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ABSTRACT

Automated image matching has important applications, not only in the fields of machine vision and general pattern
recognition, but also in modern diagnostic and therapeutic medical imaging. Image matching, including the recognition
of objecis within images as well as the combination of images that represent the same object or process using diflerent
descriptive parameters, is particularly important when complementary physiological and anatomical images, obtained
with different lmagmg mudahues, are to be combined. Correlation analys:s offers a powerful technique for the

putation of tr | and scaling differences between the image data sets, and for the detection of
objects or patterns within an image. Current correlation-based approaches do not efficiently deal with the coupling
of the registralian variables, and thus yield iterative and com putationally-expensive algorithms. A new approach is
d which impi on previous solations. In this new approach, the registration variables are de-coupled,
in amuch less ive algorithm. The performance of the new technique is demonstrated
in the matching of MR1 and PET scans, and in an application of pattern recognition in linear accelerator images.

1. INTRODUCTION

The problem of matching images or data sets that contain similar or complementary information arises in a wide
variety of applications in stgnal and image processing. Current interest is focused on the fields of pattern recognition,
computer vision and medical imaging, where image matching is relevant to both diagnostic and therapeutic applications.
Current medical imaging technology enables precise visualization of internal metabolic function as well as anatomy
and/or pathology. Nuclear medicine imaging, such as Positron Emission Tomography (PET) and Single Photon
Emission Computed Tnmography {SPECT), provides functional information, whereas Magnetic Resonance Imaging
(MRI), ultrasound and x-ray lmagmg. mcludmg Computenmd Axial Tomography (CAT) prowde anatomical
information. The p with | images is their Jow r and lack of landmarks,
preventing the phys:c:an from identifying the actual position of displayed source areas within the human body. If the
Tunctional and anatomical images are correclly registered, sealed and combined, then the anatomical information enables
precise location of the metabolic p in the corresp ional images. Efforts to detect tumors, and clinical
diagnoses in general, (hat are based on the two comp!ememary images will be more effective than those based on either
of the two types alone. The problem of overlaying or comparing functional .md anatomical images is not a simple one,
however. The two modalities have different display p daries may not exactly correspond (o
regions of metabolic activity, Variations in scale factors, viewing angles, and the fact that images may be acquired at
different times with different equipment lend additional complications.

Object recognition problems arise in image-controlled radiotherapeutic cancer treatment’. High-energy radiation,
generated by a linear aoceleratnr, needs to be directed such that it strikes the lumur, but not the surrounding healthy

tissue. Since projection unages btained from the diation are of 1y poor quality and contain almost
no anatomical detail (the image frame should not exceed the area of treatment), control of accelerator alignment
p a segious prot Image hing offers a solution by detecting the pattern of the accelerator image in

anormal x-ray p1c1ure taken prior to treatment. This enables the physician to locate the site of radiation incidence with
reference to the high-quality x-ray image.

Due to the absence of distinctive biological landmarks i in many medical images, the simple observation of temporal
developments in anatomy or function can be difficult. This problem, 1mportam in medical research and control of
therapy, requues the detection of three-di; i and r | shifts and scale factor adjustments
between successive images. A volume representation needs to be constructed from a set of slice images, and the volume
images must then be transformed into a common frame of reference.
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Figure 1: Three typical PET images (lop row) and six typical MBI images
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2.BACKGROUND

The widely-vsed "manual’ approach to combining multi-modality information, in which an expert l_lu_man u!)_se_r\jer
attempts to visvally match similar structures within the image, is clearly prone 10 subjectivity. The precision, reln]al?llrl[ly.
and reproducibility of this method all greatly depend on the structural simi]anlx;s between images, and l}\ey all suffer
if patient positioning differences are not limited to 2D (two-dimensional) translations. ir lh? positioning differences are
more complex, and if structural similarity is low, computer support is required o give reliable results.

In the past, rigid head fixation devices have been used? to facilitate multi-modality image combination. Such qew[cgs
are used (o maintain a constant spatial position of the patient within the tomographic field of view, and they wr!r :}up
distinctive markers that enable the geometric transformation between images to be_ easily calcul:’«ued.r ) his
straightforward approach has been successfully used in neurosurgery, but it has several dlsad_vamagt‘:s. I‘?]e ixation
devices are inconvenient when used on an outpatient basis, they often cause problems with patient me,_ahar.\ce
(especially claustrophobic patients), and they cannot be reapplied in exactly the same way for repeat examinations.

The problem of overlaying images from different modalities would seem to be best qppmached with aulum'z:lzd
digital image processing techniques. The authors have investigated the accuracy and convenience of three suclh mel h ]ob,\
for superimposing images. Each will be described below, and (he strengths and ‘Weaknesses of each approach will be
considered, with special emphasis on the newly-developed fast correlation technique.

2.1 The Method of Moments

The method of moments is an early appm:-u:h3 to image matching that is based on geomemca.l‘ an?lyses of image
structures. The images are reduced to binary representations through threshold-based edge detection”. Bo'lhﬂlmagesr
are thus segmented to indicate the boundary of the brain, Pixels inside the brain boundary are amgAnedv a value ud
one; all others are given a value of zero. The center of mass of the binary object is calculated from its zeroth- an:
first-order moments, and the angles of the principle axes of the object are obtained frqm the se.cond-order moménfls.
The differences in the centers of mass and principal axis angles between PET and MRI images give the parameters for
registration (for this method, scale factors for both images must be identical). The method of moments is x_aus[agg;)
for normal anatemy and physiology, but its results deteriorate when applied to abnormal cases that most l"egulr'ij rehlm e
diagnosis. For cases involving metabolic deficiencies near the brain periphery, edge detection can falter, in w lC case
the registration parameters are calculated incorrectly. The method also fails when applied to brain images that are
circular, since the concept of a principle axis is not meaningful in this case. Adqunally, the anatomy of the sinuses
near the base of the brain can be complicated enough to frustrate attempts to find its contours.

22 Relaxation Labelling

In relaxation appmaches"’, image matching is attempted by matching currespondlmg individual segments of ,lhe|
images. Relaxation techniques are much less sensitive to edge-detection errors than is the method of moments, and
thus tend to be more reliable, As in the method of moments, calculations are based on a segmented binary image.
Polygonal approximations® of the boundaries of the two objects 10 be matched are computed, and features of each line
segment are stored. Based on feature similarities, probabilities of matching individual line segments from the two
object boundaries are calculated. An optimizing technique’ then uses these im'ual' probabilities, or labelling, rlo
determine the final matching probabilities. The final matching parameters are cbtained by averaging lhft lrginf er
functions of hing line pairs. The main difficulty of relaxation labelling in its application to medical image
registration lies in the determination of valuable line-segment features. The brain images from both PET and MRI are
rather blob-like, and segments from the boundaries all have similar properties, leading to amblgull{es in lhe.malchmg.
Additi dr to this app h are the sc i lengthy £ times of _lhe relaxatmn»algomhms, and
the fact that reduction of the image to a simple boundary prior to the matching process discards a considerable amount
of valuable information.

Neither of the above two methods permits the detection of matching inner structures of images or the deleclion:af
a partial pattern within an image. Altogether, the practical value of these methods is limited to a few special
applications with minor medical importance.
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2.3 Correlation Analysis

Correlation analysis is primarily used for the detection of similarities between two non-uniform data sets. This
technique is sensitive enough (o detect the presence of corresponding structures that are barely noticeable by a human
observer, and thus is ideally suited for the image matching problem. Realization of the correlation analysis is impeded,
however, by the requirement that several dependent parameters for matching (translation, sotation and scale factors)
be determined at the same time. Since these parameters are coupled, they cannot be separately caleulated from the
spatial-domain representations of the images. Changing the orientation of one image will affect the relative translation
between the two images, a transtation of one image will affect the rotational differences, and scaling can influence both
translational and rotational parameters. Previous correlation-based approaches have not dealt with this coupling
adequately, with the result that the algorithms have been inefficient and computationally expensive®®.

A solution for finding 2D translational and rotational dilferences has been proposed in which translation and
otation differences are corrected in an iterative manner®, This algorithm first employs a 2D cross-correlation, in
Cartesian coordinates, to find the relative shift between the two images 1o be matched. This translational difference
is accounted [or, a second cross-correlation is performed, this time in polar coordinates, to determine the rotational
difference, and this difference is accounted for. This process continues in an iterative fashion, alternately compensating
for translational and rotational differences, until the compensations are smaller than a certain threshold value.

The major drawback of this approach is that it does not deal with the coupling of the translational and rotational
variables. Calculation of translation in the presence of rotational differences results in an incorrect transfation, and vice
versa. These errors could impede or even prevent convergence of the algorithm, or cause convergence (o a wrong
result. In addition, the inherent inefficiency in this approach produces unnecessarily high computational expense. Each
step in the iteration requires a total of six 2D-FFT's (two-dimensional fast Fourier transforms), that is, four forward
and two inverse transforms. Thus, a registration that needed ten iterations would require sixty 2D-FFT's in addition
to the numerous image manipulations and coordinate transformations.

A simple modification of this technique has been prnposedg which correctly deals with the coupling of the
translational and rotational variables. In this procedure, one image is rotated with respect to the other in small
increments over some range, and the angle at which the correlation function reaches its maximum is considered to be
the best estimate of the rotation for proper registration, with the location of the maximum specifying the shift
parameters. Though the algorithm correctly deals with the coupling of translation and rotation, il is very expensive
computationally, and does not include scale factor parameters. The inclusion of these parameters would increase the
computational expense even more, as would expansion of the method to three dimensions.

3. FAST CORRELATION MATCHING

Significant reductions in computational expense can be gained by taking advantage of some invariance properties
of the Fourjer Transform. The fast correlation approach 10 be described here was developed by reformulating previous
correlation approaches, taking these invariance properties into consideration. The algorithm efficiently de-couples the
matching variables, yielding a fairly simple algorithm that is relatively fast and computationally inexpensive. Each
variable is determined individually and in sequence, without requiring ilerations that involve multiple 2D or 3D FFT’s.
For the sake of simplicity, relevant concepts are described below in terms of two dimensions. The principles apply
equally well in three dimensions.

Cross-Correlation

I 1,(xy) and 1,(xy) are two spatial domain images, and F (uv) and F,(uv) are the corresponding frequency
domain representations, then the cross-correlation R, ,{x,y) between these two images is given by

R, ,(%y) = FFT Y| Fy(uy) - CONI(F,Quw)) I,
where CONJ refers 1o the complex conjugate operation, and FFT 7 refers 1o the inverse fast Fourier transform
operation. If L (xy) and 1;(xy) represent similar images which differ only by a tramslation, the amount of shift or

translation can be easily determined from the cross-correlation function. The coordinates x b for which R] 2(xm.ym)
is the maximum value of the correlation function indicate the relative shift or translation between the two inages.
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32 Fourier Transform Relations and Principles of Invari

The basic principles of invariance are the Fourier relations (hat apply 1o the operations of translation, rotation an |I

scaling, These principles are u

ized initially to decouple the three matching variables, and then Lo ¢
differences in translation, rolation and scaling between the two data sets.

32.1 Translation Translation in the spatial domain corresponds 1o a phase shift in the Foucier domuin. Thal i if

the image I(xy) is translated by some distance (1., ), then

FET] 1iexgyeyy b | = Fluylexp{{-32m NHux, + vy, b

Cuomputing the magnitude of both sides,

| FRTL 00, %03 | 1= | Fluwlexpl{-2m/N)ux, + vy, 1) |

= | Fluw) || expll-2n/N)(us, = vy ) |

= | Fluy) L.

This demonstrates that the magnitude spectrum, and (hus the pawer specirum of an image &

3.2.2 Rotation Rotation of an image in the spatial domain corresponds
1o a rotation of the specirum by the same angle, as shown in Figure 2.
That s, il an image T(xy) and its Fourier transform Fluy) can be
transfurmed into the polar coordinate representations 1(r,T) and Fw,P),
respectively, where x=r cos(T),

y=7 =in(T),

u=w cos(P),

v=w sin(P),
then the relationship between an image thal is rotated by an angle D
and ils corresponding Fourier wansform is

FFT[ I(r,T+D) | = F(w,P+D}.

Kotation in polar coordinates can be thought of as a simple slift or
translation of the angular coordinate.  The power specirum in polar
coordinates will be invariant to such a "shift’, and thus will be invariant
to rotation. The polar-coordinate representation can not only be wsed
to eliminate rotational considerations by using the power spectrum of
an image, it also enables one to easily delermine rotational differences
between a pair of similar images from the complex Fourier specirum,
since these differences manifest themselves as simple "shifts” of the
angular coordinate. To determine a difference in rotation, one should
cross-correlate the two polar-coordinate representations of images that
have already been made translation-invariant, and note the rotation
angle at which the cross-correlation function R, ,(r, 1) is a maximum.
This angle will indicate the orientation differefice between the twa
images.
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.23 Sealing  Scaling in the spatial domain has two elfects in the spatial
frequency domain: an inverse scaling of the frequency axes, and an adjustment
in the amplitudes of the Fourier coeflicients, as shown in Figure 3. 17 the x
direction scale factor is given by A, and the y-direction scale Tactor is given by
B, then the Fourier relationship pentaining 1o scaling is:

¥

I HA%By) | = {(1I/AB) Flu/Av/BL

A logarithmic transformation of the spatial doman coordinale sysiem converts
the multiplicative scaling process 1o a shift' ', making il possible 10 creale a
scale-invariant specirum.  This conversion of scale 10 & shifl also enables the
detection of scaling factors for image matching hy cross-correlation, since the
“shilts” (representing scale factors) can be detected in a manner similar 16 il
[or detecting rotational differences.

3 MNew Alporithm

“The new algorithm, emyploying the Fourier Translorm invariance principles,
is summarized in the Nowchart shown in Figure 4. The short description given
here is followed by more detailed information regarding individual stages of
the algorithm.

Figure 3 : Demonstration of the
effect of scaling of spatial domain
imapges (felt) on the image spectra
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Figure 4 : A llowchart illusirating the various steps in the [ast coreelation image matching algorithm,
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The first step in the image-matching process is to create translation-invariant information from the input images
by computing their power specira. These power spectra are then treated a5 new images to be matched; they are
converted to polar coordinates, and the power spectra of these polar coordi rep ations are computed. These
last power spectra are thus invariant  both rotaton and translaton.  The relative scaling factors are conveniently
determined from these rotation- and translation-invariant power specira, using the logarithmic ransformation. The
algorithm currently determines a global scale Tactor, Solutions for the case in wlich scale Tactors differ with coardinate
axes are currently being investigaled. The palar coardinate versions af the power spectra of the equivalently-scaled
images are then cross-correlated in order to determine the relative rotation between the two inpul sets of image data,
Adfter correcting for this rotation, the final step is o determine the relative ranslation from a correlation analysis of
the orientation-equivalent image data sets.

As described above, the first step in the algorithm is the computation of the power specira of the input images,
Ir I‘(x,y} and Iz{x.y) represent the input images, then the respective Fourier spectra S1(u.\'] ancd .‘a'?{u,\-} are given by

Sy(uy) = FFT] L {xylexpl(-i2n/ NHuxy+vyg) |
Soluv) = FEIT Lynylexpl(-j2m /N uxg + vy ) |,

where xy and y; represent shifts that are equal to hall of matrix size, or N/2. The phase shill resulting from this
expanential term thus centers the resulting specira so that the DC component is Jocated at the center of the matrix
The pawer spectra Py(uy) and Poluv) are given by

P (uv) = §,(uw) - CONI[ §,(u) |
Poluy) = Sy{uv) - CONI[ Sylu) |,

As previously noted, these power spectra are translaton-invariant, meaning iat, at (his stage, translation has heen
de-coupled from rotation.

After converting each power spectrum to polar coordinates, integrations are performed along equally-distributed
radial vectors. These integrations need only be performed in one hall-plane, because of the inherent symmetry in e
power specirum. This series of integrations reduces the information contained in each 2D power spectrum e a 1D
series, The rotational dilference between the two inpnt image data sets are then determined from a 1D cross-
correlation of these two series.

The intrinsic rotational resolution af the algorithm, apart from interpolation, which will be considered later, is
specified by the number af line integrals that are performed. 1F thirty-two line integrals are performed, for example,
the resulting rotational resolution is 1807 divided by 32, or 56", In the authors' tests, one hundred and twenty-eight
line integrals were performed, yielding a rotational resolution of 1.4%. This simple description of the rotational
resalution, however does not consider the actual resolution of the input image dala as specified by the mumber of
projections and image matrix size used in reconstruction. Additionally, it should be noted that, because of symmeny
in the power spectrum, rofations greater than 180° are detected as retations modulo 1807,

The line integrals through the power spectra need not begin at the DC component, nor do they need 1o continue
1o the Nyquist frequency. In lact, better results can be achieved by ignoring the very low [requency components (which
are mainly related 1o the image background) during the radia i ion. Since the high-Treq information content
of images [rom current imaging modalities is very limitesd (depending on the image resolution), computations can be
reduced by integrating only partway (o the Nyquist frequency. For optimum performance, the limits of integration
should be determined from corner frequencies of the transfer functions of the imaging modalities i
different modalities are involved, the integration should be performed only over those frequency bands which the two
modalities have in common, since speciral components outside these bands do not contribule o the correlational
maiching process,

The rotational difference between two images is sometimes considered 1o be the dilference in angular erientation
when the two objects in the images are translationally aligned at their respective centers of mass. This objectoriented
approach to rotation, hawever, is not always clinically relevant. In addition, it is easicr, from a computational viewpaint,
to eliminate the need for center-of-mass calculations by choosing the image frame itsell as the rotational reference.
For these reasons, the image-matching method described here determines the angle of rotation required 1o orient the
images with respect o the center of the image frame.
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The new algorithm bas been implemented within the A sultw\re package renning on an IBM PS/2 Model 60
computer. The algnn:hm was vtlidated by computing the 1 it between two 203 scale-equivalent
1 software |:quu~d dhat the data be reduced o 64x64 matrices,
With this matrix size, the algorithm reguired three minutes of computation: nisety seconds W compule the rotational
difference, sixty seconds to apply this mmlmu {a total of 2 1/2 minutes to compensate for rofation), and thirty seconds
differences. The use ||'~]:|Lu‘|] purpose software and hardware would
. Integration of this algorithm with image reconstruction software typically available
o tomagraphs would allow dhct[ access o the p| (5] 2 anil 1hus greatly increase the speed and precision of the
rotation computations. Repardless of impl ion times, the alparithm is inherent o1 than
previous coreelation approaches™=, As | pre: Hl)ll~.|J noted, one approach required as many as sixty 2-D FFT's and ten
image rotations W sulve the 2-10 malching problem, wlhereas the algorithm presented here requires three 2-D FFT's
and only one image rotation.

certainly reduce this caloulation 1

34 Windows

While the fast correlation matching algorithm produced good results with synihbetic
dlata, initial tests with clinical single- and multi-modality images resulted in
unsatislactarily large errors iin the estimation of the rotation angle. To eliminale these
errors, and achieve the theoretically-predicted results, some processing, prior o the
matching proc reguired.

The basic problem siems from the “window elfect” of the rectangular image frame.
The spectrum of the image is effectively convolved with the specirum of the
rectangular image lrame, and the specirum of the rectangular shape, which is shown
in Figure 5, does not rotate along with the spectrum of the image within the rectan, e,
11 not removed, this stationary artifact will obviously have an adverse influgnce on the
rolational cross-correlation,

The above coneepls are illustrated in Figures 6-8, Figure o shows two PET images
which differ in sotation by 20°.  Figure 7 represents contour views aof the
corresponding spectea. Fur purpases of illustration, only the low-frequency range of
the specira is shown. 11 can be seen that, although there is some difference herween
the two specira, the dilference does noi represent a real rotation. The olvious
distortion is a direct result of the un-rotated power spectrum of the rectangular image  Figure 5 : The power
frame. Chne can see the inappropriate similaity in features between the power specira spectium of a recrangular
shown in Figure 7 and that shown in Figure 5. The application of  Hanning window  jmage frame, in 30 form
effectively removes the unwanted spectral components, allowing a trve expression of - (above) and in contour view,
the ritation, as illustrated in Figure 8. These spectia are easily identifiable as rotated

versions of one another.

Figure 6 : Two PET images which differ in rotation by 207,
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Figure 7 : The corresponding power spectra of the two PET images shown in Figuie b,
illustrating the detrimental influence of the rectangular image frame on rotation,

2o)
Figure 8 : The corresponding power spectra of the two PET images showi in Figure b alter
removal of the unwanted spectral companents of the rectangular image frame.

4. EXPERIME SULTS AND DISCUSSION

The performance of the new image-matching algorithm was evaluated for two general dlasses of problems, The first
was the single-modality case, in which an image was matched against a rotated, translated, and noisy version of it
Single modality experiments were performed with synthetic data and with images from cither FET or MR tomographs,
The second test category was the multi-modality case, in which images fram different modalities, or images obtained
with the same modality with different acquisition parameters, were matched against cach other,

i,

Each single-modality experiment required the choice of a reference image and the creation of a test image by
rotating and translating the reference image. Images were intentionally corrupted by adding Gaussian noise at three
different levels, as specified by the variance of the noise. The three different values of variance used were: 0 {10 noise),
5 and 10. Since the mean value of the pivels in the 8-bit images was approximately 40, this last noise level (variance
= 10) represented approximately 25% of the meun value of the image. The nine images shown in Figure 1 were chusen
as reference images for these experiments. Each reference image was rotated by amounts of -6°, -3, 0F, + ¥ and +6°,
and, for each case of rotation, Gaussian noise with variances of either 0, 5 or 10 was added, yielding a total of 15 test
images for each of the nine reference images. A bi-linear interpolation algorithm ' was used to perform ratations.

Test images, paired with the proper reference images, were submitled to the matching algorithm, and the results
are shown in Table I. Results are presented as a function of rotation angle and Gaussian noise level. Each entry
corresponds 10 a single rotation angle and a single variance value, and represents the average resuli of all nine reference
images as each was matched against its particular class of lest image.
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Tahle I: Computed rotation angles for single-modality test images

Actual Rot:

640 300 D00 300 600

0 <528 00 264 407
5 -528 .13 513
10 544233 017 264 497

Il can be seen that the resulls in Table 1 show some errors in the computed values of rotation. One source of
these ervors was the quantization due to the 1.4° rotational resolution of the algorithm. Since the test images were
nal rotaled by angles thal were exact multiples of 147, some quantization ercor occurred. Anaother source of error
wis the bi-lingar interpolation algorithm used in the rotation, which lended 1o degrade an image in the process of
rotating it 1 should also be noted that the lairly coarse (Gdxid ) image mairix used for these tests Turther limited the
rotational precision. The effective resalution of the algorithm under these creumstances is probably no better than 257,
Smaller pixels and betrer interpolation schemes would certainly have reduced the errors shown in Table 1,

TFor multi-modality testing, pairs of PET and MRI images that hacd
been determined (by an expert ebserver) (o represent the same image
plane were given to the matching algerithm. The matching parameters
WEIE O sed 1o re-orient the MRT image so as to match the
PET image. illustrates the result of the algorithm's application
10 4 partic ET PET MR image pair. The un-registersd image pair is
shown in Figure % Figure % shows the twa 11 series resulting from
the radial imegrations (at bottom), and the resulting 1D cross-
correlation.  Figure 9¢ shows the 213 cross-correlation which indicates
translational shifts, and Figure 99 shows the properly registered PET-
MRI image pair,

The results of the matching were evaluated by an expert observer,
using an inleractive graphics device. Afler re-orientation vl the image,
the two images were displayed side by side. Expert medical ohservers
then positioned boxes within the PET images o measure the melabolism
within the corresponding  rectangular regions, The boxes were
automatically positioned within the registered MR image, allowing the
expert observer to determine how well the membcllsm MEasuTements
correspended to the 1Y, thus giving a quali evaluation of the i -
resulls. The results shown in Figure % were Juclgcif 1oy be satisfactory. (k) (c)

A second multi-modality tes! involved a 1ost object that was scanned
by both tomagraphs, In both the PET and MRI scans, the object was
positioned so that the totation angle was (7. The MRI image of the
lest ohject was then rotated 1o -6°, -3, +3" and +6°, anl each rotated
image was submitted, along with the original PET image, 1o the
matching algorithm. The results of these 1ests are shown in Table I1L

Table 1EComputed rotation angles for dual-modality phantom images

Actual Rotation Dot 000 0000 6.0

000 425 TN

(d)
Figure % : Nlustration of the matching
process for a particular PET-MRI image
pair.

Computed Rotation @ -5.60°

These results again show that the algorithm is correctly computing the
rotation angle, with the expected precision. Primary sources of error
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are presumably the same as those in the first multi-modality test case, namely, the low resolution of the image mairix
and the weakness of the rotation algorithm. It should be noted thal the rotation algorithm’s detimental effect is
relevant only because the algorithm was wsed Lo generate test images. The computation of rofational registration
parameters in a real application will be unaffected by ratation algorithms.

Additional matching difficulties arise in those applications where, incontrast 1o the above described MRL/PET image
combinations, one of the images represents only a partial area of the second image, In such cases, the alporitlun must
be able 1o pt.r[nrm ohject recopnition, that JS. these body par the image with the smaller view area must be
ilentified in the § image with the "whols- M view, The recognition process is impeded, however, by the lact that
differences in the imaging parameters can lead 1o considerable differences in the appearance of the ul\|-tl The
pcrfc:rmdm_x: of the fast correlation n!p,uuth(tl on such an image combination is demonstrated in Fig The
translational parameters required to position the partial pattern shown in Figure 10 within the whole- hawn
in Figure 10a are determined from the correlation function shown in Figure 10c.

(a) (b} (c)
Figure 10 : A case of image matching in which one image (b) represents a partial ares of the mber image (a), The
2D cross-correlation of the two images is shown in (). These images represent synthetic data.

Real images, of course, are normally corrupted by some amount of nuise, artifacts and imperlections of the im:
modalities, 5o that the detection process oflen requires some pre-processing e ., contrast enhancement ) of th
prior (o the correlalion analysis. Figure 11 shows an image combination in which a phantom is showa in twe projection
photographs, a normal projection radiograph (Figure 11a), and an image produced by a linear acceleralor us d o
cancer treatment (Figure 11b), In spite of the poor image quality, the deseribed matching algorithm determines the
registration parameters with the predicted precision. Figure 12, which, for purposes of demonsteation, illustrates urll\
the method for determining translational differences, shows the 2D cross-correlation of the two images. The cross-
correlalion function has a well-defined peak at the x- and y-coardinates that are the required registration paramelers

(a) 3] (c)

Figure 11 : An example of & clinical case of image matching in which one image represents # partial
area of the other. In this case, a linear accelerator image (b) is to be matched against an
x-ray image. The 2D cross-correlation of the two images is shown in {c),
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5, CONCLUSIONS AND FUTURE WORK

The authors have developed a general-purpose malching algorithm which provides lor precise comparison of medical
images obtained al different times or with different modalities. This algerithm is faster and mere reliable than previous
technigues, and it can be practically implemented on low-cost computer systems, giving il the potential for wide clinical
acceptance, Experiments to date indicate thal the algorithm can be successfully applied (o & wide variety of applications
al image matching,

With this algoritlun, the reliability and quality of image matching are completely determined by the properties of
the input data. Limitations in the final result are imposed only by the quality, information content and comparability
of the two sets of data.  Low-resolution images, for example, do not allow high-resolution matching. Lo situations
involving images of different resalutions, the image with the lowest resolution will determine the precision of the
matching Again, this restriction results, not from the algorithm, but from the quality of the data. The results presented
here were certainly adversely affected by the reduction of images to 6464 matrices. lmplementation of the algorithm
with higher-resolution matrices would be expected to improve the resolution of the matching.  Similarly, results that
involved anly high-resolution modalities would be expected 1o be berter than results with low-resolution PET images,

Future work will include the determination of the algorithm’s relisbility and precision as a function of image
parameters such as resolution, noise level and bandwidth. Formal goidelines for application of the correlation algorithm
to multi-modality images should also be established. These should include criteria for image comparability, so that users
o not attempt to match incomparable data (apples and oranges) and rely on meani , formal correlations. Further
wark will also include the extension of the algorithm 1o three dimensions, and computation of the scale factor for all
three coordinate aves.
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