENELOPE (score). For larger field sizes, more energy (with a squared growth rate) is 

deposited so the difference becomes appreciable. We note that the histograms are normalized by 𝜎𝑡𝑜𝑡, so being observable does not imply large absolute differences. In fact the standard deviation 

of the 10x10 cm2 field is actually smaller than that of smaller field sizes. The z-score histograms 

between gDPM and gDPMvr are always close to Gaussian, indicating that the introduction of 

variance reduction has negligible effect on accuracy. 

FS = 2.1cm × 2.1cm FS = 4.2cm × 4.2cm FS = 10.5cm × 10.5cm 
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Figure 4.4 Percentage depth dose (upper row) and off-axis profiles (lower row, 5 cm depth) for a 

homogeneous water phantom. FS: field size. 

 

 FS = 2.1cm × 2.1cm FS = 4.2cm × 4.2cm FS = 10.5cm × 10.5cm 

err1 

   
σtot = 0.7% σtot = 0.5% σtot = 0.5% 

err2 

   
σtot = 0.5% σtot = 0.4% σtot = 0.4% 

err3 

   
σtot = 0.5% σtot = 0.4% σtot = 0.3% 

    
Figure 4.5 z-score histograms among gPEN, gDPM and gDPMvr for a homogeneous water uniform 

phantom. FS: field size. 

 

Table 4.1 summarizes the performances achieved by the three algorithms. Both gPEN and 

gDPM ran 109 histories to achieve less than 0.5% uncertainty, while gDPMvr ran 108 histories to 
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reach an even smaller uncertainty. The mean efficiency ratio, gPEN:gDPM:gDPMvr, is 1:2:66 in 

a homogenous water phantom, indicating that variance reduction techniques can significantly 

increase the calculation efficiency. 

 

Table 4.1 Performance benchmarks in a homogeneous water phantom 

FS/cm2 
gPEN gDPM gDPMvr Relative η 

T(min) σ η T(min) σ η T(min) σ η gPEN gDPM gDPMvr 

2.1×2.1 30.01 0.52 0.12 28.44 0.5 0.14 3.39 0.23 5.58 1.00 1.14 45.25 

4.2×4.2 48.92 0.39 0.13 47.2 0.38 0.15 4.51 0.17 7.67 1.00 1.09 57.09 

10.5×10.5 299.47 0.34 0.03 87.51 0.33 0.10 14.3 0.16 2.73 1.00 3.63 94.57 

Average 
         

1.00 1.96 65.63 

 

4.5.3  Water-lung-water phantom 

Figure 4.6 shows comparisons of PDD and off-axis profiles in a water-lung-water phantom 

for three different field sizes. The off-axis profiles at 5 cm depth (inside the water) generated 

from the three algorithms agree with each other to within 0.8%. However, the off-axis profiles at 

15 cm depth (inside the lung slab) show a slightly larger difference of around 1%. The PDD 

profiles become unsmooth at the water-lung interface due to the electron-return-effect (ERE). 

The z-score histograms (Figure 4.7) exhibit similar patterns as those shown in Figure 4.5, except 

for slightly more noticeable deviations from being Gaussian with larger 𝜎𝑡𝑜𝑡 values. The 

introduction of heterogeneity triggers the ERE, thus augmenting the dose differences between 

gPEN and gDPM /gDPMvr. Nevertheless, the latter two algorithms still show almost identical 

statistical behaviors. 
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FS = 2.1cm × 2.1cm FS = 4.2cm × 4.2cm FS = 10.5cm × 10.5cm 

   

   

   
 

Figure 4.6 Percentage depth dose (upper row) and off-axis profiles (middle row: 5 cm depth and inside 

the water, lower row: 15 cm depth and indide the lung) for a water-lung-water phantom. FS: field size. 

 

 FS = 2.1cm × 2.1cm FS = 4.2cm × 4.2cm FS = 10.5cm × 10.5cm 

err1 

   
σtot = 0.8% σtot = 0.6% σtot = 0.5% 

err2 

   
σtot = 0.7% σtot = 0.5% σtot = 0.4% 
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err3 

   
σtot = 0.6% σtot = 0.4% σtot = 0.3% 

    
Figure 4.7 z-score histograms among gPEN, gDPM and gDPMvr for a water-lung-water phantom. 

 

Table 4.2 lists the performances achieved by the three algorithms in the water-lung-water 

phantom. The history number for gPEN and gDPM remains at 109 histories while gDPMvr still 

runs 108 histories. The mean efficiency ratio, gPEN:gDPM:gDPMvr, remains almost unchanged 

(1:2:65) in a more heterogeneous phantom. 

Table 4.2 Performance benchmarks in a water-lung-water phantom 

FS 
gPEN gDPM gDPMvr Relative η 

T(min) σ η T(min) σ η T(min) σ η gPEN gDPM gDPMvr 

2.1cm 27.57 0.59 0.10 36.94 0.55 0.09 3.16 0.26 4.68 1 0.86 44.93 

4.2cm 45.45 0.45 0.11 42.53 0.42 0.13 3.99 0.2 6.277 1 1.23 57.67 

10.5cm 276.42 0.37 0.03 81.26 0.35 0.10 15.9 0.16 2.46 1 3.80 92.97 

Average 
         

1 1.96 65.19 

 

4.5.4  Water-lung-tumor-water phantom 

Figure 4.8 shows profile comparisons in the water-lung-tumor-water phantom. With the 

introduction of a tumor cube, the PDDs and off-axis profiles at depths of 5 and 12 cm show 

similar patterns as shown in Figure 4.6. However, the off-axis profiles at 15 cm depth traversing 

both the tumor and the lung show obvious ERE. As shown in Figure 4.9, z-score histogram plots 

are similar to those shown in Figure 4.5 and Figure 4.7 except that the observed systematic 
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differences for a field size of 10 cm x 10 cm are less severe, which may be explained by the ERE 

effect better localizing dose deposition, thus offsetting the adverse effects of ignoring the below-

threshold energy photons. 
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FS = 2.1cm × 2.1cm FS = 4.2cm × 4.2cm FS = 10.5cm × 10.5cm 

   

   

   

   
   
Figure 4.8 Percentage depth dose and off-axis profile for a water-lung-water phantom. First row: 

percentage depth dose. Second to fourth rows: off-axis profiles at depth of 5, 12 and 15 cm, i.e. in the 

water, the lung, the tumor respectively. FS: field size. 
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 FS = 2.1cm × 2.1cm FS = 4.2cm × 4.2cm FS = 10.5cm × 10.5cm 

err1 

   
σtot = 0.8% σtot = 0.6% σtot = 0.5% 

err2 

   
σtot = 1.0% σtot = 0.7% σtot = 0.6% 

err3 

   
σtot = 1.0% σtot = 0.7% σtot = 0.6% 

    
Figure 4.9 z-score histograms among gPEN, gDPM and gDPMvr for a water-lung-tumor-water phantom 

 

Table 4.3 summarizes the performances achieved by the three algorithms in the water-lung-

tumor-water phantom. The history numbers remain the same as above and a similar efficiency 

ratio, gPEN:gDPM:gDPMvr, is observed (1:2:58), although gDPMvr’s efficiency decreases in 

the more heterogeneous phantom. 

Table 4.3 Performance benchmarks in a water-lung-tumor-water phantom 

FS 
gPEN gDPM gDPMvr Relative η 

T/min σ η T/min σ η T/min σ η gPEN gDPM gDPMvr 

2.1cm 27.63 0.59 0.10 27.3 0.56 0.12 3.56 0.26 4.16 1 1.12 39.97 

4.2cm 47.09 0.45 0.10 47.46 0.42 0.12 4.43 0.2 5.64 1 1.14 53.81 

10.5cm 281.37 0.37 0.03 85.51 0.35 0.10 18.56 0.16 2.10 1 3.68 81.07 
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Average                   1 1.98 58.28 

 

4.5.4  Clinical patients 

Table 4.4 shows the gamma passing rates with strict criteria (DTA = 0 mm, Δ𝐷 =0.5%𝐷𝑚𝑎𝑥, D > 0.1𝐷𝑚𝑎𝑥 threshold) and standard deviations of relative differences among 

gPEN, gDPM and gDPMvr for 15 IMRT treatment plans. The selected z-score histograms shown 

in Figure 4.10 reveal systematic differences between gPEN and gDPM/gDPMvr. Nevertheless, 

the systematic difference is not big with 𝜎𝑡𝑜𝑡̅̅ ̅̅ ̅ = 0.9% averaged over all 15 plans. gDPM and 

gDPMvr, on the other hand, share almost the same statistical behavior. The average gamma 

passing rate is 98.9% between gPEN and gDPM, 99.4% between gPEN and gDPMvr, and 99.9% 

between gDPM and gDPMvr. In other words, the chances for dose differences to exceed 0.5%𝐷𝑚𝑎𝑥 are as small as 1.1% (err1), 0.6% (err2) and 0.1% (err3), respectively.  

Table 4.4 Gamma passing rates and standard deviations of relative differences for 15 clinical IMRT plans 

Treatment site 
err1 err2 err3 

γ (%) σtot (%) γ (%) σtot (%) γ (%) σtot (%) 

Liver 99.90 0.9 99.97 0.8 99.99 0.7 

Liver 98.39 0.9 99.21 0.8 99.82 0.7 

Liver 99.84 1.0 99.94 0.8 99.98 0.8 

Adrenal 99.18 0.9 99.52 0.8 99.92 0.8 

Adrenal 99.31 1.0 99.63 0.9 99.90 0.9 

Lung 99.70 0.8 99.83 0.7 99.97 0.7 

Lung 99.77 0.7 99.88 0.7 99.99 0.6 

Mediastinum 99.52 1.0 99.73 0.9 99.97 0.9 

Pancreas 99.66 0.7 99.78 0.6 99.99 0.6 

Pancreas 97.86 1.1 98.82 0.9 99.63 0.9 

Spleen 98.82 0.9 99.49 0.8 99.84 0.7 

Stomach 97.76 1.0 98.40 0.9 99.63 0.8 
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Stomach 97.43 1.0 98.56 0.8 99.61 0.8 

Stomach 98.62 0.8 99.36 0.7 99.85 0.7 

Stomach 98.24 0.9 98.93 0.8 99.70 0.8 

 

 

Site err1 err2 err3 

Liver 

   

Adrenal 

   

Lung 

   

Media-
stinum 

   

Pancreas 
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Spleen 

   

Stomach 

   
    

Figure 4.10 Z-score histograms for 7 IMRT plans 

 

Table 4.5 lists the performances achieved by the three algorithms in real patient phantoms. 

Here we set the termination condition as reaching 1% uncertainty instead of finishing a given 

history number in order to imitate the real treatment planning system. Moreover, the source 

particle reuse is toggled on to maximize performance. The mean efficiency ratio of 

gPEN:gDPM:gDPMvr is about 1:7:43. That is, in highly heterogeneous phantoms, gDPM 

suffers less performance loss than gPEN due to its much simplified code. The variance reduction 

scheme can increase calculation efficiency from gDPM by as much as six-fold on average, with 

almost the same accelerating factor being achieved from gPEN to gDPM. gDPMvr can finish 

calculating a treatment plan in 2.3 minutes on average with only 0.5% accuracy loss compared 

to the “golden standard” gPEN. Thus, gDPMvr is well-suited to fulfill the purpose of verifying 

adaptive treatment plans in a fast and accurate way. 
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Table 4.5  Performance benchmarks in real patient phantoms 

FS gPEN gDPM gDPMvr Relative η 
T(min) σ η T(min) σ η T(min) σ η gPEN gDPM gDPMvr 

Liver 41.83 1.12 0.019 9.28 1.08 0.092 1.16 1.07 0.753 1.00 4.85 39.51 

Liver 86.85 1.45 0.005 17.28 1.2 0.040 2.52 1.15 0.300 1.00 7.34 54.79 

Liver 22.49 1.25 0.028 3.71 1.13 0.211 0.61 1.1 1.355 1.00 7.42 47.61 

Adrenal 61.09 1.42 0.008 10 1.2 0.069 2.21 1.13 0.354 1.00 8.55 43.65 

Adrenal 77.44 1.1 0.011 24.21 1.04 0.038 3.21 1.03 0.294 1.00 3.58 27.52 

Lung 37.98 1.41 0.013 8.79 1.15 0.086 1.56 1.09 0.540 1.00 6.50 40.74 

Lung 48.88 1.37 0.011 10.06 1.19 0.070 2.08 1.12 0.383 1.00 6.44 35.16 

Mediastinum 37.65 1.37 0.014 7 1.19 0.101 1.59 1.15 0.476 1.00 7.13 33.61 

Pancreas 33.65 1.9 0.008 5.32 1.58 0.075 1.36 1.46 0.345 1.00 9.15 41.90 

Pancreas 38.5 1.37 0.014 7.03 1.2 0.099 1.03 1.17 0.709 1.00 7.14 51.25 

Spleen 78.49 1.46 0.006 14.11 1.21 0.048 2.1 1.18 0.342 1.00 8.10 57.22 

Stomach 120.73 1.33 0.005 21.49 1.15 0.035 4.99 1.1 0.166 1.00 7.51 35.37 

Stomach 125.55 1.37 0.004 24.67 1.15 0.031 3.41 1.12 0.234 1.00 7.22 55.09 

Stomach 101.16 1.33 0.006 22.25 1.14 0.035 2.69 1.11 0.302 1.00 6.19 53.99 

Stomach 110.13 1.19 0.006 21.92 1.08 0.039 4.15 1.06 0.214 1.00 6.10 33.45 

Average 68.2 
  

13.8 
  

2.3 
  

1.00 6.88 43.39 

 

4.6 Discussion and conclusion 
The recent clinical use of the MRIdian radiation therapy system represents a significant advance 

in cancer care, enabling clinicians to deliver highly conformal IMRT with real-time MRI 

guidance. More importantly, the advent of online soft tissue image guidance enables delivery of 

online adaptive radiation therapy, which is a dramatic departure from conventional treatments 

employing a single static plan throughout the entire treatment course [56]. In a recent 

Point/Counterpoint debate [64], it has even been proposed that within the next few years, 

adaptive hypofractions will become the most common form of radiation therapy. However, this 

potential paradigm-changing treatment scheme challenges the clinician’s ability to assure the 

safe delivery of the online re-optimized and re-calculated IMRT treatment plans [57], 
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particularly where the dose deposition is subject to a magnetic field. The magnetic field exerts a 

force on secondary electrons that complicates dose deposition in highly heterogeneous phantoms 

such as the human body. Monte Carlo is the preferred form of calculation for achieving adequate 

uncertainty under these challenging conditions. To facilitate the wide adoption of online adaptive 

radiation therapy that can benefit many patients, development of tools such as rapid and accurate 

Monte Carlo dose verification is a pressing requirement [57]. 

Recently we developed a GPU-accelerated Monte Carlo C++ code based on the venerable 

PENELOPE system, namely gPENELOPE [61]. In this work, we accelerated Monte Carlo dose 

calculation with parallel computation while maintaining original accuracy, with the intention of 

deploying the platform for complementing experimental dosimetry for treatment subject to a 

permanent magnetic field which is limited by measurement uncertainty, dimensionality and 

spatial resolution [53]. We validated gPENELOPE according to AAPM TG-105 [4] guidelines 

by virtue of a number of measurements with both homogenous and heterogeneous phantoms. An 

acceleration factor of 80 was demonstrated in comparison to the original single-thread 

FORTRAN implementation with the original accuracy being preserved. Despite this drastic 

acceleration, the code remains not fast enough for online quality assurance [56]. 

Recently Acharya et al. [56] reported that the median time for online ART including 

recontouring, re-optimization, and QA is 26 minutes for their institution’s first patients treated 

via online ART, with recontouring being the most time-consuming aspect of the procedure. Any 

Monte Carlo platform for QA thus should require at most several minutes for completion in 

order to contribute meaningfully to the ultimate goal of minimizing the time required by the 

ART workflow. DPM, developed by Sempau et al. [19], was a major milestone in the 

development of fast Monte Carlo code for routine clinical use. DPM significantly accelerates 
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Monte Carlo simulation largely by simplifying various charged-particle transport mechanisms. 

Jia et al. later introduced gDPM which accelerated DPM through deployment on a GPU [20]. 

While gDPM substantially accelerates DPM, we found gDPM – adapted to incorporate the 

MRIdian head model and external magnetic fields – is not adequately fast for implementation in 

our institution’s ART workflow particularly when considering a threshold of 1% local 

uncertainty (vs. the 1% global average uncertainty used in Jia’s work). Achieving 1% local 

uncertainty is imperative especially in hypofractionated deliveries that include high maximum 

doses with steep gradients [56, 64]. Without adequate reduction in local uncertainty, poor 

understanding of dose gradients could have severe clinical consequences such as acute toxicities 

in normal tissues. 

In this study, we built upon gDPM by introducing variance reduction and several system-

specific simplifications in order to achieve competitive calculation times for implementation in 

MRgRT ART. These simplifications stem from the mean photon energy in 60Co decay, the small 

magnetic field strength of the imaging system, and the 3 mm voxel size utilized for treatment 

planning in our clinic. The resulting platform – gDPMvr – increases calculation speed of clinical 

plans by factors of 43 and 6 relative to gPENELOPE and gDPM respectively while preserving 

adequate (<1%) statistical uncertainty within regions of dosimetric interest. We demonstrated 

that gDPMvr can achieve 1% mean local uncertainty in the D > 0.1𝐷𝑚𝑎𝑥 region in 2.3 minutes 

on average on one Nvidia K80 GPU card for complicated tri-60Co IMRT plans.  ViewRay 

provides its users with a CPU based Monte Carlo secondary dose calculation engine for online 

ART plan verification QA. For a typical pancreatic IMRT plan, the computation time for 50 

million histories is 18 mins on a Windows 7 PC with an Intel Core i7 3770 processor (3.4 GHz 



91 
 

base frequency, 4 cores and 16 GB RAM). In contrast, the computation time for gDPMvr is 2 

mins. 

This performance is largely enabled by simplifications of electron transport that facilitate 

GPU implementations of variance reduction techniques that traditionally suffer from thread 

divergence and limited register number. In fact, we previously attempted to apply a variance 

reduction technique proposed by Kawrakow et al. [39] in gPENELOPE, but the implementation 

actually worsened calculation times. Similar results have been reported on another GPU-based 

Monte Carlo system, namely GPUMCD [22]. Simplification of electron transport using CSDA 

only may compromise accuracy at tissue/air interfaces – such as at the bowel, esophagus, and 

skin – in a magnetic field. One strategy could be to implement a mixed scheme that can be 

applied in the regions that are of particular concern. Also, a post-treatment offline recalculation 

using gPENELOPE can be performed if desired for assessing problematic sub-volumes in the 

online calculation. 

With the imminent introduction of MRI-guided LINAC devices [64], integrating variance 

reduction techniques on GPUs will be a challenging and pressing problem. Moreover, the 

required accuracy of an online Monte Carlo system and the appropriate QA metrics, e.g. 

conventional gamma criteria vs. dose-volume-histogram metrics [65], must be established. 

Nonetheless, gDPMvr achieves speeds beyond those required by in-use workflows for MRgRT 

ART while preserving accuracy comparable to that achieved by more traditional Monte Carlo 

code.   
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Chapter 5: DVH constraint 
In last chapter, we build a new Monte Carlo radiation simulation engine called gDPMvr, which 

combines two acceleration methods -- transport simplification and variance reduction. We 

successfully reduced the in-patient simulation time to 2.3 minutes in average with less 1% 

accuracy loss. Though impressive the performance of gDPMvr is, further acceleration is possible 

through focusing the calculation on the important regions which are used to generated DVH 

curves. We name this acceleration method as “DVH constraint”. 

5.1 Introduction of DVH 
A dose-volume histogram (DVH) is a histogram relating radiation dose to tissue volume in 

radiation therapy planning (Figure 5.1). DVHs are most commonly used as a plan evaluation tool 

and to compare doses from different plans or to structures. DVHs were introduced by Michael 

Goitein [66](who introduced radiation therapy concepts such as the "beam's-eye-view," "digitally 

reconstructed radiograph," and uncertainty/error in planning and positioning, among others) and 

Verhey in 1979 [67]. DVH summarizes 3D dose distributions in a graphical 2D format. The 

"volume" referred to in DVH analysis is a target of radiation treatment, a healthy organ nearby a 

target, or an arbitrary structure. 

DVHs can be visualized in either of two ways: differential DVHs or cumulative DVHs. A 

DVH is created by first determining the size of the dose bins of the histogram. Bins can be of 

arbitrary size, e.g. 0–1 Gy, 1.001–2.000 Gy, 2.001–3.000 Gy, etc. In a differential DVH, bar or 

column height indicates the volume of structure receiving a dose given by the bin. Bin doses are 

along the horizontal axis, and structure volumes (either percent or absolute volumes) are on the 

vertical. The differential DVH takes the appearance of a typical histogram. It reads like the 

volume of the organ that receives the dose of the correspondent dose - bin. It is built by the sum 
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of the number of voxels characterized by a specified range of dosage for the organ considered. It 

is helpful in providing information about changes in dose within the structure considered and to 

easily visualize minimum and maximum dose. The cumulative DVH is plotted with bin doses 

along the horizontal axis, as well. However, the column height of the first bin (0–1 Gy, e.g.) 

represents the volume of structure receiving greater than or equal to that dose. The column height 

of the second bin (1.001–2.000 Gy, e.g.) represents the volume of structure receiving greater 

than or equal to that dose, etc. With very fine (small) bin sizes, the cumulative DVH takes on the 

appearance of a smooth line graph. The lines always slope and start from top-left to bottom-right. 

For a structure receiving a very homogenous dose (100% of the volume receiving exactly 10 Gy, 

for example) the cumulative DVH will appear as a horizontal line at the top of the graph, at 100% 

volume as plotted vertically, with a vertical drop at 10 Gy on the horizontal axis. 

 

Figure 5.1 Cumulative DVHs from a radiotherapy plan 
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A DVH used clinically usually includes all structures and targets of interest in the 

radiotherapy plan, each line plotted a different color, representing a different structure. The 

vertical axis is almost always plotted as percent volume (rather than absolute volume), as well. 

5.2 Gamma passing rate vs DVH consistency 
For current routine of quality assurance for online ART, only gamma passing rate is calculated to 

assess the consistency between the dose generated by TPS and the dose generated by another 

MC engine. However, the paper by Heming Zhen et al (2011) [68] pointed out that gamma 

passing rate has weak correlation to critical patient DVH errors. That is, the dose error within the 

critical regions may be significant while the gamma passing rate remains high. Therefore it’s not 

secure to only calculate the gamma passing rate for QA process. Besides, the criteria of 

calculating gamma passing rate is not standardized, so a high gamma passing rate may not 

necessarily indicate the two sets of doses are very close with each other since the criteria could 

be loose. Gamma passing rate, is a single number that weights every voxel equally. However, the 

organs at risk (OAR, e.g. spinal cord) regions and planning target volume (PTV) are clinically 

more sensitive to overdose than other regions., and worth assigning more weight of importance. 

Unfortunately, the weighted gamma passing rate hasn’t widely studies or applied yet in radiation 

oncology.  

DVH, on the other hand, treats each region separately so it well resolved the problem of 

importance weight in gamming passing rate system. Physicians usually pay more attention to 

DVHs as they directly shown the dose coverage in OARs and PTV. Considering those 

advantages, we propose the consistency of DVHs as additional criteria of the quality assurance in 

radiation therapy. 
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5.3 Focus on the important region 
The DVHs are calculated within a few small regions instead of the whole phantom. We name 

these regions as “Important Region” (IR) and the rest “Unimportant Region” (UR). As the 

important regions only take a small proportion of the whole volume, it is naturally to come up a 

strategy that we perform detailed simulation only in the IR while do rough estimation in the UR, 

which will save us a large amount of time. 

We first need to propose an appropriate algorithm for the rough estimation in unimportant 

region. Let’s recall the two features of MRIdian platform introduce in section 4.2: (1) The 

electrons generated from low-energy photon emitted from Co60 source head can only travel one 

or two voxels before making a complete stop. (2) The electron returning effect (RE) caused by 

the magnetic field shortens the distance electrons can travel. In other words, electrons become 

very localized, and distribution of scattered photons dominates the final dose distribution in those 

unimportant regions. Therefore, we can simply quit simulating the electron and deposit the 

whole energy into current voxel as a way of rough estimation.  

However, there is one problem for this strategy. The electrons in these voxels belonging to 

unimportant region but adjacent to the important region will have chance to enter important 

region. Simply quitting these electrons will jeopardize the dose accuracy in important region. To 

count the electron energy in IR correctly, we will label each voxel with a variable S(ix, iy, iz) 

representing the “effective” nearest possible distance to the important regions. Then our 

simulation algorithm works in the following way. Whenever an electron is generated in voxel (ix, 

iy, iz) with energy E, we calculate the CSDA range R(E). If R(E) < S(ix,iy,iz), deposit all the 

energy E in voxel (ix, iy, iz) and return. Otherwise we perform detailed CSDA simulation, and 

deposit energy gradually along the path. 
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Figure 5.2 2D illustration of the reverse free walk. The yellow pixel belongs to the important region while 

the rest belong to the unimportant region. 

 

Now the remaining question is how should the variable S(ix, iy, iz) for each voxel be 

calculated. Instead of testing if each voxel can enter the important regions, we can perform 

reverse free walk from the important regions, and mark the shortest accumulated “effective” path, 

which is weighted by the density of each voxel. The algorithm is illustrated in 2D diagram as 

Figure 5.2. The yellow pixel belongs to the important region and the rest belong to the 

unimportant region. Starting from the yellow pixel, we can visit 8 adjacent pink pixels. Again 

from each of these pink pixels, we can visit less than 8 outer adjacent grey pixels. That is, each 

step must go further away from the yellow center. Note there are different paths that reach the 

same voxel from the IR. We need to record the shortest during the free walk and we can stop it 
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once the accumulated “effective” walk length is greater than 2 voxels since no electron can travel 

over two voxels (with water density) in MRIdian platform. Finally, the labeling algorithm can be 

implemented via recursive depth-first search as following pseudo code:  

 

The recursive algorithm could be time-consuming and memory-exhausting when the 

surroundings of the important regions are of low density. Fortunately, the labeling matrix can be 

reused once it was done. The new GPU code, called gDVH, is easily built based on gDPMvr 

with a few modifications. 

5.4 Accuracy and performance 
We choose a patient plan with pelvis tumor as the input, and calculate the dose distribution by 

gDPM and gDVH with only OARs and PTV as important region. Figure 5.3 shows the transaxial 

iso-dose lines of the two distributions. We can observe that the two dose distributions are very 

similar to each other except the voxels around the PTV boundary. This phenomenon is caused by 

the change of electron simulation strategy around the PTV adjacent voxels. The line dose profile 

comparison across the PTV shown in Figure 5.4 (left) further confirmed the conclusion. 
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Figure 5.3 (left) dose distribution calculated by gDPMvr. (right) dose distribution calculated by gDVH 

with PTV as the important regions. 

 

Figure 5.4 (right) shows the comparison of DVHs generated by gDPMvr and gDVH 

respectively. They are consistent with each other within 1% statistical error (each simulation 

yields 1% uncertainty so the difference could be 2%). Therefore we can assert that gDVH 

generates identical DHVs to gDPMvr with significant performance improvement that will be 

shown later. 

  

Figure 5.4 (left) comparison of line dose profiles. (right) comparison of DVHs (PTV). 
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Figure 5.5 demonstrated the change of gamma index distribution when we use gDVH instead 

of gDPMvr to QA the treatment plans. Note that the colors only mean relative values so it 

doesn’t represent the absolute quantities. We can see the large gamma values (meaning larger 

error) spread randomly in the case of gDPMvr vs KMC, while distribution locally around the 

boundary of PTV in the case of gDVH vs KMC. This coincides with our previous observations. 

Now let us check the change of gamma passing rates for above two scenarios. Since it is 

comparison between two MC simulations, we should set DTA = 0 as no extra placement error is 

introduced in both MC systems.  If we set ΔD = 2%𝐷𝑚𝑎𝑥, the gamma passing rate will drop 

from 98.9% to 93.4% when applying “DVH constraint”. However, if we only take the PTV 

volumes into consideration, the gamma passing rate has merely changed.  

  

Figure 5.5 (left) gamma distribution of gDPMvr vs KMC. (right) gamma distribution of gDVH vs KMC. 

 

The performance benchmarks were run on the same server equipped with a Tesla K80 GPU 

card from NVIDIA and a Xeon E5 2630 v3 CPU from Intel. The average run time for this pelvis 

patient is listed in Table 5.1. As the Co60 radiation head is provide by vendor in C++ module 

running on CPU, our simulation efficiency is restricted by the CPU’s capability. For both 

simulations, the CPU will cost 42 seconds to generate incident particles. The overall acceleration 

ratio is 1.7. If not considering the CPU part, the acceleration ratio becomes as high as 2.7. Now 
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the fastest gDVH can reach 0.5% overall uncertainty in 1.2 minutes (0.5 billion effective 

histories).  

Table 5.1 Performance comparison between gDPMvr and gDVH 

Type GPU time (s) CPU time (s) Overall time (s) 

gDPMvr 71 42 113 

gDVH 26 42 68 

 

5.5 Discussion and conclusion 
In this chapter, we introduced the concept of “DVH constraint”, and applied it to accelerated our 

previous gDPMvr code by around two times. Accordingly, we name the new code “gDVH”. Th 

idea is to do detailed simulation in the regions of our interest but only perform rough estimation 

in the rest regions. This strategy successfully reduced the simulation time of a pelvis treatment 

plan from 1.9 minutes to 1.1 minutes while maintaining a 0.5% overall uncertainty. The 

simulation efficiency can be further improved if the Co60 head model is reimplemented in GPU 

code as well. In fact, the code design of Co60 head model is quite complex including serval 

features that are unfriendly to GPU programming (e.g. virtual functions). So it requests a lot of 

effects to rewrite the infrastructure before it becomes readily implementable in CUDA language.  
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Chapter 6: Geometry system 
In previous chapters, we introduced the principles of Monte Carol simulation and four methods 

to accelerate the simulation. Accordingly, we built three MC packages (gPENELOPE, gDPMvr 

and gDVH) that are suitable for different applications. However, these packages are all targeted 

at the in-patient dose calculation, i.e. simulating the particle transport through uniform 3D grids. 

Other scenarios, such as modeling ion-chamber, film response, etc., will require different 

geometry supports. It should be either very accurate or very convenient for deformable structures. 

Moreover, it should be easy to use. That is, the geometry system is able to import and utilize 3D 

models that are constructed or easily converted by modern CAD tools.  

The most frequently used MC package in this dissertation, PENELOPE, includes a quadric 

geometry system shown in Figure 6.1. It applies quadric surfaces (Figure 6.1 left) and planar 

surfaces to describe the geometry configuration, and can build complex models shown in Figure 

6.1 (right). This geometry system has very high transport efficiency because all surfaces are 

determined by the quadratic function and the intersection point with a ray can be easily 

calculated by solving a quadratic equation. However, the disadvantage is also obvious. The 

surfaces can only be described by combination of quadric and planar surfaces that are unable to 

precisely model many objects. The skeleton shown in Figure 6.1 (right) demonstrates how poor 

the quadric model is. An alternative geometry module that describe the geometry precisely is 

strongly here. 

The job of the geometry routines is to steer the simulation of particle histories in the actual 

material system. They must determine the active medium, change it when the particle crosses an 

interface (i.e. a surface that separates two different media) and, for certain simulation algorithms, 
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they must also keep control of the proximity of interfaces. In this chapter, we will build three 

geometry modules that are suitable for regularly shaped model, arbitrary triangle-mesh model 

and arbitrary tetrahedron-mesh model respectively.  

  

Figure 6.1 (left) Non-planar reduced quadric surfaces and their indices in PENELOPE. (right) A skeleton 

constructed by PENELOPE’s quadratic surfaces. 

 

6.1 Regularly shaped model 
Many measurement devices such as icon-chamber, EBT film, Arch-Check, etc. are made of 

regularly shaped primitives. For the response simulation research of these devices, it is natural to 

model them by combination of many primitives. Though PENELOPE’s geometry module can 
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construct some primitives, its complex configuration and limited surface types prevent itself 

being applied in those scenarios. We need another geometry module that offers many types of 

primitives and convenient ways to glue these primitives into the target objects.  The motto of 

“Don’t reinvent wheels” drive us to firstly look for ready- to-use libraries instead of building 

something from scratches. We found that another popular MC package, EGSnrc [13], is shipped 

with a powerful geometry module named “egs++”. It provides many primitives such as boxes, 

spheres, cylinders, etc., and various boolean operations (unions, logical, or, etc.) to put together 

more complicated objects. We can extract the source code, and merge it to our PENELOPE-

based systems. Figure 6.2 shows two ion-chamber models constructed by egs++. They are used to 

simulate the dose response via PENELOPE with the presentence of strong magnetic fields. 

  

Figure 6.2 (left) Model of A18 ion-chamber. (right) Model of Farmer ion-chamber. 

 

The egs++ geometry package considers geometrical structures at the highest possible level 

of abstraction: any object that is able to provide a certain set of geometry related methods is 

considered to be a "geometry". No distinction is made between surfaces or solids, or between 
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simple geometrical structures and highly complex ones. An object is considered to be a geometry 

if it can provide answers to the following questions: 

(1) Given a region index 𝑖, a position  𝑥⃗, a direction 𝑢⃗⃗ and an intended transport distance 𝑡, will 

the particle trajectory intersect a boundary? If yes, what is the new region index and what is 

the distance to the boundary? The method providing the answer to this questions will be 

referred to as the howfar() method of a geometry and is specified by the howfar() pure virtual 

function of the EGS_BaseGeometry class. 

(2) Given a region index 𝑖 and a position 𝑥⃗, what is the nearest distance to a boundary in any 

direction? The method providing the answer to this questions will be referred to as the 

hownear() method of a geometry and is specified by the hownear() pure virtual function of 

the EGS_BaseGeometry class. 

(3) Is position  𝑥⃗ inside or outside the geometry? The method providing the answer to this 

questions will be referred to as the isInside() method of a geometry and is specified by the 

isInside() pure virtual function of the EGS_BaseGeometry class. 

(4) In addition to the above, what is the region index corresponding to  𝑥⃗ if it is inside? The 

method providing the answer to this questions will be referred to as the isWhere() method of 

a geometry and is specified by the isWhere() pure virtual function of the EGS_BaseGeometry 

class. 

(5) What is the medium in region 𝑖? The method providing the answer to this questions will be 

referred to as the medium() method of a geometry specified by the medium() virtual function 

of the EGS_BaseGeometry class. 
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(6) How many regions are there in this geometry? The method providing the answer to this 

questions will be referred to as the regions() method of a geometry specified by the regions() 

virtual function of the EGS_BaseGeometry class. 

As a convention, all geometries numerate their regions between 0 and the number of regions 

minus one whereas a negative region index is considered to be outside of the geometry (i.e., if a 

particle would exit the geometry after crossing a boundary, the new region index returned is -1, 

or if the region index 𝑖 is negative in questions 1 and 2, the geometry object can assume that it is 

known that the position  𝑥⃗ is outside of the geometry). Questions 1 and 2 are specified by the 

EGSnrc geometry interface specification except that now geometry objects must be able to 

determine the answer to these questions also for the situation of the position being outside (i.e. 

region 𝑖 is negative). This extension, together with 3, 4 and 6 is necessary so that one can 

construct more complicated geometries from simpler geometries. Questions 5 is necessary to 

completely decouple the geometry information from simulation kernels.  

To describe the various geometry objects provided by the egs++ library, we will group them 

in two classes: (1) Elementary or primitive geometries. These geometries are called elementary 

not because it is easy to implement the required methods but because these methods are 

implemented directly, without the use of geometry methods of other objects. (2) Composite 

geometries. The geometry methods of such geometries are implemented using the geometry 

methods of the objects from which such geometries are built using a certain type of logic to 

obtain howfar(), hownear(), etc., from the corresponding methods of the constituents. Composite 

geometries can be constructed from elementary geometries and/or other composite geometries. 
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Given the above discussion, all geometry objects in the egs++ package are derived from the 

EGS_BaseGeometry class, which is part of the main egs++ library. Concrete geometry classes 

are compiled into separate shared libraries (a.k.a. dynamic shared objects, DSO, or dynamically 

linkable library, DLL) that can be loaded dynamically at run time as needed. Each of these 

geometry libraries provides a EGS_BaseGeometry *createGeometry(EGS_Input *inp) C-style 

function, the address of which is resolved when a geometry library is loaded and is used to create 

a geometry object from the input information stored in an EGS_Input object and pointed to by 

inp. The information stored in the input object is typically extracted from an input file that 

specifies the various aspects of a particle simulation. It is of course possible to create an 

EGS_Input object specifying one or more geometries by other means (e.g. within a GUI) and 

then use the geometry creation functions EGS_BaseGeometry::createGeometry() or 

EGS_BaseGeometry::createSingleGeometry() to obtain a pointer to the geometry object. 

The motivation behind this design is twofold: (1) Most of the time simulations are 

performed within a geometry that only requires a single class or a limited set of classes to be 

modeled. It would therefore be wasteful to link against a library containing all geometry classes 

available in egs++. (2) Extendibility: it is easy to create a new geometry class by deriving from 

EGS_BaseGeometry, implementing the necessary methods and the createGeometry function and 

compiling the class into a shared library that can immediately be used with the rest of the system. 

6.2 Arbitrary triangle-mesh model 
In section 6.1, we borrowed the egs++ module from EGSnrc to conveniently model objects with 

regular shapes. In more general scenarios, however, the objects to be modeled usually own 

arbitrary/irregular shapes, which is beyond egs++’s coverage. An easy solution is to borrow the 
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idea of mature 3D game character models, i.e. to approximate those complex surfaces via closed 

triangular meshes (e.g Figure 6.3 left).  

 

 

Figure 6.3 (left) Dolphin modeled by triangular mesh. (right) demonstration of spatial octree division of 

triangles. 

 

However, each object may require many (hundreds to thousands) small triangles to reach a 

modest description. The intersection tests with a large number of triangles become the biggest 

obstacle to high simulation efficiency. Luckily, there is a mature and effective ray-tracing 

solution existed in gaming industry. That is to recursively divide the space into an octree so that 

each leaf has none or only a few triangles to compare (see Figure 6.3 right). We also need to 

record the pointers of neighbor nodes for fast node switch. The C++ triangle-mesh module for 

PENELOPE has been reported by Badal et al [69]. Based on their work, we made some 

modifications and implemented the first GPU based triangle-mesh geometry library. This library 

can be applied with gPENELOPE to improve the accuracy of LINAC output simulations.  
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6.3 Arbitrary tetrahedron-mesh model 
Though the geometry modules introduced in section 6.1 and 6.2 can conveniently model many 

objects, they are not able to provide the radiation dose distribution as we do for in-patient voxel 

grid. For objects of arbitrary shape, it is also difficult to bridge voxel grids inside. One geometry 

model formed by tetrahedron mesh can provides natural containers for spatial dose counting, and 

be can deformed corresponding to the motion of patients’ organs (see Figure 6.4). 

 

Figure 6.4 Human body modeled by tetrahedron mesh. It provides natural containers for spatial dose 

counting, and can be easily deformed to simulate the motion of patients’ organs. 

 

As the tetrahedrons are naturally adjacent, it is easier to perform ray-tracing as the node 

switch can be very fast.  The transport algorithm has been reported by Qianqian Fang (2010) [70]. 

Though his work only simulated photons, it’s easy to add electron transport extensions. One of 

his optimizations is to do Ray-polygon intersection test using Plücker coordinates instead of the 
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regular coordinates. This algorithm basically trades the computation cost with the memory 

consumption.  

Those tetrahedron meshes for simulation can be constructed from CAD models or from a 

set of CT images.  The famous physics simulation software COMSOL provides a complete 

toolkit to build tetrahedron-mesh models. The approach of generating tetrahedron-mesh models 

from CT scans has been reported by Qianqian Fang (2009) [71], who also released a set of easy-

to-use MATLAB scripts called “iso2mesh” on GitHub.  
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Chapter 7: Graphic user interface 
A good designed toolkit should be friendly to all users. We integrate all functionalities for 

inpatient dose QA into a graphic user interface (GUI) called DoseViewer to deliver best user 

experience. Similarly, we integrate all modules for tetrahedron-mesh based simulations into a 

GUI called TetViewer. Users can performance complicated simulations and view the results at 

the same time without having to edit tedious configurations or write any code.  

7.1 DoseViewer 
As the name indicates, DoseViewer should be able to display the dose distribution 

comprehensively to users. Although several software packages exist for visualizing 3D dose 

distributions, such as CERR (MATLAB) [72] and 3DSlicer (C++) [73] among others, they were 

either developed in script language which has relatively low executing efficiency, or rely on 

cumbersome runtime libraries which complicate software distribution. More importantly, it is 

difficult to integrate customized functionality into existing packages like those mentioned above. 

We therefore decided to develop our own lightweight C++ program – called DoseViewer – 

which enables DICOM phantom creation/conversion, dose calculation, multiple views, 3D 

observation, dose profiling, gamma analysis (GPU-accelerated), etc. in a compact size. The 

highly responsive and user-friendly GUI for DoseViewer is shown in Figure 7.1. 

Since all was designed as a cross-platform package, we decided to make DoseViewer cross-

platform as well using the library wxWidgets to display the GUI framework and OpenGL to 

render the phantom and dose in 3D space. We utilized the DCMTK library developed by OFFIS 

to load DICOM data (including CT images, dose, and contours). We also used OpenCV to 

simplify image manipulation. Besides standard DICOM files, DoseViewer can also load dose 

and phantom data in MRIdian formats for dose comparison and gamma analysis. Moreover, we 
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applied a lightweight MathGL library to enable quick visualization of dose profiles. To 

accelerate 3D gamma analysis for large dose matrices, we developed a DLL module using GPU 

computation which is at least four times faster than CPU code (NVidia GT650M GPU vs Intel i7 

3630QM CPU). To further save time, we also ported many MATLAB functions (e.g. 3D 

interpolation) to C++ code through MATLAB coder. 

 

Figure 7.1 GUI of DoseViewer that enables DICOM phantom creation/conversion, dose calculation, 

multiple views, 3D observation, dose profiling and gamma analysis (GPU accelerated), etc. in a compact 

size. The smaller window, as an example, shows an arbitrary dose profile comparison between 

gPENELOPE and KMC (engine of MRIdian’s treatment planning system) in a lung case. 

 

7.2 TetViewer 
The implantation of TetView (see Figure 7.2) is very similar to DoseViwer except its main 

window is to display tetrahedron meshes and the dose recorded in those tetrahedrons. Since the 
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boundary of the tetrahedron mesh is clear, we can improve the visualization by assigning parent 

weight outside the boundary in each slice, and then we can view elements behind the slides.  

 

Figure 7.2 GUI of TetViewer that provides 3D display of tetrahedron meshes and radiation dose. 
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Chapter 8: Conclusion and outlook 
Through the efforts introduced in previous chapters, we have successfully built a complete 

toolkit for fast Monte Carlo dose calculation in radiation therapy. Here, we will briefly recall the 

methodology and produced results, and have an outlook of the future of fast Monte Carlo 

simulation and its applications in radiation therapy.  

8.1 Summary of the results 
The key results are three fast Monte Carlo dose calculation packages suitable for different 

application scenarios. First, we applied GPU parallelization on the famous Monte Carlo code 

PENELOPE and build a new code system gPENELOPE that runs 5 times faster and remains the 

same accuracy. It works well for applications requiring high accuracy and fast speed. Second, we 

further took two steps, i.e. transport simplification and variance reduction to build an even faster 

code system named gDPMvr. Benchmarks show that the transport simplification and variance 

reduction can accelerate the simulation by about 7 and 6 times respectively. gDPMvr runs 43 

times faster than gPENELOPE but it only compromises 1% accuracy, so it’s well suited for in-

patient dose calculation purpose. Third, we applied “DVH constraint” on gDPMvr and build 

another code system named gDVH, which finally double the simulation efficiency. It is 

spherically designed for DVH oriented QA. With all these efforts, the simulation time can be 

significantly reduced from 5 hours to 1.2 minutes for a typical treatment plan.  

This dissertation also covers 3 applications of this toolkit other than the primary QA 

purpose. These are: (1) Validate the vender provided Co60 radiation head model by comparing 

the dose calculated by gPENELOPE to experiment data; (2) Quantitatively study the effect of 

magnetic field to dose distribution and proposed a strategy to improve treatment planning 

efficiency; (3) Evaluate the accuracy of the build-in MC algorithm of MRIdian’s treatment 
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planning system. Many other time-sensitive applications (e.g. motional dose accumulation) will 

also benefit a lot from our fast MC infrastructure. 

To extend our code systems to more general scenarios, we also integrated a geometry 

module that can easily handle regularly shaped model, arbitrary triangle-mesh model and 

arbitrary tetrahedron-mesh model. Moreover, we also developed two graphic user interfaces 

(GUIs) called “DoseViewer” and “TetViewer” to lower the level of difficulties to average users.  

In summary, this dissertation presents a complete toolkit for fast Monte Carlo simulations 

and can be widely applied in radiation therapy.  

8.2 Outlook 
The Monte Carlo dose calculation method has been used in radiation therapy for over half a 

century, and but it is not applied as widely as its competitor -- convolution-superposition (CS) 

method due to speed issue. The recent rise of MRI guided radiation therapy draws new attention 

to the relative mature Monte Carlo algorithm because the introduced magnetic field may cause 

significant error in CS algorithm. Monte Carlo algorithm fundamentally correct the error since it 

simulates millions of particles in a microscopic sense. The challenge lies at how to improve the 

simulation efficiency to clinically acceptable level.  

As the single core in CPU has almost reached its physical limitation for calculating speed, 

the multi-core structure becomes more feasible to improve overall performance. This strategy 

propels the debut of general-purpose GPU programming language, and then we enter the new era 

of parallel computation on GPU. The conventional Monte Carlo packages, however, are not 

readily applicable to GPU architecture. In the future, those Monte Carlo developers may spend 

efforts to adapt their codes to GPU for better performance, and they have to overcome the two 

major GPU programming difficulties mentioned in section 3.2.4. However, the GPU hardware 
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may be redesigned to address the two issues instead of making painful effort in programming 

level. Maybe programming on next-generation GPU platform would be as easily as we do now 

on CPU platform.  

One drawback of current Monte Carlo algorithm is the multiple scattering theory of a large 

electron step in magnetic field hasn’t been established. The introduced magnetic field makes the 

original theory unfixable. The algorithm we use today is based on a simple unjustified fix. It will 

cause big error if the advancing step becomes large. Usually the efficiency is much restricted. 

Finding a close and efficiency approximation remains a big challenge. We expect a satisfactory 

solution in the near feature.  

One competitor of the Monte Carlo algorithm is so-called “deterministic linear Boltzmann 

transport equation (D-LBTE) solver” [74], which establishes a complicated Boltzmann transport 

equation to describe the statistical status of the particles and then obtains the dose distribution by 

solving the D-LBTE in a deterministic way (by iterations for example). The algorithm can 

produce results much faster than conventional Monte Carlo packages and yield similar level of 

accuracy. However, the solver may not give a converged solution after many iterations. Its speed 

cannot beat the recent fast Monte Carlo packages. The “D-LBTE solver” algorithm is still under 

active research and development.  
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