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Abstract — This paper proposes a weighted sum based 

multi-exposure image fusion method which consists of two 

main steps: three image features composed of local contrast, 

brightness and color dissimilarity are first measured to 

estimate the weight maps refined by recursive filtering. Then, 

the fused image is constructed by weighted sum of source 

images. The main advantage of the proposed method lies in a 

recursive filter based weight map refinement step which is 

able to obtain accurate weight maps for image fusion. 

Another advantage is that a novel histogram equalization and 

median filter based motion detection method is proposed for 

fusing multi-exposure images in dynamic scenes which 

contain motion objects. Furthermore, the proposed method is 

quite fast and thus can be directly used for most consumer 

cameras. Experimental results demonstrate the superiority of 

the proposed method in terms of subjective and objective 

evaluation.1 

 
Index Terms —Multi-exposure, dynamic scene, median filter, 

recursive filter. 

I. INTRODUCTION 

Images taken by ordinary digital cameras usually suffer 

from a lack of details in the under-exposed and over-exposed 

areas if the camera has a low or high exposure setting. High 

dynamic range (HDR) imaging solves this problem by taking 

multiple images at different exposure levels and merging them 

together. This technique has been widely used in digital 

camera and mobile phone devices. Generally speaking, 

existing HDR imaging approaches can be divided into two 

categories: tone mapping based methods and image fusion 

based methods. 

Tone mapping based methods consist of two main steps: 

HDR image construction and tone mapping. Multiple low 

dynamic range (LDR) photographs are first captured and 

combined together to construct a HDR image [2]. Then, 

through using tone mapping techniques [3], the overall 

contrast of the HDR image is reduced to facilitate display of 

HDR images on devices with lower dynamic range. This two-

phase workflow i.e., HDR image construction and tone 

mapping, can generate a tone mapped image where all areas 

appear well exposed. Many effective tone mapping methods 

have been proposed [4]-[6]. For example, Kim et al. proposes 

a tone mapping method based on Retinex model [4]. Kuang et 
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al. propose a new image appearance model and use it for tone 

mapping [7]. However, this kind of methods is usually time 

consuming and thus not very qualified for ordinary digital 

cameras. 

Different from tone mapping based methods, image fusion 

based methods i.e., multi-exposure image fusion, can bypass 

the HDR image construction process and directly yield a tone 

mapped-like fused image. Multi-exposure image fusion is 

preferred for consumer electronic applications since it does 

not require the HDR image construction process which 

increases some computing cost. Many multi-exposure image 

fusion methods have been proposed. For instance, Mertens et 

al. [8] propose a multi-scale image fusion framework. The 

source images are first decomposed as Laplacian pyramids 

and then blended together in each level to construct the fused 

image. However, the performance of this kind of methods may 

be unsatisfactory when the decomposition level is too large or 

too small. To solve this problem, this paper proposes a 

weighted sum based image fusion method without multi-scale 

analysis.  

The basic assumption of most existing multi-exposure 

fusion methods is that the scene is static during different 

captures. However, while fusing images taken in dynamic 

scenes which contain camera movement or motion objects, the 

methods mentioned above may produce serious distortions. To 

remove the impacts of camera movement, many multi-

exposure image alignment methods have been proposed [9]-

[11]. Furthermore, this problem can be reduced by taking 

images using a tripod. Besides the camera movement, the 

more challenging problem is caused by motion objects which 

may appear in the fused image as ghost artifacts. Various 

solutions have been proposed such as variance based [1], 

gradient orientation based [12], and Maximum-a-posteriori 

(MAP) based methods [13]. However, these methods usually 

require a user assigned reference image for motion detection 

or are quite time consuming. To solve these problems, a 

histogram equalization and median filter based motion 

detection method for fusing images in dynamic scenes is 

proposed. 

This paper proposes a simple yet effective multi-exposure 

image fusion method. A recursive filter [14] based weight 

map refinement method is adopted to obtain accurate weight 

maps for weighted sum based image fusion. Furthermore, the 

color dissimilarity between pixels of source images and pixels 

of the scene’s static background is considered for fusing 

images taken in dynamic scenes. The proposed image fusion 

approach is very fast and thus is quite suitable for consumer 
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cameras. Experiments on images captured at both static and 

dynamic scenes demonstrate the superiority of the proposed 

method in terms of objective and subjective evaluation. 

Furthermore, it is shown that the proposed method can be 

applied for other image fusion applications. 

The rest of this paper is organized as follows. Section II 

explains the proposed algorithm in detail. Experimental results 

and comparisons are presented in Section III. Finally, 

conclusions are given in Section IV.   

II. FUSION OF MULTI-EXPOSURE IMAGES WITH MEDIAN 

FILTER AND RECURSIVE FILTER 

Fig. 1 shows the schematic diagram of the proposed 

weighted sum based image fusion method. The weights of 

pixels of different source images are first estimated, and then 

refined by recursive filtering with the corresponding source 

image serving as the reference image. Finally, the fused image 

is constructed by weighted sum of source images.  

 

 
Fig. 1. Schematic diagram of the proposed multi-exposure image fusion 

method. 

A. Local Contrast and Brightness  

When fusing images in static scenes without motion objects, 

two image features i.e., local contrast and brightness should be 

considered for weight estimation. The local contrast of each 

pixel is calculated as follows: 

( , ) ( , ) ( , )n nA x y I x y h x y 


,                      (1) 

where   denotes convolution operation, nI

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Once the local contrast of each pixel is obtained, it is 

ranked in a winner-take-all manner as follows: 
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where N  is the number of source images and ˆ
nA is the 

resulting local contrast feature which aims at preserving image 

details. 

The brightness of each pixel is used to decide whether a 

pixel is under-exposed or over-exposed. This feature ensures 

that the fused image will not be constructed by pixels from 

under-exposed, over-exposed areas. Based on the fact that 

pixels with very weak or strong brightness are usually under-

exposed or over-exposed, the under-exposed and over-

exposed pixels can be detected as follows: 

ˆ1 ( , ) 255
( , )

0 otherwise
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n
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where T  is a threshold value which is suggested to be a 

integral value between 10-30. This assumption has been 

widely used in many related publications [12], [13], [16] to 

remove the impacts of under-exposed and over-exposed 

pixels. For the proposed method, the variation of T  in 10-30 

has little influence on the fusion performance.  

B. Color Dissimilarity 

When fusing images in dynamic scenes which contain 

motion objects, as well as the local contrast and brightness 

feature, the influence of motion objects should also be 

considered for weight estimation. Through measuring the 

color dissimilarity between pixels of source images and pixels 

of the scene’s static background, a novel histogram 

equalization and median filter based motion detection method 

is proposed. Fig. 2 shows the schematic diagram of the 

proposed motion detection method. 

 

 
Fig. 2. Schematic diagram of the proposed median filter based motion 

detection. 

 

Firstly, histogram equalization [15] is performed on each 

source image so that the color distributions of input images can 

be transformed into a similar color distribution (see Fig. 3). 

 

 
Fig. 3. Median image generation with histogram equalization and median 

filtering. Top-left: the original “Arch” LDR image sequence. Bottom-left: 

the histogram equalized “Arch” LDR sequence. Right: the median image 

of histogram equalized LDR image sequence. 

 

Then, median filtering is performed in the time domain to 

obtain the median image (see Fig. 3) of the histogram 

equalized image sequence as follows:  

( , ) median{ ( , )} 1,2,...,M E

nI x y I x y n N  ,       (5) 

where E

nI  is the nth histogram equalized image and MI  is the 

median image i.e., the scene’s static background image. The 

temporal median filter has been widely used for motion 
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detection in video applications [17]. It is based on the 

assumption that motion objects usually appear less times than 

pixels from the static background. Here, the temporal median 

filter is used to obtain the scene’s static background image so 

that the motion objects of each image can be easily detected 

by calculating the color dissimilarity between each histogram 

equalized image and the scene’s static background image as 

follows: 
2

2

( ( , ) ( , ))
( , ) exp

E M

n n

n

I x y I x y
C x y


 

  
 

 ,           (6) 

where   equals 0.1 controlling the curvature of the Gauss 

curve presented in (6).  

Finally, nC  is refined by morphological operators (dilation 

followed by erosion) to remove noise estimation: 

1 2( )n nC C s s  ฀,                           (7) 

where 1s  and 2s  are disk-like structure elements with radius 

1r  and 2r  respectively,   and   denote dilation and erosion 

operation respectively, and nC  is the resulting color 

dissimilarity feature which indicates where is the motion 

objects. The main advantage of the proposed motion detection 

method is that the user does not need to assign a reference 

image for motion detection. As shown in Fig. 2, the walking 

people are accurately detected by the proposed method. 

C. Weight Estimation  

In order to preserve image details and remove influences of 

under-exposed pixels, over-exposed pixels, and pixels from 

motion objects, the three image features i.e., local contrast, 

brightness, and color dissimilarity should be combined 

together for weight estimation. The straightforward way to 

this objective is by multiplication. However, the pixels of the 

same location of different LDR images may be all labeled as 

under-exposed, over-exposed or motion objects, and this is 

unreasonable especially when these pixels appear in a large 

number. To solve this problem, the brightness feature and 

color dissimilarity feature are first combined together by 

multiplication: 

n n nD B C  .                               (8) 

Then, nD  are normalized such that they sum to one at each 

pixel ( , )x y . 
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Next, only these pixels under average score i.e., 1/ N  are 

labeled as zero so that the pixels of the same location of 

different LDR images will not be all labeled as under-exposed, 

over-exposed or motion objects.  
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where N  is the number of source images and ˆ ( , ) 0nD x y   

means that the pixel ( , )x y  of the nth source image is under-

exposed, over-exposed, or from the motion objects. Finally, 

ˆ
nD  and the local contrast feature ˆ

nA  are combined together to 

estimate the weights:  

ˆˆ ˆ
n n nW A D                                  (11) 

It should be noticed that when it is known that the scene is 

static, the color dissimilarity feature nC  in (8) should not be 

considered. 

D. Weight Refinement and Weighted Fusion 

As shown in Fig. 1, the weights estimated above are noisy 

and hard (most weights are either 0 or 1). So the weight maps 

should be refined for weighted sum based image fusion. This 

is possible due to the recently proposed recursive filter [14], 

which is a real-time edge-preserving smoothing filter. Here, 

recursive filtering is performed on the weight maps ˆ
nW  with 

the corresponding source image nI  serving as the reference 

image. 

ˆ( , )n n nW R W I ,                            (12) 

where R  denotes the recursive filtering operation. The weight 

map refinement step with recursive filter is based on two 

simple assumptions: first, pixels from the same objects which 

have similar image color should have similar weights; second, 

smooth weights are preferred since it will not introduce seam 

artifacts in the resulting fused image. The two assumptions 

can be easily satisfied with the recursive filter which is 

defined as follows:  

[ ] (1 ) ( ) [ 1]d dJ k a I k a J k    ,                 (13) 

where [0, 1]a  is a feedback coefficient, [ ]I k  is the value of 

the kth pixel of the input weight map, [ ]J k is the kth pixel of 

the refined weight map, d  is the distance between 

neighborhood pixels of the source LDR image [14]. As d  

increases, da  goes to zero, stopping the propagation chain 

and thus pixels with similar colors tend to have similar 

smoothed weight. The detailed description of the real-time 

recursive filter can be found in Gastal and Oliveira’s paper 

[14]. As shown in Figs. 1, 5(a), 6(a), 8(a), and 9(a), the 

proposed weight map refinement step can transform the hard 

and noise weight maps into accurate and smooth weight maps. 

These weight maps can well indicate where are well exposed 

and static in each LDR image.  

Once the resulting weight maps nW  are obtained, the 

resulting fused image FI  can be directly calculated as follows:  

1

N
F

n n

n

I I W


  .                            (14) 

Furthermore, to reduce the computing and memory 

consumption, all the weight maps can be computed at a half 

resolution of the original image size and then up-sampled to 

the original size for image fusion. This acceleration scheme 

has little influence to the performance of the proposed 

method. 
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III. EXPERIMENTS AND DISCUSSIONS 

A. Experimental Setup 

Ten multi-exposure image sequences are used in the 

experiments. Three of them are taken in dynamic scenes and the 

other seven are taken in static scenes. Four HDR imaging methods 

i.e., Reinhard et al.’s method [3], Kuang et al.’s method named as 

iCAM06 [7], Photomatix [18], and Gallo et al.’s de-ghosting 

method [16] are used for comparison. For Reinhard et al.’s method, 

the source code is publically available (Http://user.cs.tu-

berlin.de/~eitz/hdr/). The results of iCAM06 are generated by the 

Matlab implementation downloaded from their homepage 

(Http://www.cis.rit.edu/Mcsl/icam/hdr/). The results of Gallo et 

al.’s method are taken from its homepage 

(http://users.soe.ucsc.edu/~orazio/deghost). The software package 

of Photomatix is available online (http://www.hdrsoft.com/). 

To assess the fusion performance of different methods 

objectively, three objective fusion quality metrics: 0Q  [19], 

/QAB F [20], and visual information fidelity (VIF) [21] are adopted. 

The index 0Q  is designed through modeling image distortion as a 

combination of three factors: loss of correlation, luminance 

distortion, and contrast distortion. The index /QAB F  evaluates the 

success of edge information transferred from the source images to 

the fused image. The quality metric VIF is derived from a statistical 

model for natural scenes. It can accurately quantify the distortions 

and the improvements in visual quality. The larger the /QAB F , 0Q , 

and VIF value are, the better the fusion results are.  

 

  
                            (a)                                                        (b) 

  
                            (c)                                                        (d) 

Fig. 4. The variation of the VIF, 0Q , and AB/FQ  on different sσ  (a), rσ  

(b), 1r (c), and 2r (d).  

B. Analysis of Free Parameters 

This sub-section analyzes the influence of the parameters: 

s , r , 1r , and 2r which respectively control the space, range 

supports of the recursive filter, the radius of the structural 

elements 1s  and 2s  [see (7)]. The fusion performance is 

evaluated by the value of VIF, 0Q , and /QAB F  (see Fig. 4). 

s is first analyzed with 4r  , 1 3r  , and 2 30r  . Then, in 

the analysis of r , we fix 100s  , 1 3r  , 2 30r  . Next, 1r  

and 2r  are analyzed in the same way. As shown in Fig. 4, the 

proposed method generates the best fusion performance when 

100s  , 4r  , 1 3r  , and 2 30r  . So, 100s  , 

4r  , 1 3r  , and 2 30r   are set as the default parameters. 

This parameter setting can generate good subjective 

performance for most images. 

 

 
(a) 

 
             (b)                    (c)                  (d)                  (e) 
Fig. 5. The “Garage” LDR image sequence (up) and the resulting weight 

maps of the proposed method (bottom) (a), the results produced by 

Reinhard et al.’s method [3] (b), iCAM06 [7] (c), Photomatix [18] (d), and 

the proposed method (e). (Image courtesy of CAVE lab.) 

 

 
(a) 

 
                    (b)                      (c)                      (d)                      (e) 

Fig. 6. The “Via” LDR image sequence (left) and the resulting weight 

maps of the proposed method (right) (a), the results produced by 

Reinhard et al.’s method [3] (b), iCAM06 [7] (c), Photomatix [18] (d), and 

the proposed method (e). (Image courtesy of easyHDR.) 

C. Results 

Figs. 5 and 6 show the comparison of the proposed method 

with three high dynamic imaging methods for fusing images 

in static scenes. Figs. 5(a) and 6(a) show the source LDR 

image sequences and the resulting weight maps estimated by 

the proposed method. As is shown, the weight maps 

accurately indicate where are well exposed in each LDR 

image. The last row of the two figures gives a close-up view 

of the garage region and the light region. It can be seen that 
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the results produced by Reinhard et al.’s method, iCAM06, 

and Photomatix [see Figs. 5(b-d) and 6(b-d)] suffer different 

levels of under-exposure and over-exposure in the garage 

region and the light area respectively. By contrast, the result 

produced by the proposed method shows the best visual 

appearance in these regions [see Figs. 5(e) and 6(e)].  

 

 
(a) 

 
(b) 

Fig. 7. From left to right: selected image pairs of the “Memorial church”, 

“National cathedral”, “Igloo”, “Window”, and “Door” image sequences 

(a). The fused images produced by the proposed method (b).  

 

Fig. 7 presents more results of the proposed method on 

other classic LDR image sequences. Fig. 7(a) shows 5 image 

pairs of the “Memorial church” image sequence (the original 

sequence is of size 512 768 16  ) provided by Paul Debevec, 

“National cathedral” image sequence ( 1536 2048 2  ) 

provided by Max Lyons, “Igloo”, “Window”, and “Door” 

image sequences ( 348 222 6  , 226 341 5  , and 

231 338 6  respectively) which are all provided by the 

CAVE Lab. The proposed method is able to obtain high 

quality fused images for different LDR image sequences [see 

the first row of Fig. 8(b)]. Furthermore, from the magnified 

images in the second row of Fig. 8(b), it can be seen that the 

details in dark areas (see the inside area of the “igloo” and 

“window” images) and bright areas (see the window area of 

the “church” and “cathedral” images and the sky area of the 

“door” image) are all well-preserved in the fused images. 

To further demonstrate the effectiveness of the proposed 
method, experiments are also performed on multi-exposure 
images captured in dynamic scenes. Fig. 8 shows an example 
of HDR imaging in dynamic scenes. As is shown, the results 
produced by Reinhard et al.’s method and iCAM06 which do 
not have de-ghosting function [see Fig. 8 (b) and (c)] will 
produce serious ghosting artifacts. Although Photomatix has 
the de-ghosting function, it is not very effective in this 
example [see Fig. 8(c)]. By contrast, the proposed image 
fusion method can effectively remove the influence of pixels 
from the motion objects [see the bottom of Fig. 8(a)]. At the 

same time, the details of source images are well preserved in 
the fused image [see Fig. 8(e)]. 

 
(a) 

 
(b)                          (c)                          (d)                          (e) 

Fig. 8. The “Park” LDR image sequence(up) and the resulting weight 

maps of the proposed method (bottom) (a), the results produced by 

Reinhard et al.’s method [3] (b), iCAM06 [7] (c), Photomatix [18] (d), and 

the proposed method (e). 

 

The experiments are also performed on publically available 

dynamic image sequences, i.e., Figs. 9 and 3. The first row of 

Fig. 9(a) shows the “Forest” LDR image sequence which have 

moving people and waving branches. The first row of Fig. 3 

shows the “Arch” LDR image sequence which contains moving 

people. The results produced by Reinhard et al.’s method, 

Photomatix, Gallo et al.’s method, and the proposed method are 

presented in Figs. 9(b)–(e) and 10(a)–(d) respectively. It can be 

seen that although Photomatix has the de-ghosting function, 

some ghosting artifacts is still visible [see Figs. 9(c) and 10(b)]. 

Gallo et al.’s method can effectively remove ghost artifacts 

while introducing blocking artifacts in the floor area [see Fig. 

10(c)]. By contrast, the proposed method can effectively remove 

all ghosting artifacts and well preserve the details of different 

LDR images [see Figs. 9(d) and 10(d)]. 

 

 
(a) 

 
(b)                          (c)                          (d)                        (e) 

Fig. 9. The “Forest” LDR image sequence(up) and the resulting weight maps 

of the proposed method (bottom) (a), the results produced by Reinhard et 

al.’s method [3] (b), Photomatix [18] (c), Gallo et al.’s method [16] (d), and 

the proposed method (e). (Image courtesy of Orazio Gallo [16].) 
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(a)                        (b)                         (c)                           (d) 

Fig. 10. The “Arch” example. The results produced by Reinhard et al.’s 

method [3] (a), Photomatix [18] (b), Gallo et al.’s method [16] (c), and the 

proposed method (d). (Image courtesy of Orazio Gallo [16].) 

D. Objective Performance Comparison 

In this sub-section, the objective performances of different 

methods are evaluated. Table I gives the values of 0Q , /QAB F , 

and VIF for the fused results by Reinhard et al.’s method [3], 

Photomatix [18], iCAM06 [7], and the proposed method. 

From this table, it can be observed that the proposed image 

fusion method provides the best performance in terms of the 

largest 0Q , /QAB F , and VIF. It can be concluded that the 

proposed image fusion method can better preserve the edge 

information of source images (see the performance of /QAB F ) 

and introduces less color, contrast, and image quality 

distortions (see the performances of 0Q  and VIF). 

TABLE I 

QUANTITATIVE ASSESSMENT OF DIFFERENT HDR IMAGING METHODS.  

Images Indexes 

Methods 

Reinhard 

[3] 

iCAM06 

[7] 

Photomatix 

[18] 

Proposed 

Garage  

Q0
 0.555 0.576 0.469 0.675 

QAB/F 0.520 0.561 0.441 0.674 

VIF 0.467 0.443 0.377 0.522 

Via 

Q0
 0.805 0.696 0.643 0.942 

QAB/F 0.750 0.694 0.691 0.838 

VIF 0.987 0.979 0.911 1.105 

Park 

Q0 0.577 0.664 0.586 0.723 

QAB/F 0.571 0.651 0.619 0.684 

VIF 0.592 0.642 0.624 0.676 

Forest  

Q0 0.493 0.543 0.514 0.570 

QAB/F 0.384 0.407 0.374 0.519

VIF 0.234 0.235 0.224 0.368 

Arch  

Q0 0.615 0.602 0.558 0.722 

QAB/F 0.539 0.544 0.510 0.614 

VIF 0.540 0.581 0.538 0.641 

 
TABLE II 

CONSUMING TIME OF DIFFERENT METHODS FOR PROCESSING THE 

“MEMORIAL CHURCH” IMAGE SEQUENCE OF SIZE  512 768 16 (S). 

Methods 
Reinhard 

[3] 

iCAM06 

[7] 

Proposed 

(Matlab) 

Proposed 

(C++) 

Consuming 

Time  
5.32 11.08 3.51 0.32 

 

 Besides the fusion performance, computing efficiency is 

also very important in real applications. Table II gives the 

comparison of different methods on computational efficiency. 

The tone mapping algorithms and the proposed image fusion 

algorithm are all implemented using Matlab. The HDR images 

used for tone mapping algorithms are generated by using the 

Matlab implementation of Debevec et al.’s method [2] which 

takes about 4.03 seconds for the Memorial church image 

sequence. This time is included into the consuming time of 

Reinhard et al.’s method and iCAM06 for fair comparison. 

All experiments are simulated on a CPU 2.8 GHz PC with 

2048 MB RAM. From Table II, compared with Reinhard et 

al’s method and iCAM06, the proposed method is more 

computational efficient. Furthermore, by implementing the 

proposed method in C++, the computing time of the proposed 

method can be reduced to 0.32 seconds. A real-time 

implementation of the recursive filter [14], a speedup of ten 

times compared to our implementation, can be used for further 

acceleration. Thus, it is concluded that the proposed method is 

a time efficient multi-exposure image fusion method and thus 

it can be directly used for most consumer digital cameras. 

 

   
                 (a)                                      (b)                                     (c) 

   
                 (d)                                     (e)                                      (f) 

Fig. 11. Two examples of infrared and visual image fusion. The visual 

image (a), the infrared image (b), the fused image of (a) and (b) by the 

proposed method (c), the visual image (d), the near-infrared image (e) and 

the fused image of (d) and (e) by the proposed method (f). (Image courtesy 

of Lex Schaul [22].) 

E. Other Applications 

The proposed method can be also used for other image 

fusion applications such as infrared and visual image fusion. 

Fig. 11(a) and (b) shows a visual image and an infrared image. 

In the area directed by the red arrows, people are unclear in 

the visual image and background details are unclear in the 

infrared image. The fused image produced by the proposed 

method is shown in Fig. 11(c). It can be seen that the walking 

people and background details are all clear in the fused image. 

Furthermore, Fig. 11(d)–(e) shows the other example of 

infrared and visual image fusion for image de-hazing. Fig. 

11(d) is captured through using ordinary digital camera. Fig. 

11(e) is produced through using a near-infrared camera which 

is able to capture the details behind the haze. The fused image 

shown in Fig. 11(f) has a de-hazing effect.  

IV. CONCLUSIONS 

In this paper, a fast and effective multi-exposure image 

fusion approach is proposed. A novel histogram equalization 

and median filter based motion detection method is developed 



632  IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012 

for fusion of multi-exposure images in dynamic scenes. 

Furthermore, a recursive filter based weight map refinement 

method making full use of the color consistency between 

nearby pixels is adopted for weight refinement. Experiments 

demonstrate that proposed method can create high visual 

quality tone-mapped-like fused images in both dynamic 

scenes and static scenes. Furthermore, the effectiveness of the 

proposed method is demonstrated by using objective image 

fusion quality indexes. The proposed method has been applied 

for infrared and visual image fusion. In the future, whether the 

proposed method can be applied for fusion of multi-focus 

images in dynamic scenes can be further researched. 
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