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Abstract

Motivation: While the position weight matrix (PWM) is the most popular model for sequence

motifs, there is growing evidence of the usefulness of more advanced models such as first-order

Markov representations, and such models are also becoming available in well-known motif data-

bases. There has been lots of research of how to learn these models from training data but the

problem of predicting putative sites of the learned motifs by matching the model against new

sequences has been given less attention. Moreover, motif site analysis is often concerned about

how different variants in the sequence affect the sites. So far, though, the corresponding efficient

software tools for motif matching have been lacking.

Results: We develop fast motif matching algorithms for the aforementioned tasks. First, we formal-

ize a framework based on high-order position weight matrices for generic representation of motif

models with dinucleotide or general q-mer dependencies, and adapt fast PWM matching algo-

rithms to the high-order PWM framework. Second, we show how to incorporate different types of

sequence variants, such as SNPs and indels, and their combined effects into efficient PWM match-

ing workflows. Benchmark results show that our algorithms perform well in practice on genome-

sized sequence sets and are for multiple motif search much faster than the basic sliding window

algorithm.

Availability and Implementation: Implementations are available as a part of the MOODS software

package under the GNU General Public License v3.0 and the Biopython license (http://www.cs.hel

sinki.fi/group/pssmfind).

Contact:janne.h.korhonen@gmail.com

1 Introduction

Position weight matrices (Gribskov et al., 1987; Henikoff et al.,

1990; Stormo et al., 1982) are a simple model of signals in sequences

called motifs that are used in particular in the context of biological

sequence data to model e.g. transcription factor binding sites in

DNA. Specifically, the idea is to model a sequence motif of length m

over alphabet R as an m� jRjmatrix M such that the the fit between

the model M and a sequence u ¼ u1u2 . . . um is measured by the

match score

M½u� ¼Mð1; u1Þ þMð2; u2Þ þ � � � þMðm; umÞ :

The weights in the matrix M may be interpreted in various ways, for

example, as describing the binding energy between a transcription

factor and DNA, or as log-likelihood presentation of a sequence of
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independent multinomially distributed random variables (Stormo,

2000).

From a computational perspective, there are two main tasks

involved in the use of PWMs as motif model. First is the learning task,

where one wants to derive the PWM weights from empirical data rep-

resenting the motif of interest. The second is the task of predicting the

sites for a motif, where one wants to find the occurrence sites of a

given motif represented by a PWM in a longer sequence, such as a

chromosome or a complete genome. Formally, for a longer sequence

s ¼ s1s2 . . . sn, we want to find sequence positions j where the match

score exceeds some threshold T, that is, we have M½sjsjþ1 . . . sjþm�1�
� T: This position weight matrix matching problem is obviously a

weighted variant of the basic string matching (key-word matching)

problem. Using techniques from string matching algorithms, the

PWM matching problem can be solved significantly faster than by

using the brute-force sliding window algorithm that evaluates the

match score explicitly at each sequence position (see Section 2).

1.1 High-order PWM matching
In this work, we develop motif matching algorithms for high-order

PWMs. There has been recent interest towards models for transcrip-

tion factor binding site motifs that are more complicated than the

basic PWM (Weirauch et al., 2013). An obvious generalization of

PWMs is to include dinucleotide effects into the model, that is,

dependencies between adjacent positions (see Fig. 1), either by dir-

ectly formulating the model in terms of additive dinucleotide effects

or by modelling the signal as a 1st-order Markov model. Indeed,

many authors have suggested models of these types, studied the cor-

responding learning problem and evaluated their methods on empir-

ical biological data (Jolma et al., 2013; Kulakovskiy et al., 2013;

Mathelier and Wasserman, 2013; Zhao et al., 2012). Moreover, di-

nucleotide models are starting to appear in databases such as

JASPAR (Mathelier et al., 2016) and HOCOMOCO (Kulakovskiy

et al., 2016). In validation tests, models with dinucleotide effects are

often found better than standard PWMs, and accounting for di-

nucleotides is important for recognition of some transcription factor

binding sites (Berger et al., 2006; Man and Stormo, 2001; Nitta

et al., 2015; Siebert and Soeding, 2016; Zhao et al., 2012). It is also

worth noting that various other ways to generalize upon the PWM

framework have been suggested (see Section 2).

Consider a generalization of the PWM model where we represent

a motif of length m as a ðm� 1Þ � jRj2 matrix M so that the the fit

between the model M and a sequence u ¼ u1u2 . . . um is measured as

M½u� ¼
Xm�1

i¼1

Mði; uiuiþ1Þ :

This is a natural additive scoring scheme to address dinucleotide ef-

fects in PWM-like models, used, for example, by Kulakovskiy et al.

(2013). However, some other dinucleotide models are not repre-

sented in terms of additive weights, such as the transcription factor

flexible models in the JASPAR database (Mathelier et al., 2016). To

unify and generalize the representation of this class of models, we

give in Section 3 a framework based on high-order position weight

matrices as a generic model for motifs with dinucleotide dependen-

cies and, more generally, with q-mer dependencies (q¼0 corres-

ponds to the standard PWM). The framework uniformly represents

different motif models as additive scoring matrices, including, as we

show, probabilistic models such as Markov models of order 1 and

higher. Using the framework, we obtain a natural formulation for

the corresponding motif occurrence prediction task as a high-order

PWM matching problem.

Section 4 gives the main result of this paper. We generalize the

fast position weight matrix matching algorithms of Pizzi et al.

(2011) to high-order PWM matching, which gives us almost-linear

time matching that remains efficient even for large motif sets and

genome-scale sequence data.

Overall, we obtain a flexible and computationally efficient

framework for motif occurrence detection that can support various

existing motif models, such as the additive matrix models of Zhao

et al. (2012) and Kulakovskiy et al. (2013) and the 1st-order

Markov models of Jolma et al. (2013) and Mathelier and

Wasserman (2013). We finally stress that we do not introduce new

models for transcription factor binding site motifs, but rather an ef-

ficient framework and algorithms to predict occurrence sites for

some existing and future motif models.

1.2 Sequence variants: SNPs, insertions and deletions
As an additional contribution, we consider motif matching for target se-

quences that are annotated with variants, representing biological fea-

tures such as single-nucleotide polymorphisms (SNPs), insertions and

deletions. It is known, for example, that SNPs affecting binding motifs

of transcription factors can alter affinity, and be a significant mechan-

ism in the development of cancer (Tuupanen et al., 2009). Thus, we are

interested in identifying variants and combinations of variants that cre-

ate new matches between the target sequence and motif models.

We consider this problem in a framework in which a contiguous

substring sisiþ1 . . . sj of the target sequence s is replaced with another

string u of any length; this allows us to model SNPs, insertions and

deletions as well as more general sequence variants (see Fig. 2). We

present a simple algorithm that computes, for a PWM or a high-

order PWM, all significant matches with the target sequence where

one or more of the variants affects the match score (Section 5).

1.3 Implementation and experiments
We have implemented the algorithms presented in this paper as a

part of the MOODS software suite (Korhonen et al., 2009), freely

available online (http://www.cs.helsinki.fi/group/pssmfind/). The

implementations have been written in Cþþ with performance on

large-scale data-sets in mind, and include Python interfaces

(Generated using SWIG (http://www.swig.org)) for integration into

more complicated workflows.

(a)

(b)

Fig. 1. Example motif from our test set, modelled as (a) a 0-order PWM (PWM

logo) and (b) a 1st-order Markov model (a ‘riverlake’ logo (Morgunova et al.,

2015)). A first-order Markov model can capture dinucleotide preferences of

motifs that cannot be represented with a 0-order PWM (Morgunova et al.,

2015; Nitta et al., 2015). For example, the riverlake logo (b) shows that di-

nucleotides AT and TC are preferred over AC and TT at the second and third

positions, and that this preference is not and cannot be represented by the

PWM model (a)
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We present benchmarks for our implementations in Section 6,

demonstrating that the algorithms also perform well in practice. As

an illustrative example, finding all matches for a set of 78 first-order

PWMs from a chromosome-sized sequence with nearly two million

variants (human chromosome 22 with 1 811 391 variants (The

1000 Genomes Project Consortium, 2015)) corresponding to

P-value 10–3 took 3 min and 18 s on a standard laptop computer,

not including the time needed for reading the inputs.

2 Related work

2.1 Transcription factor binding site models
Rapidly increasing sequence data has made it feasible to learn motif

models that are more complex than the basic PWM. The focus in

these developments has been on the model specification, learning

and validation; see, for example, the recent DREAM5 TF-DNA

Motif Recognition Challenge (Weirauch et al., 2013). In addition to

the dinucleotide models that form the basis for the present work,

there have been proposals with more global dependencies (Mordelet

et al., 2013; Santolini et al., 2014; Sharon et al., 2008; Siddharthan,

2010) and models based on position-invariant scoring of longer

q-mers (Annala et al., 2011). However, from the perspective of

matching algorithms, models with global or long-distance statistical

dependencies are more difficult to deal with; compare the present

work with e.g. Giaquinta et al. (2013; 2014).

2.2 Position weight matrix matching algorithms
Research into fast algorithms for PWM matching is generally based

on exploiting thresholding, that is, instead of using the sliding window

approach to explicitly evaluate the PWM match score at each pos-

ition, the algorithms attempt to identify positions where the score ex-

ceeds a given threshold without explicit computation. This research

can be roughly divided into two main branches; first of these is index-

based algorithms, where the idea is to preprocess the input sequences

to an index structure such as suffix tree (Dorohonceanu and Nevill-

Manning, 2000) or suffix array (Beckstette et al., 2004) in order to fa-

cilitate sub-linear time motif matching. On the other hand, online al-

gorithms rely on a linear scan over the input sequence, but usually

speed up the search using ideas from classical string matching algo-

rithmics (Liefooghe et al., 2009; Pizzi et al., 2011; Salmela and

Tarhio, 2007; Wu et al., 2000). The review by Pizzi and Ukkonen

(2008) gives a more thorough overview of various ideas suggested in

this context. From a more practical perspective, these fast algorithms

have been implemented in software suites such as PoSSuMSearch

(Beckstette et al., 2004) and MOODS (Korhonen et al., 2009), dem-

onstrating that carefully designed algorithms can give significant ad-

vantages over the sliding window approach.

2.3 SNPs and PWM matching
The analysis of sequence variants in the context of motif analysis has

been mostly focused on identification of regulatory SNPs (rSNPs),

that is, SNPs that affect the transcription factor DNA-binding affin-

ities (Andersen et al., 2008; Macintyre et al., 2010; Riva, 2012;

Thomas-Chollier et al., 2011; Zuo et al., 2015). The existing tools

typically analyze a single SNP at a time, computing PWM scores for

both alleles and performing appropriate statistical testing to deter-

mine whether the effect of the SNP is significant. The statistical testing

generally makes these tools computationally demanding; e.g. Zuo

et al. (2015) report running time of over 7 min for 26 100 SNPs and

10 motifs even when using parallel processing. By contrast, the ap-

proach presented in this paper supports analysing joint effects of mul-

tiple sequence variantions of more general form, but does not enable

statistical testing, making it more appropriate for discovery of poten-

tially significant sequence variants in very large datasets.

3 High-order PWMs

In this section, we first define the notion of high-order PWM, which

is sufficient to capture additive models, and then show how the

high-order PWMs can be used as a representation for probabilistic

models, such as the 1st-order Markov models.

3.1 Basic framework
We define a qth-order position weight matrix of length m in alpha-

bet R as a real-valued matrix M ¼ ðMði; uÞÞ of size ðm� qÞ � jRjqþ1.

The columns of M are thought to be indexed with ðqþ 1Þ-tuples of

symbols u 2 Rqþ1, that is, by ðqþ 1Þ-mers. For biological applica-

tions we generally use the DNA alphabet R ¼ fA;C;G;Tg.
As with standard PWMs, the similarity between a qth-order PWM

M and a string u ¼ u1 . . . um is measured by the match score, defined as

M½u� ¼
Xm�q

i¼1

Mði;ui . . . uiþqÞ : (1)

Here the key distinction from standard PWMs is that the column

scores depend on partially overlapping ðqþ 1Þ-mers of u instead of

the individual characters.

3.2 Probabilistic models as high-order PWMs
A probabilistic motif model U of length m models a signal as a se-

quence of random variables X ¼ X1X2 . . . Xm over alphabet R, as-

signing a probability PUðX ¼ uÞ for each u 2 Rm. We say that a

probabilistic motif model U is order-q decomposable if there are

functions Ui : Rqþ1 ! R such that the probability that U generates a

string u ¼ u1u2 . . . um can be written as

PUðX ¼ uÞ ¼
Ym�q

i¼1

Uiðuiuiþ1 . . . uiþqÞ :

That is, the probability decomposes in terms of the length-ðqþ 1Þ
substrings of u.

We can now define a high-order PWM representation for an

order-q decomposable motif model U as follows. Assume that we

have a fixed background distribution / over strings of length m, and

that / is also order-q decomposable; for example, / can be simply

(a)

(b)

Fig. 2. (a) A sequence annotated with variants. (b) Possible modified se-

quences generated by applying the variants to the original sequences
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the uniform distribution over Rm. The qth-order PWM representa-

tion for U is now an ðm� qÞ � jRjqþ1 matrix with entries

Mði;uÞ ¼ log
UiðuÞ
/iðuÞ

; 1 � i � m� q ; u 2 Rqþ1 : (2)

See Figure 3 for an example of this derivation for a simple 1st-order

Markov model.

Note that the assumption that the background distribution / is

also order-q decomposable is made purely for technical reasons, as

we have to split the background effect between the m� q columns

of the high-order PWM. For example, for the position-independent

multinomial background model defined by probabilities P/ðaÞ for

a 2 R, we can set /1ðuÞ ¼
Qqþ1

i¼1 P/ðuiÞ and /iðuÞ ¼ P/ðuqþ1Þ for

i � 2, and for the uniform background distribution, we can set /iðuÞ
¼ ððm� qÞjRjmÞ�1 for all i ¼ 1; 2; . . . ;m� q and u 2 Rqþ1

3.3 Matching and threshold selection
The matching problem for qth-order PWMs is defined in a natural

way; we are given qth-order PWM M, a sequence s ¼ s1s2 . . . sn, and

a threshold T, and the task is to find all positions i such that

M½sisiþ1 . . . siþm�1� � T. Note that the basic sliding window al-

gorithm for PWMs, corresponding to the direct evaluation of (1) in

each position of s, can be adapted to high-order PWMs to get a

simple O(nm) time algorithm for this task. However, this is fairly

slow for large datasets, especially when dealing with large number of

motifs.

The selection of the threshold T can be done in the same way as for

PWMs; a standard approach is to use P-values to control the confi-

dence of the found matches. That is, given a P-value P*, we select a

threshold T such that the probability for a string u generated by a back-

ground distribution / having score M½u� � T is P*. This threshold can

be computed using a well-known dynamic programming algorithm,

similarly as with 0-order PWMs (Staden, 1989; Wu et al., 2000).

4 Fast high-order PWM matching

4.1 Definitions and preliminaries
4.1.1 Submatrices

For a qth-order PWM M of length m and 1 � j < k � m, we de-

fine the submatrix Mj...k as a qth-order PWM of length ðk� jþ 1Þ
with entries

Mj...kði; a1 . . . aqþ1Þ ¼Mðjþ i� 1; a1 . . . aqþ1Þ

for i ¼ 1;2; . . . ;k� j� qþ 1 and a1; . . . ; aqþ1 2 R.

4.1.2 Computing maximum scores

For a qth-order PWM M, we will often need to know the maximum

possible score M can give to a string u 2 Rm, that is, maxu2Rm M½u�.
While for the case of q¼0, corresponding to standard PWMs, this

score can be simply computed by taking the maximum score from

each column, there are interdependencies between positions in qth-

order PWM that make things more complicated for q � 1.

To compute the maximum score for a qth-order PWM, we use a

simple dynamic programming algorithm. For all u ¼ u1 . . . uq 2 Rq,

let

M�ð1;uÞ ¼ max
a2R

Mð1; au1 . . . uqÞ ;

M�ði;uÞ ¼ max
a2R
½M�ði� 1; au1 . . . uq�1Þ þMði; au1 . . . uqÞ� ;

ð3Þ

where i ¼ 2;3; . . . ;m� q. The maximum score M can give to a

string of length m is now

max
u2Rq

M�ðm� q; uÞ :

This value can be computed in time OðjRjqþ1ðm� qÞÞ using (3).

4.2 Fast matching via filtering
4.2.1 Filtering via exact string matching

A basic observation is that given a qth-order PWM M and a thresh-

old T, these completely determine all length m strings with match

score at least T. Thus, qth-order PWM matching reduces to multi-

pattern exact string matching; we can simply generate the set

K ¼ fu 2 Rm : M½u� � Tg ;

and use a fast multi-matrix string matching algorithm to find all oc-

currences of strings in K from an input sequence.

However, for long matrices M this can become impractical, as

the size of set K can grow exponentially in m. To circumvent this

problem, we use filtration via multi-pattern string matching, simi-

larly to Pizzi et al. (2011); note here that our filtering scheme is loss-

less, i.e. no occurrences passing the threshold will be lost:

1. We first select a window of some fixed width ‘ and starting at

some position j; the idea is to select the starting position j such

that the substring ujujþ1 . . . ujþ‘�1 determines most of the score

M½u� for any u 2 Rm.

2. We then construct a filter set for M, defined as

C ¼ fu 2 R‘ : M½vuw� � T for some v 2 Rj�1;

w 2 Rm�‘�jþ1g:

Intuitively, the filter set contains all strings that may occur in the

selected window in a high-scoring string.

3. Then use an exact multi-pattern string matching algorithm to

find in the input sequence s all occurrences of strings in C, in

time linear in jsj.
4. For each position i of s where some string from C occurs, check

whether

M½si�jþ1 . . . si�jþm� � T :

We next discuss each of these steps in detail.

Fig. 3. A example of 1st-order Markov model representing a sample that con-

sists of sequences ACCCT and ACGGT, and a 1st-order PWM representation

of the model computed using (2); missing transitions have been assigned a

small probability to account for missing data. In particular, the dependence

between positions 3 and 4 cannot be represented by a 0-order model
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4.2.2 Window selection

For qth-order PWM M and background distribution P/, we define

the expected loss of the score as

LðMÞ ¼ E½M� �M½u�� ¼M� � E½M½u�� ;

where u 2 Rm is generated from the background distribution P/

and M� ¼ maxu2Rm M½u�. Note that M* can be evaluated in time

OðjRjqþ1mÞ using (3), and by the linearity of expectation

E½M½u�� ¼
X

v2Rqþ1

P/ðvÞ �M½v� :

Thus, L(M) can be evaluated in time OðjRjqþ1mÞ for fixed M.

To select a filtration window for our algorithm, we first fix the

window width ‘ and the background distribution P/. The parameter

‘ is ideally chosen to be as large as is feasible on the current hard-

ware—the results of Pizzi et al. (2011) indicate that ‘ ¼ 7 or ‘ ¼ 8 is

a good choice on modern hardware, as this means the data struc-

tures representing the filter set fit mostly into the fast cache mem-

ory—while P/ can be estimated from the input sequence. We select

the window of length ‘ by picking the submatrix Mj...jþ‘�1 that maxi-

mizes the expected loss, that is, the window position is selected to be

j ¼ argmaxiLðMi...iþ‘�1Þ :

This window selection can be implemented to run in time

OðRqþ1ðm� ‘ÞmÞ.

4.2.3 Filter set construction

Once we have fixed the window position j, we want to enumerate

all strings in the set C as defined above. Unlike in the 0-order case,

the score inside the filtering window is not completely independent

of the score outside the window, but rather we have to account for

the interaction occurring at the q positions at the both edges of the

filter. To this end, for v 2 Rq, we define the maximum prefix score

PðvÞ ¼ max
u2Rj�1

M1...jþq½uv�

and the maximum suffix score

RðvÞ ¼ max
u2Rm�‘�j�1

Mjþ‘...m½vu� :

Note that both of these can be evaluated for all v in time OðjRjqþ1mÞ
using (3); for R(v), we simply reverse the index ordering.

The filter set C for window position j is now

C ¼ fu 2 R‘ : Pðu1 . . . uqÞ þMj...jþ‘�1½u�

þRðu‘�q . . . u‘Þ � Tg :
(4)

Assuming the prefix and suffix scores are precomputed, then C can

be constructed in time OðjRj‘‘Þ by enumerating all strings u 2 R‘

and checking for each of them if the condition in (4) is satisfied.

4.2.4 Filtering

To find occurrences of strings u 2 C in the input sequence

s ¼ s1s2 . . . sn, it suffices to use any linear-time multi-pattern string

matching algorithm. We use a simple finite state automaton simi-

larly to Pizzi et al. (2011); we construct an automaton with an expli-

cit state for each u 2 R‘, and the automaton takes a transition from

state u1u2 . . . u‘ to state u2u2 . . . u‘a when reading symbol a 2 R. For

each state u, we record whether u 2 C and the corresponding score

Mj...jþ‘�1½u�.
In cases where the size of the filter set C is significantly smaller

than jRj‘, it might be beneficial to use more space-efficient

algorithms such as the Aho-Corasick algorithm (Aho and Corasick,

1975). However, the experimental results of Pizzi et al. (2011) sug-

gest that this does not confer much practical benefit, especially in

the multi-matrix generalization we discuss below.

4.2.4 Lookahead for off-filter scoring

For each match sisiþ1 . . . siþ‘�1 2 C, we can verify whether or not

this match can be expended to a match of full M by explicitly com-

puting the scores for flanking regions, that is, M1...j½si�jþ1 . . . sj� and

M‘�1...m½siþ‘�1 . . . si�jþm�, and checking if

M½si�jþ1 . . . si�jþm� � T :

This can be done in time Oðm� ‘Þ, assuming we stored the score

from the filtering window in the scanning automaton.

4.2.5 Multi-matrix version

Our algorithm also generalizes in a straightforward way to the case

where we are given multiple qth-order PWMs M1;M2; . . . ;Mk, and

we want to find matches for all of the matrices simultaneously. That

is, we preprocess each matrix as above, constructing the correspond-

ing filter sets C1;C2; . . . ;Ck. However, we do the filtration step only

once, finding all matches for strings in the set [k
i¼1Ci; when con-

structing the finite automaton for filtration, we additionally store in-

formation on which of filter sets C1;C2; . . . Ck each strings u 2 R‘

belongs to.

In practice, this can speed up the search significantly for large k,

as we then have to do the O(n) filtration phase only once.

Moreover, we note that the matrices M1;M2; . . . ;Mk can have dif-

ferent lengths m and orders q, and we can still combine the filtra-

tions steps, as the preprocessing can be done on per-matrix basis.

5 Variants in sequences

5.1 Definitions and preliminaries
5.1.1 Variants

Let R be a fixed alphabet and let s 2 Rn be a sequence of length n. In

the following, we write si...j for the substring sisiþ2 . . . sj�1; if j � i,

we mean the empty substring, and for i � 0 or j � nþ 2, we inter-

pret these as if we had i¼1 and j ¼ nþ 1 respectively.

A variant for s is a string l 2 R�, associated with a starting position

bðlÞ and end position eðlÞ such that 1 � bðlÞ � eðlÞ � nþ 1. We

say that s modified by l, denoted by s=l, is the sequence obtained by

replacing the (possibly empty) substring sbðlÞ...eðlÞ of s with the string l,

that is,

s=l ¼ s1...bðlÞlseðlÞ...nþ1 :

5.1.2 Compatibility

For variants l and k, we write l < k if eðlÞ < bðkÞ or eðlÞ ¼ bðkÞ
and either bðlÞ < eðlÞ or bðkÞ < eðkÞ. Intuitively, this means that

both l and k can be applied to s simultaneously without ambiguity;

we say that l and k are compatible if l < k or k < l. For compat-

ible variants l1 < l2 < � � � lk, we extend the notion of applying

the variants to s in an obvious way; that is, we simultaneously re-

place substring sbðliÞ...eðliÞ of s with li for each i ¼ 1; 2; . . . ; k. We de-

note the resulting string by s=l1; . . . ;lk.

5.1.3 Matching problem with variants

Let M be a qth-order PWM of length m, and let us fix a threshold T.

Given sequence s¼s1s2 . . . sn and a set of variants X¼fl1; l2; . . . ; lkg
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to s, we say that a modified match for M and Y 	 X is a substring u

of s/Y of length m such that (a) M½u� � T and (b) u overlaps all of

the replacement strings l for l 2 Y. In case of empty replacement

string, i.e. a deletion, we take this requirement to mean that the

match must include at least one position before and after the deleted

substring. In the variant matching problem, we are given a high-

order PWM M, threshold T, sequence s and the set of variants X as

above, and the task is to find all modified matches in s for M and all

subsets of compatible variants Y 	 X.

5.2 Finding modified matches
5.2.1 Restricting variant combinations

As a basic observation, we note that variants have to be sufficiently

close together for there to be a match that overlaps them both. That

is, for two variants l < k, there can be a modified match for M and

fl; kg only if we have bðkÞ � eðlÞ � m� 2; otherwise, M is too

short to overlap both.

More generally, for a set X ¼ fl1; l2; . . . ; lkg of compatible vari-

ants with l1 < l2 < � � � < lk, let b(Y) denote the position of last

symbol of l1 and e(Y) the position of first symbol of lk in

s=l1; . . . ;lk. Any modified match for M and Y in s must clearly

overlap these positions in s=l1; . . . ; lk, so M can have modified

matches for Y only if eðYÞ � bðYÞ � m� 2; we call variant sets sat-

isfying this condition feasible. Moreover, this implies that the only

possible starting positions for a such match in s=l1; . . . ;lk are

eðYÞ �mþ 1; eðYÞ �mþ 2; . . . ; bðYÞ � 1; bðYÞ. That is, the modi-

fied matches in s for M and fl1; . . . ; lkg are exactly the matches of

M in sequence ðs=l1; . . . ; lkÞeðYÞ�mþ1...bðYÞþm (see Fig. 4(b)).

5.2.2 Branch and scan

Based on the above observations, our basic strategy for the problem

is as follows. For any subset Y 	 X of variants, we check if Y is feas-

ible, that is, eðYÞ � bðYÞ � m� 2. If this is the case, we generate

the substring ðs=YÞj�mþ1...iþm and find all matches for M in that

string using an arbitrary matching algorithm.

However, we do not want to explicitly check all possible 2jXj

subsets of X, so we use a simple branch-and-bound approach to re-

strict the search space. Assume that variants X are l1;l2; . . . ; lk and

that they are sorted so that bðliÞ � bðljÞ if i< j. With this ordering

fixed, we say that Y 0 	 X is an extension of Y 	 X if (a) Y 0 
 Y and

(b) i< j for any li 2 Y and lj 2 Y 0nY, that is, all variants in Y 0nY

come after variants in Y in the global ordering. Clearly, if Y is not

feasible, then all of its extensions are also not feasible.

We now use a simple algorithm that, given a set of variants

Y 	 X, recursively walks through extensions Y 0 of Y and finds the

corresponding modified matches; the recursive search is stopped if a

non-feasible variant set Y is encountered. Initially, the algorithm is

called for each singleton variant set Y ¼ fljg for j ¼ 1;2; . . . ; k,

with the algorithm proceeding as follows:

1. Generate sequence s0 ¼ ðs=YÞeðYÞ�mþ1...bðYÞþm and find all

matches for M from s0.

2. Go through the variants li 2 fl‘þ1;l‘þ2; . . . lkg in order, where

l‘ is the last variant in Y:

a. If li is compatible with l‘ and eðY [ fligÞ�
bðY [ fligÞ � m� 2, recursively find all matches for exten-

sions of Y [ flig.
b. If eðY [ fligÞ � bðY [ fligÞ > m� 2, return from recursion

(Y [ flig is not feasible).

The worst-case running time is still in the order of 2jXj, but if the

variants are sparsely distributed, as is likely the case with real data,

the running time will be much smaller. Informally speaking, if no

more than K variants occur within a length-m window in s, then the

number of variant sets Y 	 X that need to be visited by the algo-

rithm is Oðn2KÞ. Moreover, the algorithm can be easily modified to

only check sets Y with jYj � C for a constant C.

6 Experimental results

6.1 High-order PWM matching
To evaluate the general performance of our high-order PWM match-

ing framework, we compared the multi-matrix version of our algo-

rithm versus the similar multi-matrix PWM matching algorithm

from MOODS, as well as the naive single-matrix PWM matching al-

gorithm that explicitly computes the score at each position. An over-

view of the results is shown in Figure 5.

The test motifs were obtained by generating both standard PWM

and 1st-order PWM representations for 78 putative transcription

factor binding sites identified using SELEX (unpublished data). The

motif length varied between 7 and 17 as shown in Figure 5(d). As

target sequences, we used the 22 autosomal chromosomes from the

human genome (assembly GRCh38), obtained from the UCSC

Genome Browser database (The Genome Sequencing Consortium,

2001; http://genome.ucsc.edu/). The experiments were performed

using a single thread on a 2.53-GHz Intel Xeon processor with

32 GB of memory. We set window width parameter to ‘ ¼ 7, so the

memory usage of the data structures in scanning was very low.

Overall, matching is slightly slower for 1st-order PWMs com-

pared to 0-order PWMs, though never by more than factor 2. Our

algorithms are also significantly faster than the naive search; even

for thresholds corresponding to P ¼ 10�3, extrapolation from run-

ning times on single 0-order PWM suggests that running the naive

algorithm for the full set of 78 0-order PWMs takes more than 3

times as long as our multi-matrix algorithm for 1st-order PWMs,

while for P ¼ 10�5 this speed-up factor is over 25.

6.2 Matching with sequence variants
To benchmark our PWM matching on sequence variants, we used our

algorithm to find all modified matches for the same 78 1st-order

PWMs as above from the human chromosome 22 relative to a set of 1

811 391 variants from the 1000 Genomes Project (The 1000 Genomes

Project Consortium, 2015); the thresholds were selected to correspond

(a)

(b)

Fig. 4. (a) A PWM M of length m¼ 8 can have a modified match for fl1; l3g,
but not for fl1; l2; l3g, as the PWM cannot overlap all three of the variants at

the same time. (b) A match for M and fl1; l3g must overlap the last position

of l1 and the first position of l3, which restricts the search to substring s 0 of

s=l1; l3
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to P ¼ 10�3. Running the algorithm took 53 seconds on a 2.9-GHz

Intel Core i5 processor with 8 GB of memory using a single thread (me-

dian of 10 runs, includes preprocessing of the PWMs); this includes the

detection of modified matches only, not the detection of the non-

modified matches. By comparison, reading the chromosome 22, and

the variants from a compressed file, took 208 seconds. However, we

note that the used set of variants was fairly sparse, and no matches

overlapping more than two variants were found.

7 Conclusions

7.1 Summary of results
We have developed algorithmic tools for motif matching to deal

with high-order PWMs and variants in sequences. These algorithms

have been implemented as a part of the MOODS software package,

and experimental results show that they perform well in practice.

Given the toolkit nature of MOODS, we expect that these algo-

rithms should also be readily adaptable as a basis for more compli-

cated sequence analysis workflows. For example, with learning of

dinucleotide motif models widely discussed in prior work, we be-

lieve that all the pieces are in place for easy transition to dinucleo-

tide models from the zero-order PWMs in predicting binding sites

for transcription factors.

7.2 Future work and limitations
As noted in Section 2, a wealth of alternative motif models have

been proposed, and hence a major open question is to develop fast

motif matching algorithms for models not covered by our high-

order PWM framework. A general challenge is to deal with the het-

erogeneity of the proposals, as the increasingly complicated models

do not all fit into a neat combinatorial framework.

Moreover, the approach of this paper may not be the right one

for all models. For example, while our algorithm could be extended

to models with long-distance dependencies, the locality of our filter-

ing approach might in practice mean that it is no longer very good

at separating the occurrences from non-occurrences, and the

increased complexity of the preprocessing phase will result in slower

running times. One possible research direction is thus the develop-

ment of more flexible and global filters that can be better adapted to

different motif models.
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