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Abstract

Gradient based motion estimation techniques (GM) are considered to be in the heart of

state-of-the-art registration algorithms [3], being able to account for both pixel and subpixel

registration and to handle various motion models (translation, rotation, affine, projective).

These methods estimate the motion between two images based on the local changes in the

image intensities while assuming image smoothness. This paper offers two main contributions:

(i) Enhancement of the GM technique by introducing two new bidirectional formulations of the

GM. This improves the convergence properties for large motions. (ii) We present an analyti-

cal convergence analysis of the GM and its properties. Experimental results demonstrate the

applicability of these algorithms to real images.

Keywords: Global motion estimation, Sub-pixel registration, Gradient methods, image

alignment
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1 Introduction

Image registration plays a vital role in many image processing applications such as video compres-

sion [12, 15], video enhancement [10] and scene representation [1, 4, 11]. It has drawn a significant

research attention. A comprehensive comparative survey by Barron et. al. [2] found the family of

gradient-based motion estimation methods (GM), originally proposed by Horn and Schunck [3], to

perform especially well. The purpose of the GM algorithm is to estimate the parameters vector P

associated with the parametric image registration problem: starting from pure global translation,

image plane rotation, 2D affine, and pseudo-projective (8-parameter flow). These models have been
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used extensively and are estimated directly from image spatio-temporal derivatives using coarse-to-

fine estimation via Gaussian pyramids (multiscale). These methods search for the best parametric

geometric transform that minimizes the square of changes between image intensities (SSD) over

the whole image. Several formulations of the gradient methods which differ on the way the motion

parametrs are updated, either by incrementing the motion parmeters [13] or incrementing the warp

matrix [4]. An updated comprehensive description of these methods was given in [17].

Let I1 (x, y) and I2 (x, y) be the images, which have some common overlap as described in Fig.

1. Then each pixel in their common support satisfies:

I1 (x, y) = I2 (ex (x, y, P ) ,ey (x, y, P )) (1.1)

where the structure of the parameters vector P depends on the type of the estimated motion model.
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Figure 1: Image translation

Gathering and solving all the equations associated with pixels in the mutual support (P is assumed

to be constant over the whole mutual area), estimates the global motion between the images [4],

thus gaining robustness due to very highly over-constrained linear systems (each pixel contributes

a linear constraint). Gathering the equations related to small image patches estimates local motion

[13]. Equation [1.1] is solved using non-linear iterative optimization techniques such as Gauss-

Newton [6] and Levenberg-Marquardt (LM) [4] described in section 2. A critical implementation

issue concerning the GM is the convergence range and the rate of convergence while estimating

large image motions: as the estimated motion becomes larger, the convergence rate decreases and

the GM may diverge to a local minima. A possible solution is to bootstrap the motion estimation

process with a different motion estimation algorithm [14, 15] which is robust to large motions.

In order to improve the convergence of the GM we analyze it using optimization methodology

in section 3. The analysis of the GM convergence leads to a new robust constructive algorithm

that achieves faster convergence through symmetric and non-symmetric bidirectional formulation,

presented in section 4. These properties are experimentally verified in section 5.
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2 Gradient method based motion estimation

GM methodology [17] estimates the motion parameters P by minimizing the intensity discrepancies

between the images I1 (x, y) and I2 (x, y) described in Fig. 1:

P ∗ = argmin
P
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and S is the set of coordinates of pixels that are common to I1 and I2 in I1’s coordinates and P is

the estimated parameter vector. Next we follow the formulation of [1, 4] by solving Eq. [2.1] using

non-linear iterative optimization techniques such as Gauss-Newton [6] and Levenberg-Marquardt

(LM) [4, 6]. The basic GM formulation and the iterative refinement stage are described in sections

2.1 and 2.2, respectively. These are embedded in a multi-resolution scheme described in section

2.3.

2.1 Basic GM formulation

The non-linear optimization of Eq. [2.1], is conducted via a linearization procedure, which is based

on a pixel-wise first order Taylor expansion of I1 in terms of I2 as a function of the parameters

vector P :
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is the partial spatial derivative, (x(1)i , y

(1)
i ) and (x(2)i , y

(2)
i ) are the ith common

pixel in I1 and I2, respectively.

By gathering the pixel-wise equations we formulate the system

HP = It (2.4)
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Equation [2.5] is formulated using the chain rule. Equation [2.4] can be solved using regular

least square [6]:

P =
¡
HtH

¢−1
HtIt (2.7)

where Ht is the transpose of H. The expressions for HtH and HtIt can be derived analytically

by direct calculation:

¡
HtH

¢
k,j
=
X
i

∂I2

³
x
(2)
i ,y

(2)
i

´
∂P k

∂I2

³
x
(2)
i ,y

(2)
i

´
∂Pj

(2.8)

¡
HtIt

¢
k
=
X
i

∂I2

³
x
(2)
i ,y

(2)
i

´
∂P k

Iti. (2.9)

2.1.1 Algorithm flow

The basic GM iteration, which is marked as “Single Iteration” in Fig. 2, is as follows:

1. The matrix HtH and vector HtIt are computed using Eq. 2.8 and

Eq. 2.9, respectively.

2. Eq. 2.7 is solved using singular value decomposition [6].

3. The GM returns P as its output (result).

2.2 Iterative solution of the gradient methods

Denote:

P 0- an initial estimated solution of Eq. [2.1] given as input, such that Warp (I2, P 0) ≈ I1

Pn- the estimated solution after n = 1, . . . iterations

Then, the nth iteration of the motion estimation algorithm becomes:
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Figure 2: Block diagram of the basic and iterative GM formulations. For n = 0, P 0 is given as an

initial guess and ∆P is the iterative update after each iteration.

1. The input image I2 is wrapped towards I1 using the current estimate

Pn and it is stored in eI2 n ≥ 0. For n = 0 P 0 is given as input.
2. I1 and eI2 are used as input images to the procedure described in
section 2.1.

3. The result of step 2 - ∆P , is used to update the solution:

Pn+1 = ∆P + Pn n ≥ 0

4. Go back to step 1 until one of the following stopping criteria is met:

(a) At most Nmax iterations are performed

or

(b) The process is stopped if the translation parameters within the

updated term ∆P reaches a predetermined threshold.
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2.3 Gradient methods with multiscale scheme

In order to improve the robustness and reduce the complexity of the algorithm, the iterative process

is embedded in a coarse-to-fine multiscale formulation. The robustness analysis is given in section

3.2. Next we describe the coarse-to-fine formulation. A thorough description can be found in [1]:

1. The input images I1 and I2 are smoothed. Our experience shows

that a separable averaging filter is suitable for this task.

2. The input images I1 and I2 are downsampled through multiscale

decomposition, until a minimal size of their mutual area is reached.

The minimal mutual area size depends upon the estimated motion

model, while the resolution step depends upon the motion estimation

accuracy at each resolution level.

3. Starting with the coarsest scale, the initial estimate P 0 is used to

bootstrap the iterative refinement algorithm described in section 2.2.

4. The result of the iterative refinement from coarse-to-fine (step 2) is

recursively repeated until the original image size is reached.

3 Convergence analysis of gradient methods

In order to analyze the convergence properties of the GM algorithm, we examine the convergence

properties of the general Gauss-Newton algorithm in Appendix A. These results are interpreted in

the context of the GM algorithm in section 3.1.

3.1 General convergence analysis of the Gauss-Newton algorithm

The analysis in Appendix A shows that the convergence of the Gauss-Newton algorithm can be

divided into two distinct phases as it is described by Eq. [7.14] in Appendix A:

kεk+1k ≤ C1 · kεkk+ C2 · kεkk2 (3.1)

where:

C1 =

°°°°°£A (xk)AT (xk)
¤−1 mX

n=1

∂r2n (xk)

∂x
rn (xk)

°°°°°
C2 =

°°°£A (xk)AT (xk)
¤−1°°°
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εk is the parameters estimation error after iteration k

rn(xk) is the error associated with the nth equation at iteration k

A (xk) is the Jacobian matrix at iteration k.

By rearranging the GM formulations developed in section 2, we interpret these expressions in

the context of the GM formulation. C1 and C2 will be denoted CGM
1 and CGM

2 respectively.
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where the vector parameters x identifies with P :
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and the equation index n is identified with the GM index i, since we have one equation per common

pixel. Thus, A(xk) is identified with the matrix H defined in Eq. [2.5] and the second derivative
∂2rn(xk)

∂x2k
is given by:
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The basic GM equation (Eq. [2.3]) is solved by the Gauss-Newton algorithm using the LS

formulation given in Eq. [3.2]. The error associated with each equation is the truncation error of

the first order Taylor expansion [6]:

εGM
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where P∗ is the optimal solution of the optimization problem.

In the GM setup the sum of second partial derivatives ∂2I2(x
(2)
i ,y

(2)
i )

∂P 2i
does not strongly depend

on the motion parameters vector P and the magnitude of CGM
1 is dominated by kP−P ∗k, hence,

for large motions kP−P ∗k À 0 and CGM
1 À 0 and the error decay rate becomes linear rather than

quadratic. Therefore, the convergence of the GM algorithm can be divided into two phases:
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Initialization phase: In the first iterations we have kP−P ∗k À 0 and CGM
1 À 0, therefore the

convergence rate is linear.

Convergence phase: near the solution kP−P ∗k → 0 we have CGM
1 → 0, and the convergence

rate is quadratic according to CGM
2 , where CGM

2 is a function of the image properties.

This analysis was experimentally verified by registering the images which are shown in Fig. 3:

the “Airfield” image and a 30◦ rotated version of it. The registration results are presented in Fig.

4. We have two distinct convergence phases. We start with a low-rate convergence corresponding

to the linear convergence , after a cross-over point located at n = 170, we encounter the quadratic

convergence phase. Using Eq. [7.18] we present the image alignment error instead of the parameters’

error.

(a) (b)

Figure 3: Test of the Gauss-Newton convergence - (a) Original “Airfield” image (b) The “Airfield”

image which was rotated by 30◦ using bilinear interpolation. The red X marks the initial estimate

of the motion given as translation.

3.2 Multiresolution GM scheme

The relation between the pyramidal GM scheme and the convergence properties of the GM was

studied by Burt et-al [18] in the frequency domain for pure translations. By examining the error

associated with the translation coefficients, the multiscale scheme was proved to decrease the error

term in Eq. [3.7] and improve the convergence rate.

Denote by εtrans (s) - the error associated with the translation parameters (dxs, dys) at a resolution

scale s:

εtrans (s) =

 dxs − dx∗s
dys − dy∗s

 (3.8)
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Figure 4: The convergence process is divided into two phases: the first is related to large motion

estimation characterized by a low convergence rate m(C1), the second is related to small motion

having a high convergence rate m(C2). The cross-over region is located after iteration n ≈ 170.

where s is the image scaling factor, dx∗s and dy∗s are the optimal values of the translation parameters

in scale s. Then, by scaling down the images from scale s1 to scale s2 (s2 > s1) we get:

dxs2 = dxs1 · s1s2
dys2 = dys1 · s1s2

(3.9)

and the associated error becomes

εtrans (s2)
2 =

 dxs2 − dx∗s2
dys2 − dy∗s2
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µ
s1
s2

¶2
| {z }

<1

. (3.10)

Hence, the error associated with the translation error is decreased by a factor of s1
s2

< 1.

Inserting Eq. [3.10] into Eq. [3.7] we get:
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Therefore, by using a dyadic pyramid, the truncation error of the Taylor approximation, related to

the translation parameters (Eq. [3.11]) is decreased by a factor of 4 in each increase of the pyramid’s

scale. While the approximation error related to the motion parameters which are scale-invariant,

such as scale and shear, is not reduced since relative scale changes are invariant to identical scale

changes of both images. Hence, multiresolution schemes do not improve the convergence properties

when the motion is dominated by scale and shear. This method can achieve higher convergence

rate if instead of dyadic division, we use bigger scale factors.

3.3 Dominant motion locking

Burt et. al. [18] used a frequency analysis to show that the coarse-to-fine refinement process

allows the GM to lock on a single dominant motion even when multiple motions are present. This

property is essential for most applications which are based on image registration [4, 10, 11]. We

utilize the method presented in section 3 to provide an optimization based analysis of this property

by studying the error associated with objects which perform dominant and non-dominant motions.

This analysis extends the results of [18] by being applicable to general motion models - parametric

and non-parametric.

Notation:
S The set of pixels that are common to I1 and I2

SDom

A subset of S. This set of pixels that are common to I1 and I2, whose motion

is the dominant motion, was defined above

SNonD

A subset of S. This set of pixels that are common to I1 and I2, whose motion

is not the dominant motion

By permuting the rows of Eq. [2.4] according to the ith pixel’s relation to either SDom or SNonD

we get:

eHP =

 eH
DomeH
NonD

P =
 IDom

t

INonD
t

 =eIt (3.12)

where eH
Dom

P = It
Dom (3.13)

are the equations related to dominant motion, and

eH
NonD

P = It
NonD (3.14)

are the equations related to non-dominant motion. As the GM algorithm converges to the dominant

motion, the term INonD
t becomes the difference of uncorrelated pixels. Therefore, INonD

t can be
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modelled as a uniformly distributed random variable with zero mean

E
©
It
NonD

ª
= 0 (3.15)

This is a landslide type phenomenon: as the iterative solution Pn gets closer to the dominant

motion’s true parameters PDom, the non-dominant pixels become more and more uncorrelated.

Inserting Eq. [3.15] into Eq. [2.7] we have

E {∆P} = E

½³eHt eH´−1 eHteIt¾ (3.16)

= E

³ eHt eH´−1 eHt

 It
Dom

0

+E

³ eHt eH´−1 eHt

 0

INonD
t

| {z }
=0

=PDom.

Thus, the non-dominant outliers are automatically rejected. We conclude that the GM is a non-

biased estimator of the dominant motion parameters PDom, where the variance of the estimation

V ar
¡
PDom

¢
depends on the ratio between dominant and non-dominant pixels.

4 Improved GM convergence using bidirectional formulations

In order to improve the convergence properties of the GM algorithm, we consider the registration

of two one-dimensional signals I1 (x) and I2 (x) using the translation motion model:

I1

³
x
(1)
i

´
= I2

³
x
(2)
i

´
(4.1)
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x
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Similar to section 2, Eq. [4.1] is solved by expanding I2 in a first order Taylor expansion and

solving for ∆x:
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as illustrated in Fig. 5(a). This point-wise expansion causes an error which is estimated by Eq.

[3.7]:
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(a) (b) (c)

Figure 5: 1D illustration of various GM techniques: (a) Regular GM: pixels in I1 are approximate

by pixels in I2 over the interval ∆x. (b) Symmetric GM (SGM): pixels in the middle of the interval

between I1 and I2 (∆X/2) are approximated by common pixels in I1 and I2. (c) Bidirectional GM

(BDGM): pixels in the interval between I1 and I2 are approximated by common pixels in I1 and

I2. The equilibrium point is chosen optimally to minimize the approximation error.

In order to lower the estimation error εGM
³
x
(2)
i ,∆x

´
, Eq. [4.1] is reformulated symmetrically in

respect to ∆x according to Fig. 5(b):
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Next we derive an upper bound of the error associated with Eq. [4.6]:
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The error term is quadratic in ∆x, then by comparing εSGM to the regular GM error εGM of Eq.

[4.4] we get:
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A better approximation error analysis can be derived by expanding εSGM
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The smaller the linearization error εSGM , the better is the convergence rate. If εSGM = 0 Eq.

[4.3] converges in a single iteration.

In order to further decrease the linearization error we allow the interval [0 . . .∆x] to be parti-

tioned optimally using the following formulation that is based on Fig. 5(c):
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Using Eq. [4.4] and a Taylor expansion of Eq. [4.11] we have
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where the motion between I2and I1 is given by:

∆x = ∆x1 +∆x2 (4.14)
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and εBDGM is the error of the Bidirectional Gradient Methods.

Since the solution of Eq. [4.13] minimizes εBDGM directly, we expect to achieve superior con-

vergence results. Following the analysis presented in Eq. [4.10], we analyze the error term of Eq.

[4.13]:
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¡ex(1)¢
∂x2

∆x21

=
∂2I2

¡ex(2)¢
∂x2

∆x22−
∂2I2

¡ex(2)¢
∂x2

∆x21 +
∂2I2

¡ex(2)¢
∂x2

∆x21| {z }
=0

+
∂2I1

¡ex(1)¢
∂x2

∆x21

=
∂2I2

¡ex(2)¢
∂x2

¡
∆x22 −∆x21

¢
+∆x21

Ã
∂2I2

¡ex(2)¢
∂x2

−∂
2I1
¡ex(1)¢

∂x2

!

=
∂2I2

¡ex(2)¢
∂x2

(∆x2 −∆x1) (∆x2 +∆x1) +∆x21
µ
∂3I2(ex)
∂3x

∆x

¶
Substituting Eq. [4.14] into Eq. [4.15] we have

εBDGM

³
x
(1)
i , x

(2)
i ,∆x1,∆x2

´
=
∆x

2

Ã
∂2I2

¡ex(2)¢
∂x2

· (∆x2 −∆x1) +∆x21
∂3I2(ex)
∂x3

!
(4.16)

For the symmetric case where ∆x2 = ∆x1 = ∆x
2 , the first term of Eq. [4.16] vanishes and εBDGM

identifies with εSGM :

εBDGM

³
x
(1)
i , x

(2)
i ,∆x1,∆x2

´
= εSGM

³
x
(2)
i ,∆x

´
=

∂3I2(ex)
∂x3

∆x3

8
(4.17)

An extension into two dimensions with general motion models is given in sections 4.1 and 4.2

for the SGM and BDGM algorithms respectively.

4.1 Symmetric GM (SGM)

In the general 2D case, the SGM is formulated using the motion parameters vector P (see Fig.

5(b)):

P ∗ = argmin
P

 X
(x1,y1)∈S

³
I2

³
x
(2)
i ,y

(2)
i , P/2

´
− I1

³
x
(1)
i ,y

(1)
i ,−P/2

´´2 . (4.18)

ri

³
x
(1)
i ,y

(1)
i , P

´
= I2

³
x
(2)
i ,y

(2)
i , P/2

´
− I1

³
x
(1)
i ,y

(1)
i ,−P/2

´
. (4.19)

From Eq. [4.19] we have

∂ri

³
x
(1)
i ,y

(1)
i , P

´
∂P

=
∂I2

³
x
(2)
i ,y

(2)
i , P/2

´
∂P

−
∂I1

³
x
(1)
i ,y

(1)
i ,−P/2

´
∂P

. (4.20)
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Using the chain rule ∂I1(x
(1)
i ,y

(1)
i ,P/2)

∂P is expressed in terms of ∂I1(x
(1)
i ,y

(1)
i ,P )

∂P :

∂I1

³
x
(1)
i ,y

(1)
i , P/2

´
∂P

=
∂I1

³
x
(1)
i ,y

(1)
i , P/2

´
∂ (P/2)

· ∂
P/2

∂P

=
1

2
·
∂I1

³
x
(1)
i ,y

(1)
i , P

´
∂P

. (4.21)

Therefore, we have

∂ri

³
x
(1)
i ,y

(1)
i , P/2

´
∂P

=
1

2

∂I2

³
x
(2)
i ,y

(2)
i , P/2

´
∂P

+
∂I1

³
x
(1)
i ,y

(1)
i , P/2

´
∂P

 . (4.22)

Assuming
∂I2

³
x
(2)
i ,y

(2)
i , P/2

´
∂P

≈
∂I1

³
x
(1)
i ,y

(1)
i , P/2

´
∂P

(4.23)

we get
∂ri

³
x
(1)
i ,y

(1)
i , P/2

´
∂P

≈
∂I2

³
x
(2)
i ,y

(2)
i , P/2

´
∂P

. (4.24)

Taking the second derivative and using Eq.[4.23] we have

∂2ri

³
x
(1)
i ,y

(1)
i , P/2

´
∂P 2

=
1

2

1
2
·
∂2I2

³
x
(2)
i ,y

(2)
i

´
∂P 2

−1
2
·
∂2I1

³
x
(1)
i ,y

(1)
i

´
∂P 2

 (4.25)

=
∂2I2

³
x
(2)
i ,y

(2)
i

´
∂P 2

−
∂2I1

³
x
(1)
i ,y

(1)
i

´
∂P 2

≈ 0.

Comparing Eq. [4.25] to Eqs. [3.1] and [3.5] we get:

CSGM
1 =

CGM
1

2
(4.26)

CSGM
2 = CGM

2 (4.27)

Therefore, the SGM is expected to outperform the regular GM algorithm due to its reduced lin-

earization error.

4.1.1 Algorithm flow

The Symmetric-GM replaces only the single iteration phase described in section 2.1 and Fig. 2.

The iterative refinement and multiscale schemes described in sections 2.2 and 2.3 respectively, are

left unchanged.
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1. The matrix
¡
HtH

¢
is calculated separately for I2 and I1 according to Eq.

2.8: ¡
HtH

¢I1
k,j
=
X
i

∂I1

³
x
(1)
i , y

(1)
i

´
∂P k

∂I1

³
x
(1)
i , y

(1)
i

´
∂Pj

(4.28)

¡
HtH

¢I2
k,j
=
X
i

∂I2

³
x
(2)
i , y

(2)
i

´
∂P k

∂I2

³
x
(2)
i , y

(2)
i

´
∂Pj

(4.29)

2. We solve the equation

¡
HtH

¢SGM
PSGM = HtIt (4.30)

where
¡
HtH

¢SGM is given by:

¡
HtH

¢SGM
k,j

=
1

2

³¡
HtH

¢I1
k,j
+
¡
HtH

¢I2
k,j

´
(4.31)

and
¡
HtIt

¢
is calculated according to Eq. 2.6.

3. The SGM returns PSGM as the result.

4.2 Bidirectional Gradient Methods (BDGM)

The BDGM uses a different formulation than the GM and the SGM of Eq. [2.1] (see Fig. 5(c)):

P ∗ = argmin
P

 X
(x1,y1)∈S

³
I2

³
x
(2)
i ,y

(2)
i , P 2

´
− I1

³
x
(1)
i ,y

(1)
i ,−P 1

´´2 (4.32)

where P 1and P 2 have the same dimensions as the motion parameters vector used in the GM and

SGM formulations. The overall motion is given by

P = P 1 + P 2. (4.33)

Let k,m ∈ [0 . . . 1], k +m = 1, then:

P 1 = k · P
P 2 = m · P

(4.34)

ri

³
x
(1)
i ,y

(1)
i , P

´
= I2

³
x
(1)
i ,y

(1)
i , P 2

´
− I1

³
x
(2)
i ,y

(2)
i ,−P 1

´
(4.35)

= I2

³
x
(1)
i ,y

(1)
i , k · P

´
− I1

³
x
(2)
i ,y

(2)
i ,−m · P

´
.
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∂ri

³
x
(1)
i ,y

(1)
i , P

´
∂P

=
∂I2

³
x
(2)
i ,y

(2)
i ,k · P

´
∂P

−
∂I1

³
x
(1)
i ,y

(1)
i ,−m · P

´
∂P

(4.36)

= k
∂I2

³
x
(2)
i ,y

(2)
i

´
∂P

+m
∂I1

³
x
(1)
i ,y

(1)
i

´
∂P

∂2ri

³
x
(1)
i ,y

(1)
i , P

´
∂P 2

=k2
∂2I2

³
x
(2)
i ,y

(2)
i

´
∂P 2

+m2
∂2I1

³
x
(1)
i ,y

(1)
i

´
∂P 2

. (4.37)

By assuming symmetry in Eq. [4.23] we get

∂ri

³
x
(1)
i ,y

(1)
i , P

´
∂P

=(k +m)
∂I2

³
x
(2)
i ,y

(2)
i

´
∂P

=
∂I2

³
x
(2)
i ,y

(2)
i

´
∂P

(4.38)

∂2r
³
x
(1)
i ,y

(1)
i , P

´
∂P 2

=
¡
k2 +m2

¢ ∂2I2 ³x(2)i ,y
(2)
i

´
∂P 2

(4.39)

=
³
k2 − (k − 1)2

´ ∂2I2

³
x
(2)
i ,y

(2)
i

´
∂P 2

= (2k − 1)
∂I2

³
x
(2)
i ,y

(2)
i

´
∂P

Similar to Eq. [4.27] we have:

CBDGM
2 = CGM

2 (4.40)

and the optimal partitioning of the interval [0 . . . P ] , which minimizes

¯̄̄̄
¯∂2r

³
x
(1)
i ,y

(1)
i ,P

´
∂P 2

¯̄̄̄
¯, is the sym-

metric approach
¡
k = 1

2

¢
, which was described in section 4.1. Furthermore, the partitioning used

by the regular GM is worse than any of the bidirectional formulation, since

¯̄̄̄
¯∂2r

³
x
(1)
i ,y

(1)
i ,P

´
∂P 2

¯̄̄̄
¯ is max-

imized for k = 0,m = 1 or k = 1,m = 0. Although it seems that the BDGM is inferior to the SGM,

experimental results show the opposite. The reason is the violation of the symmetry assumption

I2

³
x
(2)
i ,y

(2)
i , P/2

´
6= I1

³
x
(1)
i ,y

(1)
i ,−P/2

´
=⇒

∂I2

³
x
(2)
i ,y

(2)
i , P/2

´
∂P

6=
∂I1

³
x
(1)
i ,y

(1)
i ,−P/2

´
∂P

. (4.41)

Then we get:

CBDGM
1 ≤ CSGM

1 =
1

2
CGM
1 . (4.42)

4.2.1 Algorithm flow

Similar to the SGM, the BDGM replaces only the single iteration phase, as follows:
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1. The matrix H is calculated separately for I2 and I1 according to Eq.2.5:

HI1
i,j
=

∂I1

³
x
(1)
i , y

(1)
i

´
∂Pj

(4.43)

HI2
i,j
=

∂I2

³
x
(2)
i , y

(2)
i

´
∂Pj

(4.44)

2. HBDGM is formed by:

HBDGM =
h
HI1 HI2

i
(4.45)

HBDGM is a matrix of dimensions (npixels × 2 · nparam), where nparam

is the number of motion parameters and npixels is the number of pixels

common to I2 and I1.

3. Denote by PBDGM the BDGM parameters vector, then

PBDGM =

 P 1

P 2

 (4.46)

P 1 and P 2 are vectors of dimension (nparam × 1).

4. We solve the equation³¡
HBDGM

¢t
HBDGM

´
PBDGM =

¡
HBDGM

¢t
It (4.47)

where It is similar to the one used in section 2.1.

5. After solving Eq. 4.47, the solution PBDGM is given by:

PBDGM = P 1 + P 2 (4.48)

5 Experimental Results

This section describes the performance of the proposed new techniques. The numeric results are

expressed in terms of alignment error vs. the number of iterations needed for convergence as the

total computation time is linearly dependent on the number of iterations. Each simulation was

conducted using a set of 50 inital estimates of the motion parameters, where the estimates were
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given as relative translation values and are displayed in the results figures as an overlay of red

dots in both images. Thus, the alignment error value at each iteration the avergae of all the

simulations. the Real and simulated image pairs were used. The same implementations of the

iterative refinement (section 2.2) and multiscale embedding (section 2.3) were used for the SGM,

BDGM and GM algorithms. Thus, the only difference was the single iteration module, which was

replaced by the algorithms described in sections 4.1 and 4.2 for the SGM and BDGM, respectively.

The pyramid has been constructed using a three-tap filter
h
1
3

1
3

1
3

i
and the derivative was

approximated using
h
1
2 0 −12

i
. Following [8, 9], other filters were tested with no significant

improvements. The initial estimate was an estimate of the translation parameters. The SGM and

BDGM were tested by estimating large and small motions using several motion models: rotation,

affine and pseudo-projective.

5.1 Estimation of large and very large rotations

The image presented in Fig. 3 was rotated using bilinear interpolation, while the background areas

created by the rotation were padded with zeros. The registration was calculated using a linearized

rotation model:
x1 = a · x2 + b · y2 + c

y1 = −b · x2 + a · y2 + d
(5.1)

Figure 7(a) shows the performance of registering an image rotated by 10◦, which is considered to

be a large rotation. The BDGM converged twice as fast in comparison to the GM: 4 iterations

compared to 7 iterations. The SGM converged in 5 iterations but to a higher alignment error. This

instability of the SGM is more evident in the 30◦ registration results, presented in Fig. 7(b): the

SGM diverged while the BDGM significantly outperforms the GM by converging in 25 iterations

compared to the GM’s 37 iterations. We attribute the instability of the SGM to the violation of

the symmetry assumption (Eq. [4.23]) due to the zero padding.

5.2 Estimation of small affine motion

According to Eqs. [4.26] and [4.42] the BDGM and SGM, respectively, are expected to perform

similarly to the GM when registering small motions. In order to verify it experimentally, we

registered the images in Fig. 8 using the affine motion model:

x1 = a · x2 + b · y2 + c

y1 = d · x2 + e · y2 + f
(5.2)
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(a) (b) (c)

Figure 6: Test images for rotation registration. The red dots in image (a) are the initial estimates

of the red X in image (b). X marks the initial motion (a) original airport image. (b) airport image

rotated by 10◦. (c) airport image rotated by 30◦.
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Figure 7: Registration results of rotated images: (a) 10◦ rotation (b) 30◦ rotation. In both case

the BDGM and SGM converged faster than the regular GM.

The results presented in Fig. 9 show that all the algorithms converged similarly. However, the

BDGM suffers from numerical instability which can be attributed to a larger number of unknowns

solved in each iteration (12 unknowns used by the BDGM compared to 6 unknowns used by the

SGM and the GM).
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(a) (b)

Figure 8: Test images for affine registration with small motion. The red dots in image (a) are initial

estimates of the red X in image (b) which were used in the simulations.

5.3 Registration of images with low contrast

Instability in the registration process can also be attributed to images which have low contrast. In

this type of images the spatial derivatives are very small:

∂r
³
x
(1)
i ,y

(1)
i , P

´
∂P

−→ 0

∂2r
³
x
(1)
i ,y

(1)
i , P

´
∂P 2

−→ 0 .

Therefore, according to Eqs. [3.5] and [3.6] the convergence rate of the GM deteriorates. The

images presented in 10 are real airborne images, which are registered using the affine motion model

defined in Eq. [5.2].

The results, presented in Fig. 11, show that both the BDGM and SGM were able to converge to

the solution while the GM completely diverged. However, the numerical instability of the BDGM

in proximity of the solution is evident, similar to the result of section 5.2. This phenomenon could

have been avoided, by switching from the BDGM to either the SGM or GM near the proximity of

the solution.

5.4 Estimation of large and very large panoramic motion

The registration of panoramic images is of special importance, since it is the basis for most mosaic

based applications discussed in section 1. The motion model used for panoramic image registration

is the pseudo-projective model [1, 4]

x1 =
a·x2+b·y2+c
g·x2+h·y2+1

y1 =
d·x2+e·y2+f
g·x2+h·y2+1

(5.3)
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Figure 9: Performance of small motion registration using the affine motion model.

Due to large number of unknowns and the non-linear nature of Eq. [5.3], the GM based regis-

tration becomes slow and unstable. Two sets of images photographed by a regular 35mm cameras

were used to compare between the performance of the registration algorithms: large panoramic

transformation is presented in Fig. 12 while small panoramic motion is shown in Fig. 14.

The results shown in Fig. 13 demonstrate the superior convergence of the BDGM (13 iterations)

and SGM (17 iterations) compared to the GM algorithm (23 iterations). Estimation of small

projective motions is presented in figure 15. The results are similar to those obtained in section

5.2 where the BDGM and SGM coincide and converge twice as fast (5 iterations) as the GM (9

iterations).

6 Conclusions and future work

In this paper we proposed two new formulations which enhance the performance of gradient based

image registration methods. These algorithms extend the current state-of-the-art image registration

algorithms and were proven to possess superior convergence range and rate. By analyzing the

convergence properties using non-linear optimization algorithms, we derived explicit expressions

for the convergence of the GM. The experimental results verify the theoretical analysis. Future

work includes the application of the BDGM and SGM to other GM based algorithms such as direct
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(a) (b)

Figure 10: Images used to test the registration under poor illumination conditions. The red dots

in image (a) are the initial estimates of the red X in image (b) used in the simulations.

estimation of 3D structure [16]. Furthermore, the improved convergence rate of the DBGM and

SGM is vital for advanced video compression standards such as the MPEG4 [15], when implemented

on low-power mobile devices. In order to further reduce the computational complexity, we intend

to integrate the proposed algorithm with the WarpFree formulation presented in [7].

7 Appendix A:

Convergence properties of the Gauss-Newton optimization al-

gorithm

7.1 Definitions

The general least square problem (LS) is defined as

x∗ = min
x
{f (x)} (7.1)

where f (x) is the sum of squares

f (x) =
mX
n=1

[rn (x)]
2 = [r1 (x) . . . rm (x)]


r1 (x)

r2 (x)
...

rm (x)

 = RT (x) ·R (x) . (7.2)
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Figure 11: Registration performance under poor illumination conditions: The regular GM diverges,

while the SGM and BDGM converge. Due to the small motion, the SGM converges better than

the BDGM, which is unstable due to its larger number of unknowns.

We start by calculating the first and second derivatives of the objective function f (x)

∂f (x)

∂x
= 2

mX
n=1

∂rn (x)

∂x
rk (x) =

2

·
∂r1 (x)

∂x

∂r2 (x)

∂x
· · · ∂rm (x)

∂x

¸
·R (x) = 2A (x)R (x) (7.3)

∂2f (x)

∂x
(2)
i

= 2
mX
n=1

∂rn (x)

∂x

∂rTn (x)

∂x
+2

mX
n=1

∂2rn (x)

∂x2
rn (x) = 2A (x)A

T (x)+2
mX
n=1

∂2rn (x)

∂x2
rn (x) . (7.4)

The Gauss-Newton iterative optimization algorithm for the LS problem [5] is

xk+1 = xk −
£
A (xk)A

T (xk)
¤−1

A (xk)R (xk) (7.5)

where xk is the parameters vector estimated at iteration k and

εk = xk − x∗ (7.6)

and εk is the estimation error at iteration k.
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(a) (b)

Figure 12: Panoramic images with large motion. The red dots in image (a) are the initial estimates

of the red X in image (b) used in the simulations.

7.2 Convergence analysis

We approximate ∂f(x̃)
∂x using a first order Taylor expansion around x

∂f (x̃)

∂x
≈ ∂f (x)

∂x
+

∂2f (x)

∂x2
· (x̂− x) +

1

2

∂3f (x̃)

∂x3
· (x̂− x)2 , x̃ ∈ [x̂, x] . (7.7)

Inserting Eqs. [7.3] and [7.4] into Eq. [7.7] we get

∂f (x̃)

∂x
≈ 2A (x)R (x)+(

2A (x)AT (x) + 2
mX
n=1

∂2rn (x)

∂x2
rn (x)

)
· (x̂− x) +

f (3) (x̃)

2
· (x̂− x)2 . (7.8)

Using Eq. [7.8] we estimate the gradient at the minimum point x∗ using a Taylor approximation

around xk:

A (x∗)R (x∗)= A (xk)R (xk)−
"
A (xk)A

T (xk) +
mX
n=1

∂r2n (x)

∂x
rn (x)

#
· εk +O

¡
εk

T εk
¢
. (7.9)

Rewriting Eq. [7.5] for εk we get:

εk+1 = εk −
£
A (xk)A

T (xk)
¤−1

A (xk)R (xk) . (7.10)

Since A (x∗) = 0 we get the identity:

εk =
£
A (xk)A

T (xk)
¤−1 A (xk)AT (xk) ·εk +A (x∗)R (x∗)| {z }

=0

 . (7.11)
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Figure 13: Registration results for large panoramic motion: the SGM and BDGM converge twice

as fast as the regular GM. Due to the large motion the symmetric assumption (Eq. 4.23) is violated

and the BDGM converges better than the SGM.

inserting Eq. [7.11] into Eq. [7.10] we get

εk+1 =
£
A (xk)A

T (xk)
¤−1 £

A (xk)A
T (xk) ·εk +A (x∗)R (x∗)

¤
− £A (xk)AT (xk)

¤−1
A (xk)R (xk)

=
£
A (xk)A

T (xk)
¤−1 £

A (xk)A
T (xk) ·εk +A (x∗)R (x∗)−A (xk)R (xk)

¤
. (7.12)

Inserting Eq. [7.9] into Eq. [7.12] we get

εk+1 = −
£
A (xk)A

T (xk)
¤−1Ã mX

n=1

∂r2n (xk)

∂x
rn (xk)

!
· εk−

£
A (xk)A

T (xk)
¤−1 ·O ¡εkT εk¢ . (7.13)

Taking a norm on both sides and using the Cauchy-Schwartz inequality we get

kεk+1k ≤
°°°°°£A (xk)AT (xk)

¤−1 mX
n=1

∂r2n (xk)

∂x
rn (xk)

°°°°° · kεkk
+
°°°£A (xk)AT (xk)

¤−1°°° ·O ³kεkk2´ . (7.14)

In other words,

kεk+1k ≤ C1 · kεkk+ C2 · kεkk2. (7.15)

7.3 Convergence analysis of the objective function

In the case of the motion estimation problem, the natural norm related to the problem is the L2

norm of the image intensity alignment error, rather then the norm of the motion parameters error.
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(a) (b)

Figure 14: Panoramic images with small motion. The red dots in image (a) are the initial estimates

of the red X in image (b) used in the simulations.

Therefore, we relate the convergence of the estimated motion parameters to the convergence of

the objective function f (x). We approximate r (xk) by a first order Taylor expansion around the

minimum point x∗:

r (x∗) = r (xk) +A (xk) · (x∗ − xk) .

Then, by taking the L2 norm we get:

k∆rkk = kr (x∗)− r (xk)k = A (xk) kεkk (7.16)

where εk is defined as in [7.6].

Rewriting Eq. [7.16] for k∆rk−1k :

k∆rk+1k =
°°r (x∗)− r

¡
xk+1

¢°° = A (xk+1)
°°εk+1°° (7.17)

and assuming a small refinement step: A (xk+1) ≈ A (xk), then

k∆rk+1k =
°°εk+1°°
kεkk

· k∆rkk (7.18)

We conclude that the parameters error εk and the objective function ∆rk have a similar con-

vergence rate.

7.4 Conclusion

Using Eq. [7.14] the convergence of the Gauss-Newton algorithm can be divided into linear and

quadratic convergence phases depending on the properties of the objective function f (x).

Linear convergence phase
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Figure 15: Registration results for small panoramic motion: the SGM and BDGM converge twice

as fast as the regular GM. Due to the small motion the symmetric assumption (Eq. 4.23) is valid

and the SGM and BDGM converge similarly.

In this phase the convergence is dominated by the linear convergence term C1 (Eq. [7.15]).°°εk+1°° ≤ C1 · kεkk (7.19)

Therefore we have C1ÀC2: °°°°°
mX
k=1

∂r2k (xk)

∂x
rk(xk)

°°°°°À
°°°°°

mX
k=1

∂r2k (xk)

∂x

°°°°° (7.20)

and the observation error term rk(xk) satisfies

rk(xk)À 1 (7.21)

Equation [7.21] characterizes situations in which there is a significant discrepancy in the minimiza-

tion model defined in Eq. [7.2] due to large deviations of the estimated parameters xk from the

true parameters x∗. For kC1k > 1 the process diverges.

Close range phase

In regions in proximity of the solution rk (xk) → 0 and C1 → 0. The second term C2 in Eq.

[7.15] becomes dominant, making the convergence rate quadratic.
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