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Abstract. We address the problem of detecting human figures in im-
ages, taking into account that the image of the human figure may be
taken from a range of viewpoints. We capture the geometric deforma-
tions of the 2D human figure using an extension of the Common Factor
Model (CFM) of Lan and Huttenlocher. The key contribution of the
paper is an improved iterative message passing inference algorithm that
runs faster than the original CFM algorithm. This is based on the insight
that messages created using the distance transform are shift invariant and
therefore messages can be created once and then shifted for subsequent
iterations. Since shifting (O(1) complexity) is faster than computing a
distance transform (O(n) complexity), a significant speedup is observed
in the experiments. We demonstrate the effectiveness of the new model
for the human parsing problem using the Iterative Parsing data set and
results are competitive with the state of the art detection algorithm of
Andriluka, et al.

1 Introduction

We consider the problem of detecting a 2D articulated human figure in a single
image. Furthermore, we are interested in recovering the pose of the human figure,
where the pose is described by the position and orientation of the legs, arms,
torso, and head. This is a difficult problem because the appearance of human
figures varies widely due to factors such as clothing, differences in body sizes,
articulation of the human body, and viewpoint from which the image is taken.
In this paper, we concentrate on modeling the last two factors, i.e., articulation
and viewpoint changes.

The prevailing practice is to employ discretization when modeling viewpoint
changes and articulations of the human figure. For example, clustering can be
used to partition the training data into groups corresponding to different artic-
ulation and viewpoint instances [1]. Such an approach is convenient because a
simpler single-view or single-configuration model can be used to model the data
within each cluster. Unfortunately, there is a price to pay for such a convenience:
an additional layer of arbitration logic must be built to coordinate among these
models to give an illusion of a multi-aspect and multi-articulation model. This
modeling approach is overly complicated and we propose a simpler alternative.

In our approach, we model the geometric deformations of the 2D human figure
caused by articulation and viewpoint changes. We separate out these two types of
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Fig. 1. Fixing the value of the factor for the Common Factor Model (CFM) defines
a tree structured Gaussian prior for human poses. Each human pose shown above
represents the mean of each distribution for the corresponding value of the factor. In
the top row, by varying the factor, the human poses changes from a frontal configuration
(leftmost) to a side view (rightmost) configuration. The bottom row depicts the swing
of the arms and legs during walking.

deformation into two different modes of variation. These modes can be modeled
by a simple extension of the Common Factor Model (CFM) [2] and these modes
can be learned using a straightforward training procedure without the need to
partition the data into different viewpoints. A concise review of the CFM is given
in Sec. 3.

Varying a common factor has the effect of inducing a particular deformation
mode in the Pictorial Structure. An intuition for this is given for the human figure
model in Fig. 1. If we fix the pose of the human figure and vary the viewpoint by
moving along the equator of the view sphere centered on the human figure, then
the projected body parts will be translated as the viewpoint changes. Similar
observations can be made when a person is walking (viewpoint is kept fixed),
which results in rotation and translation of the parts of the Pictorial Structure.
This second mode of variation coordinates geometric transformations between
body parts; e.g., during a walking cycle the left arm swings forward as the right
arm swings backward. Thus, the model of a walking person can be described
using a combination of the “walking phase” and “viewpoint” modes. This idea
of associating modes of variation with geometric deformations of the Pictorial
Structure is general; for example, it is applicable to other types of motion such
as a person performing jumping jacks, kicking etc.

Even though CFM inference has linear time complexity, it is still time con-
suming – especially when the problem size is large, as is the case here. The CFM
inference algorithm requires multiple iterations of the min-sum Belief Propaga-
tion (BP) algorithm. During each iteration of BP, messages are created from
scratch and this is costly because each message contains more than a million en-
tries. Overall, for s iterations of the BP algorithm, there will be s(n−1) messages
created for a Pictorial Structure model with n parts.

We propose a new CFM inference algorithm that offers a significant speedup.
We reduce the number of messages that need to be created from s(n−1) to (n−1)
(a reduction by a factor of s). This speed improvement is significant because the
number of BP iterations s scales exponentially in the number of dimensions of
the common factor. This speedup relies on two observations: firstly, messages
are created using distance transforms and secondly, messages from one iteration
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of BP to the next differ only by a shift. Since distance transforms are shift
invariant (see proof in Sec 4.1), our method replaces costly distance transforms
by shifts, thus gaining a speed improvement over the original formulation. Note
that shifting an array only requires an O(1) update to the offset of the array
while the distance transform is an O(h) operation that requires visiting all the
h elements in the array. Details of the algorithm can be found in Sec. 4.

We provide experimental evaluation of our multi-aspect model in Sec. 6. We
show experimental results comparing the speed of our new inference algorithm
with the original [2] and evaluate the accuracy of our model on the Iterative
Parsing data set [3].

Contribution. The contribution of this paper is twofold. Firstly, we provide
a method for modeling multiple modes of deformation in a Pictorial Structure
model. Secondly, we improve the running time of the original CFM inference
algorithm by observing that messages created by distance transforms are shift
invariant. Replacing costly O(h) time complexity distance transforms with fast
O(1) time complexity shifting yields a significant speed up.

2 Related Work

Our work is related to the use of Pictorial Structures for detecting human figures
using tree structured Gaussian graphical models [3–6], as well as loopy graphical
model [7–10]. Our work is different from these related work as we focus on
modeling geometric deformation of the Pictorial Structures due to factors such
as viewpoint changes and phase of the walking cycle.

Our work builds on the Common Factor Model (CFM) [2]. Originally in [2], a
1D latent variable (or factor) is used to model the phase of a walking cycle, and
it is used to capture correlations among the upper limbs of the human figure.
We provide a new perspective on the CFM by interpreting the dimensions of the
factor as modes of geometric deformation in the Pictorial Structure.

Unfortunately, using higher dimensional latent variables increases the CFM
inference running time, e.g., if uniformly sampling the 1D factor requires n sam-
ples then in 2D it will require n2 samples. This slows down the CFM inference
significantly because multiple distance transforms are required in each iteration
of the inference algorithm. We propose a faster CFM inference that only requires
a constant number of distance transforms to be computed, i.e., independent of
the number of iterations in the CFM inference.

Other multi-aspect modeling works [1, 11, 12] use a discrete set of viewpoints.
In contrast, our work uses a continuously parameterized viewpoint.

3 Background: The Common Factor Model

In this section, we review the Common Factor Model (CFM) of [2]. The CFM
provides an alternative to high order clique models. Such high order clique mod-
els arise in 2D human detection because strong correlations exist among the
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Fig. 2. Different type of priors used for the ten part human figure. Abbreviations are
tor : torso, hea: head, lua : left upper arm, rll : right lower leg, etc.

upper arms and upper legs when a person is walking [2]. These dependencies
create a large clique among the upper limbs of the graphical model (Fig. 2(b))
and inference over graphical models with large cliques is computationally inten-
sive. The computational difficulty can be ameliorated by breaking up the large
clique into smaller cliques. This breaking up is justified by positing that a latent
variable X is responsible for the observed correlations among the upper limbs
(Fig. 2(c)). More importantly, when the latent variable X is observed, i.e., condi-
tioned on X , then the graphical model becomes a tree again. The latent variable
X can be viewed as a hyper parameter and fixing a value for this hyper parame-
ter will produce the tree structured Gaussian prior in Fig. 2(a), but parameters
for this tree structured prior will be different for two distinct values of X .

The detection problem is stated as finding the latent variable value X∗ and
body parts locations L∗ that maximize the posterior, i.e.,

〈L∗, X∗〉 = argmax
L,X

p(L, X |I) = arg max
L,X

p(I|L, X) p(L, X), (1)

where I is the image, L = {li} and i are body part names corresponding to nodes
shown in Fig 2(a). Each body part configuration li is described by an oriented
rectangle comprising the center of the rectangle (u, v) and its orientation θ.

The CFM takes on the following factorization

p(I|L, X)p(L, X) = p(I|L, X)p(L|X)p(X)

∝
∏

i∈V

p(I|li)

likelihood

⎛

⎝
∏

eij∈EX

φij(li, lj , X)
∏

eij∈ET −EX

φij(li, lj)

⎞

⎠

prior

p(X),

where the likelihood is independent of the latent variable X and the CFM as-
sumes that image appearances among body parts li are independent. In the
above equation, V is an index set for the body parts of the 2D human model,
which corresponds to the set of vertices shown in Fig. 2(a). The set of edges
ET is shown in Fig. 2(a), and EX is a subset of ET . Edges from EX have both
end vertices forming a clique with the latent variable X in Fig. 2(c). The prior
is factorized according to the graphical model in Fig 2(c), and parameters for
the common factor X are learned from data [2]. The compatibility function φij
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between two body parts is defined based on the distance Yij between the joint
locations Tij(li) and Tji(lj), i.e.,

Yij = Tij(li) − Tji(lj). (2)

The transformation Tij shifts the body part center to the joint position, i.e.,

Tij(li) = Tij([u, v, θ]T ) = [u′, v′, θ]T , where
[
u′

v′

]
=
[
u
v

]
+ Rθ

[
uij

vij

]
. (3)

In the above equation, Rθ is the rotation matrix by θ angle, uij and vij are
connection parameters that are learned from a tree structured prior [5]. The def-
inition for the transformation Tji is similar to Tij and details are given in [5]. For
edges that are not involved with the common factor, the compatibility function
is given by

φij(li, lj) = N (Yij ; 0, Σij) , (4)

where Σij is a diagonal matrix learned from data [5], and N is the Gaussian
function. For edges that are involved with the common factor X , the potential
function is given as

φij(li, lj, X) = N (Yij − AjX ; 0, Ψj) , (5)

where Aj is part of the loading matrix A learned from data. Both of these are
defined in the next paragraph.

Learning the Loading Matrix A: In order to learn the loading matrix A, the
training data for the four body parts llua, lrua, llul, lrul are stacked up into a 12
dimensional vector. Suppose there are m training instances, then a 12×m matrix
is formed and Common Factor Analysis is applied on this matrix to recover the
loading matrix A and covariance matrix Ψ . If the dimension of the common
factor X is two, then the resulting loading matrix A will have dimension 12× 2,
and the covariance matrix Ψ will be a 12 × 12 matrix. Therefore, Alul denotes
the corresponding 3× 2 sub matrix of A whose rows correspond to the stacking
order for the body part left upper leg (lul). The covariance sub-matrix Ψlul will
be a 3 × 3 square matrix that includes the diagonal entries of Ψ whose rows
correspond to the stacking order for lul.

3.1 Messages and Dynamic Programming in the CFM

In this section, we review the message passing algorithm applied on the tree
structured model generated by the Common Factor Model (CFM). In the CFM
inference, the goal is to find the best body part location L∗ and common factor
X∗ that maximize the posterior p(L, X |I). This is equivalent to minimizing the
negative log posterior, which is

〈L∗, X∗〉 = argmin
L,X

c(X) +
∑

i∈V

mi(li) +
∑

ij∈ET −EX

dij(li, lj) +
∑

ij∈EX

dij(li, lj , X),

(6)
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Fig. 3. The boxes show the messages passed during an iteration of the Belief Propaga-
tion algorithm for a fixed value of the common factor X. Bold boxes indicate messages
parameterized by the common factor X.

where c(·) is the negative log of the prior p(X), mi(·) is the negative log of the
likelihood, and dij(·) is the negative log of the compatibility function.

Given a fixed value X for the common factor, the resulting graphical model is
a tree. Therefore, dynamic programming can be used to find the MAP solution.
The dynamic programming proceeds from leaves to the root and intermediate
results from the dynamic programming can be interpreted as messages being
passed from leaves up to the root. These messages can be efficiently computed
via the distance transform [5]. The types of messages passed between a child
node j and its parent parent i are

μ
j→i

(li)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T −1
ij DTji[mj ](li), if j is a leaf node,

T −1
ij DTji

⎡

⎣mj +
∑

c∈Cj

μ
c→j

⎤

⎦ (li), if j is an internal node with children Cj,

T −1
ij DTAjXTji

⎡

⎣mj +
∑

c∈Cj

μ
c→j

⎤

⎦ (li),
if j is an internal node with children Cj

and common factor X,

(7)

where Tij and Tji are operators that bring the coordinates of body parts into
ideal alignment at the joint, TAjX is the translation induced by the common
factor X , and D is the distance transform operator. All of these are defined as

T −1
ij [f ](lj) = f(T−1

ij (lj)), Tji[f ](lj) = f(Tji(li)), (8)

Txj [f ](lj) = f(lj − AjXj), D[f ](lj) = min
li∈G

f(li) + ||li − lj||2,

where G represents grid positions on which the function f is sampled. Note the
notational difference between Tij (in calligraphic script) and Tij (in regular font);
they are conceptually different as the operator Tij transforms one function into
another, whereas the function Tij transforms coordinates. Lastly, the operators
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are applied from right to left, i.e., for the chain of operations, T −1
ij TAjXDTji[f ],

the operator Tji is applied first, followed by D, TAjX and T −1
ij .

These messages are depicted in Fig. 3. At the root node, the messages are
combined, and the best configuration for the root is

l∗tor = min
ltor

(
mtor(ltor) +

∑

c∈Ctor

μ
c→tor

(ltor)

)
. (9)

Once the best solution for the root is found, the algorithm backtracks down the
tree to recover the corresponding values for other body parts.

4 Faster Inference for the Common Factor Model

We propose a method that speeds up the inference algorithm of Lan and Hut-
tenlocher [2]. First we briefly review the inference algorithm of Lan and Hut-
tenlocher. During inference, values are sampled from the latent variable X and
for each sample value, an iteration of dynamic programming (DP) is performed.
For each DP iteration, the messages are created from scratch by applying dis-
tance transforms [5]. Overall, the number of distance transforms required scales
linearly with the sample size of the common factor, i.e., s(n− 1) distance trans-
forms are required, where s is the sample size for the common factor X and n
is the number of body parts.

We propose a method that reduces the number of distance transforms re-
quired. Our method only requires computing n − 1 distance transforms, i.e.,
independent of the number of samples size s for X . This is a significant speedup
because s scales exponentially in the dimension of the of the common factor X .
This speedup is possible because varying the values of X has the effect of shifting
the messages, and secondly, distance transforms are shift invariant. Therefore,
new messages can be created by simply shifting the previous messages. Com-
putationally, shifting is more efficient than DT because shifting has O(1) time
complexity (where we only need to update the offset for the array), compared to
O(h) time complexity for DT, where the algorithm has to visit all the h entries
in the array (typically, h ∼ 106 for the examples we are testing on).

The next section gives the proof for shift invariance of distance transforms
and following that, we describe the inference algorithm.

4.1 Distance Transforms Are Shift Invariant

We prove that the distance transform of a sampled function is shift-invariant
under some fairly mild conditions that are usually satisfied in practice. Let D
be the distance transform operator, where

D[f ](p) = min
q∈G

f(q) + ||p − q||2, (10)
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and p is a position in the grid G for sampling the function f . The operator Tr

translates a function f by r, that is,

Tr[f ](p) = f(p + r). (11)

Proposition 1. Suppose f is a function sampled on the grid G. For any given
position p ∈ G and a fixed translation r, such that f(p) = ∞ if p /∈ G, then
DTr[f ](p) = TrD[f ](p).

Proof. Starting from LHS,

DTr [f ](p) = D[g](p) (where g(x) ≡ f(x + r)) (12)
= min

v∈G
g(v) + ||p − v||2 (13)

= min
v∈G

f(v + r) + ||p − v||2 (14)

= min
(q−r)∈G

f(q) + ||p + r − q||2. (q = v + r) (15)

On the RHS,

TrD[f ](p) = Tr[h](p) whereh(p) ≡ min
h∈G

f(q) + ||p − q||2 (16)

= h(p + r) (17)
= min

q∈G
f(q) + ||p + r − q||2. (18)

Therefore, the operator D commutes with the operator Tr. �

4.2 Faster Inference

We describe how to exploit the shift invariance property of the distance transform
to speed up the inference algorithm. Within different iterations of the inference
algorithm, messages originating from the leaves do not change (Fig. 3); only
messages affected by the common factor X are recomputed. Those messages
affected by the common factor are recomputed using the chain of operators
T −1

ij DTxjTji. Notice that the distance transform operator D is applied after the
translation operator Txj ; therefore, based on this chain of operations, when the
common factor X changes, a distance transform operation is required to compute
the new message. Since the distance transform is shift invariant, we can rewrite
the messages involving the common factor X as

μ
j→i

(li) = T −1
ij TxjDTji [f ] (li), where f = mj +

∑

c∈Cj

μ
c→j

, (19)

where the positions of the operators D and Txj are swapped, i.e., the operator
D has been pushed inwards to the right. Conceptually, this means that we can
memoize the result of DTji[f ] as this does not vary with the common factor X ,
and for varying X , we only need to apply the operator T −1

ij Txj to the memoized
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Cost : 23.6948 Cost : 22.1067 Cost : 23.9326 Cost : 24.1685 Cost : 22.9213 Cost : 20.8888 Cost : 21.2689

Fig. 4. Human pose prior affects the detection results. Row 1 shows the optimal
pose detected. Row 2 shows the mean of the tree structured Gaussian prior for the
human pose. Notice that the most visually appealing solution (center image) does not
correspond to the configuration with the lowest cost.

DTji[f ]. Computationally, this translates to substantial savings because for each
new message to be created, we only require the translation operator T −1

ij Txj .
Overall, only n − 1 distance transformed messages need to be computed, for n
body parts, compared to s(n − 1) originally, where s is the number of samples
for the common factor X .

5 Detection Using the Multi-aspect Model

Computing the the maximum a posteriori (MAP) estimate or, equivalently, find-
ing the lowest cost configuration does not necessarily give the most visually
correct solution (see the example in Fig. 4). We remedy this problem using a
“sample and test” strategy [5, 13]. First, we sample a set of values for the fac-
tors of the CFM and recover the corresponding set of detection results. Following
that, detection results are re-evaluated using additional constraints. We summa-
rize the detection algorithm in Algorithm. 1. The following constraints are used
to re-score the detection results.

1. Appearance Symmetry: Humans typically wear clothing that is symmet-
ric and we penalize detection results with dissimilar appearance between the
upper arms and upper legs of the Pictorial Structure. Dissimilarity of ap-
pearance between two body parts is described using the distance between
the two Region Covariance (RC) descriptors [14]. The RC descriptor for a
body part is a 5 × 5 symmetric matrix and involves entries for spatial posi-
tions (x, y) and the three color channels of the image (r, g, b). The distance
ρ1 between two RC descriptors C1 and C2 is given as

ρ1(C1, C2) = γ

√√√√
5∑

i=1

λi(C1, C2), (20)

where {λi(C1, C2)}i=1···5 are the generalized eigenvalues of C1 and C2, and
γ is a scaling factor chosen empirically to be 0.1.
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Algorithm 1. Detection Algorithm for the Multi-Aspect Model
Let X = {X1, X2, . . . , Xk} be the samples for the common factor.
Let C = {lua, rua, lul, rul}.
Let pairs = {(lua, rua), (lul, rul)}
Compute the messages μ

j→i
shown in Fig. 3 with X = 0.

for k = 1 . . . s do

μ′
tor

(p) = μ(p)
hea→tor

+
∑
i∈C

TAiXi

[
μ

i→tor

]
(p) (Tr[·] in Eqn. 11 and AiXi in Eqn. 5)

p∗ = arg min μ′
tor

(p)

score(k) = μ′
tor

(p∗) +
∑

ij∈pairs

ρ1(li, lj) +
∑

ij∈pairs

ρ2(li, lj) (ρ1, ρ2 Eqn. 20,21)

end for
bestscore = min score(k)
To recover the pose with the best score, perform a backtracking on the corresponding
messages (similar to backtracking for dynamic programming [5]).

2. Overlapping Bodyparts: Tree structured Pictorial Structures are prone
to the “over counting of evidence” problem, e.g., the legs typically snap onto
the same region in the image. We can ameliorate this problem by adding a
penalty term

ρ2(li, lj) =
|R(li)

⋂
R(lj)|

min(|R(li)|, |R(lj)|
(21)

for overlapping body parts, where li and lj are the configurations of body
parts i and j, R(·) denotes the rectangular region in the image covered by
the configuration of a body part and | · | denotes the area. The overlap area
is computed by first clipping the rectangle R(li) against R(lj) using the
Sutherland Hodgman clipping algorithm and the resulting polygon gives the
overlapping region. The overlap area is scaled to the range [0, 1] by dividing
it by the smaller body part’s area.

6 Experiments

We use the Iterative Parsing (IP) data set [3] for all the experiments. This
challenging data set contains a large variety of human figures in difficult poses
such as baseball pitchers, sumo wrestlers, etc. The Pictorial Structure parameters
are learned from data following [5]. For the body parts detector, we use the
code from [4]. All coding is done in Matlab and the computationally intensive
functions such as distance transforms are implemented in mex code.

For the common factor, we learned a two-dimensional common factor from
the training set in the IP data set. We were able to obtain the viewpoint effect,
i.e., varying the first common factor adjusts the joint position between the upper
arms / legs to be closer or further apart, giving the effect of a viewpoint change
from side view to front view (see Fig. 1). Unfortunately, the training data does
not contain sufficient variations in the swing of the arms and legs to learn a
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Fig. 5. Comparing the running time for Lan and Huttenlocher’s [2] inference algorithm
with the proposed algorithm for various sample sizes for the common factor. Both
algorithms have linear running time curves but the proposed algorithm is faster, e.g.,
six times speedup for 10 samples, eight times speedup for 20 samples and nine times
speedup for 35 samples. The speedup continues to grow for increasing sample sizes.

common factor for that effect; in contrast, [2] uses primarily walking sequences
as training data and is able to capture the arm swing effect in the common factor.
As a substitute, the following loading matrix is used in all the the experiments,

A =
[

A
tor,lua

, A
tor,rua

A
tor,lul

, A
tor,rul

]T
, (22)

where

A
tor,lua

=
[
0 −1 0
0 0 1

]
, A
tor,rua

=
[
0 1 0
0 0 −1

]
, A
tor,lul

=
[
0 −1 0
0 0 0.5

]
, A
tor,rul

=
[
0 1 0
0 0 −0.5

]
.

For each sub matrix, the three columns are ordered according to (u, v, θ), where
(u, v) is the spatial location and θ is the rotation angle. The loading matrices
above can be considered as idealized versions of those learned from the IP data
set, as well as the the loading matrix published in [2].

Speed Comparison. We compare the running time of the proposed algorithm
against [2]. We fix the image (size 454 × 353) and vary the number of samples
for the common factor. The plot of running times versus varying samples for the
common factor is shown in Fig. 5. Asymptotically, both algorithms have linear
time complexity, but empirically, the proposed algorithm runs significantly faster
in practice. For example, when using 10 samples, we observe a six fold speedup
(120 seconds vs. 743 seconds). The speed gap between the two algorithms con-
tinues to widen as the number of samples is increased, e.g., at 20 samples we
observe an eight-fold speedup, and at 35 samples there is a nine-fold speedup.
This linear increase in speedup trend is true for increasing number of samples.

Accuracy of Parts Localization. We compare the accuracy of localizing body
parts for our algorithm against three state of the art algorithms: the standard
PS model [5], the Common Factor Model [2] and the work of Andriluka, et al. [4].
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Table 1. Body part detection accuracy in percentages. A body part is correctly lo-
calized when both ends of the limb are within half the part’s length from the ground
truth (similar to [4, 6]). (Row 1) The standard pictorial structures model with a tree
structured prior. (Row 2) The Common Factor Model. (Row 3) Our proposed multi-
aspect detection that includes appearance symmetry and rectangle overlap constraints.
(Row 4) Andriluka (AN), et al. [4]. The results obtained for AN differ slightly from
published result because we used our own implementation of the algorithm.

Torso Upper Arms Upper Legs Lower Arms Lower Legs Head Avg

Left Right Left Right Left Right Left Right
FH [5] 67.8 32.7 35.1 58.0 52.7 24.4 27.3 54.6 42.9 37.6 43.3
CFM [2] 78.5 41.0 42.0 63.9 59.5 30.2 28.3 62.4 46.8 53.7 50.6
Our work 80.0 41.0 41.0 65.9 62.4 31.2 30.0 62.4 47.8 54.1 51.6
AN [4] 79.0 45.9 47.8 65.4 59.0 33.7 34.1 61.4 47.3 57.6 53.1

In the experiments, the Common Factor Model and our multi-aspect model
use the same parameter for the prior. Samples are drawn from the 2D common
factor X as follows. First, we sample the first dimension (controlling the aspect)
while keeping the other dimension fixed and values are sampled in the range
[−22, 15] at increments of 1.5 resulting in 26 samples. Next, we sample the other
dimension that coordinates the swinging of the arms and legs while keeping the
first dimension fixed. Values are sampled in the range [−18π

17 , 13π
17 ] in increments of

π
17 resulting in 26 samples. Overall, there are 52 samples chosen for the common
factor X . We have found that uniformly sampling the 2D grid to generate 262

samples is excessive for the walking human figure model; e.g., from a front view,
deformation of the Pictorial Structure due to walking is small. In contrast, these
deformations are more prominent from a side view. Therefore, we concentrate
on capturing prominent deformations in our sampling.

The Common Factor Model picks the maximum a posteriori solution over
these 52 samples, but our multi-aspect model re-scores the solution using the ρ1

and ρ2 (Sec. 5), and picks the solution with the minimum cost. The localization
results are summarized in Table 1. A part is classified as correctly localized when
both endpoints of that body part are within 50% of the length of the body part
(similar to [4, 6]).

Our approach (Row 3, Table 1) yields better localization results when com-
pared with the standard Pictorial Structures (Row 1 FH) for all the body parts.
The best improvement is in the localization of the left upper leg, which shows
an increase in correct detections of 13.9%. This is because the standard Pictorial
Structure uses a tree structured Gaussian prior that is biased towards a frontal
view, and it is prone to the “over counting of evidence” problem.

When compared against the Common Factor Model (Row 2, Table 1), our
results (Row 3, Table 1) show an improvement in correct detection that averages
about 2% across all the body parts. The difference between the two algorithms is
in the inference step. CFM uses the MAP solution, but we re-score the solutions
using additional constraints therefore improvements in the detection results are
attributed to the re-scoring step. Qualitative examples are shown in Fig. 6.
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Fig. 6. Examples where incorporating appearance symmetry and rectangle overlap
constraints improve detection results. In each pair of image the left image shows the
detection result using the Common Factor Model [2] and the right image shows the
detection result obtained using our multi-aspect model. For example, in the first pair
of images, the person’s left arm is across the chest and this is correctly detected by our
method.

Fig. 7. Examples of the “scattered body parts” problem present in Andriluka, et
al.’s [4] detection method. In each pair of image the left image shows the detection
result using Andriluka, et al.’s method and the right image shows the detection result
obtained using our multi-aspect model.

We have mixed results when comparing with Andriluka (AN), et al. [4] (Row 4,
Table 1). AN has better results for localizing upper and lower arms while we have
better results for localizing upper and lower legs. We found that AN’s approach
suffers from the “scattered body parts” problem, which arises because AN’s
inference algorithm maximizes the marginal posterior and spatial constraints
between body parts are not strictly enforced. This results in solutions where
body parts are not tightly grouped together. We show more of these examples
in Fig. 7. Our detection results do not suffer from this problem.

7 Conclusion

We have presented a multi-aspect model that is capable of capturing the effects
of viewpoint changes in Pictorial Structures using an extension of the Common
Factor Model (CFM). We also proposed a two stage algorithm that rescores
CFM solutions using additional constraints and this method is shown to be
effective in the experiments. Furthermore, we demonstrate how to exploit the



466 T.-P. Tian and S. Sclaroff

shift invariance property of distance transforms to provide a speedup for the
CFM inference algorithm; consequently, we can sample a larger set of samples
for the common factor during CFM inference. Sampling a larger set of samples
for the common factor enables testing of more views during inference, which
contributes to the improved detection results in our experiments.
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