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ABSTRACT 

Automated image matching has important applications, not only in the fields of machine vision and general pattern 
recognition, but also in modern diagnostic and therapeutic medical imaging. Image matching. including the recognition 
of objects within images as weD a:!i the combination of images that represent the same object or process using different 

descriptive parameters, is particularly important when complementary physiological and anatomical images, obtained 
with different imaging modalities, are to be combined. Correlation analysis offers a powerful technique for the 
computation of translational. rotational and scaling differences between the image data sels, and for the detection of 
objects or patterns within an image. Current correlation-based approaches do not efficiently deal with the coupling 

of the registration variables, and thus yield iterative and computationally-expensive algorithms. A new approach is 
presented which improves on previous solutions. In this new approach. the registration variables are de-coupled, 
resUlting in a much less computationally expensive algorithm. The performance of the new technique is demonstrated 
in the matching of MRI and PET scans, and in an application of pattern recognition in linear accelerator images. 

1. INTRODUCTION 

The problem of matching images or data sets that contain similar or complementary information arises in a wide 
variety of applicatioru; in signal and image processing. Current interest is focused on the fields of pattern recognition, 
computer vision and medical imaging, where image matching is relevant to both diagnostic and therapeutic applications. 
Current medical imaging technology enables precise visualization of internal metabolic function as well as anatomy 
and/or pathology. Nuclear medicine imaging, such as Positron Emission Tomography (PET) and Single Photon 

Emission Computed Tomography (SPECf), provides functional information. whereas Magnetic Resonance Imaging 
(MRI), ultrasound and x-ray imaging, including Computerized Axial Tomography (CAT) provide anatomical 
information. The problem with available functional images is their low resolution and lack of anatomical landmarks, 

preventing the physician from identifying the actual position of displayed source areas within the human body. If the 
functional and anatomical images are correctly registered, scaled and combined, then the anatomical information enables 

precise location oBhe metabolic processes in the corresponding functional images. Efforts to detect tumors, and clinical 

diagnoses in general, that are based on the two complementary images will be more effective than those based on either 
of the two types alone. The problem of overla)ing or comparing functional and anatomical images is not a simple one, 

however. The two modalities have different display parameters; anatomical boundaries may not exactly correspond to 
regioru; of metabolic activity. Variations in scale factors, viewing angles, and the fact that images may be acquired at 
different times with different equipment lend additional complications. 

Object recognition problems arise in image-controlled radiotherapeutic cancer treatment '. High-energy radiation., 

generated by a linear accelerator, needs to be directed such that it strikes the tumor, but not the surrounding healthy 
tissue. Since projection images obtained from the penetrating radiation are of extremely poor quality and contain almost 

no anatomical detail (the image frame should not exceed the area of treatment), control of accelerator alignment 
represents a serious problem. Image matching offers a solution by detecting the pattern of the accelerator image in 
a normal x-ray picture taken prior to treatment. This enables the physician to locate the site of radiation incidence with 
reference to the high-qua1ity x-ray image. 

Due to the absence of distinctive biological landmarks in many medical images, the simple observation of temporal 

developments in anatomy or function can be difficult. This problem, important in medical research and control of 

therapy, requires the detection of three-dimensional translational and rotational shifts and scale ractor adjustments 
between successive images. A volume representation needs to be constructed from a set of slice images, and the volume 

images must then be transformed into a common frame of reference. 

252 / SPIE Vol 1092 Medicsl Imaging III: Image Processing (7989) 



--------------------- ---- ---- - ---------------------------------

Image ma tching ha.'i proven to be a difricult la~~ for a human op .. .'ralo(, allt.! aU!olll<lled registrat ion syste ms wo uld 

ccnai nly improve Ihe reliability ami preci~ioll of man)' diagno.')(ic c\a]u,lfion.... Pre\lou\Jy-proposed teciUliques for 

automated image maldling have suffered from probkJll\ of rdiability, precision and compu tational expe nse. T he 

method to be presented here is less COllllHl1alionally t"xpl'll' .. iH' Ihall prc\;olls methods, yet allows for precise, objective, 
aulomateu matching of images collected at different limes Of with diffc](,111 lIIoJalilit's. AlkJilionally. the algor ithm 

tolerates changes of imaging parameters, a \ery illljlorlanl featllre for the combination of PET <md MRI im ages, in 

which each type of image is based on paramelt'rs which can vary widely and Ihu~ product;' images of various qual ities 

and characte ristics. The appearance of a PET image. for instance. will \ary with the t)1'<' of radio tracer administered 

to the patie lll, the length of data acquisition, and the melaholic condi tion of the patient (which. for brain images, 

depends On the pa ti ent's melllal state), while. MR I image appearance will vary according 10 the pulse sequence used 
during acquisi ti on. Figure I shows three typical PET images (inlhe top row) and six l\'lRt image~ o btained with vari ous 

acquisit ion paramete rs. 

Fi gure I : T hree Iypical PET images (lOp row) and six typical MRI images 
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2.BACKGROUND 

The widely-used ~manual" approach to combining multi-modality information, in which an expert human observer 

aUempts to visually match similar structures within the image, is clearly prone to subjectivity. The precision, reliability, 

and reproducibility of this method all greatly depend on the structural similarities between images, and they all suffer 

if patient positioning differences are not limited to 2D (two-dimensional) translations. If the positioning differences are 

more complex. and if structural similarity is low, computer support is required to give reliable results. 

In the past, rigid head fIXation devices have been used2 to facilitate multi-modality image combination. Such devices 
are used to maintain a constant spatiaJ position of the patient within the tomographic field of view, and they contain 

distinctive markers that enable the geometric transformation between images to be ea'iily calculated. Tlus 
straightforward approach has been successfully used in neurosurgery, but it has several disadvantages. The fixation 

devices are inconvenient when used on an outpatient basis, they often cause problems with patient compliance 

(especially claustrophobic patients), and they cannot be reapplied in exactly the same way for repeat examinations. 

The problem of overlaying images from different modalities would seem to be best approached with automated 

digital image processing techniques. The authors have investigated the accuracy and convenience of three such methods 
for superimposing images. Each will be described below, and the strengths and weaknesses of each approach will be 

considered, with special emphasis on the newly-developed fast correlation technique. 

2.t The Method of Moments 

The method of moments is an early approach3 to image matching that is based on geometrical analyses of image 
structures. The images are reduced to binary representations through threshold-based edge detection4. Both images 

are thus segmented to indicate the boundary of the brain. Pixels inside the brain boundary are assigned a value of 

one; all others are given a value of zero. The center of mass of the binary object is calculated from its zeroth- and 

first-order moments, and the angJes of the principle axes of the object are obtained from the second-order moments. 

The differences in the centers of mass and principal axis angles between PET and MRI images give the parameters for 

registration (for this method, scale factors for both images must be identical). The method of moments is satisfactory 
f~r normal anatomy and physiOlogy, but its results deteriorate when applied to abnormal cases that most require reliable 

diagnosis. For cases involving metabolic deficiencies near the brain periphery, edge detection can falter, in which ca'ie 

the registration parameters are ca1culated incorrectly. The method also fails when applied to brain images that are 

circular, since the concept of a principle axis is not meaningful in this case. Additionally, the anatomy of the sinuses 

near the base of the brain can be complicated enough to frustrate attempts to find its contours. 

2.2 Relaxation Labelling 

. In relaxation.approa~es5, image matching is attempted by matching corresponding individual segments of the 
lDlages. Relaxatton techniques are much less sensitive to edge-detection errors than is the method of moments, and 

thus tend to be more reliable. As in the method of moments, calculations are based on a segmented binary image. 

Polygonal approximations6 of the boundaries of the two objects to be matched are computed, and features of each line 

segment are stored Based on feature similarities, probabilities of matching individual line segments from the two 

object ~undaries are calculated. An optimizing technique7 then uses these initial probabilities, or labelling, to 

determlOe the fInal matching probabilities. The final matching parameters are obtained by averaging the transfer 

fun~tions of matching line segment pairs. The main difficulty or relaxation labeIIing in its application to medical image 

registration lies in the determination of valuable line-segment features. The brain images from both PET and MRI are 
rath~r blob-like, and segments from the boundaries all have similar properlies, leading to ambiguities in the matching. 

Additional drawbacks to this approach are the sometimes lengthy convergence times of the relaxation algorithms, and 

the ract that reduction of the image to a simple boundary prior to the matching process discards a considerable amount 

of valuable information 

Neither or the above two methods permits the detection of matching inner structures of images or the detection of 
a partial pattern within an image. Altogether, the practical value or these methods is limited to a few special 

applications with minor medical importance. 
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2.3 Correlation AnalY'.is 

Correlation analysis is primarily used for the detection of similarities between two non-uniform data sets. This 

technique is sensitive enough to detect the presence of corresponding structures that are barely noticeable by a human 

observer, and thus is ideally suited for the image matching problem. Realization of the correlation analysis is impeded, 

however, by the requirement that several dependent parameters for matching (tran,>lation, rotation and scale factors) 

be determined at the same lime. Since these parameters are coupled, they cannot be separately calculated from the 

spatial-domain representations of the images. Changing the orientation of one image will affect the relative translation 

between the two images, a translation of one image will affect the rotational differences, and scaling can influence both 

translational and rotational parameters. Previous correlation-ba<;ed approa(:hes have not dealt with this coupling 
adequately, with the result that the algorithms have been inefficient and computationally expen<;ive8.9. 

A solution for finding 20 translational and rotational differences ha~ been proposed in wruch translation and 
rotation differences are corrected in an iterative manners. Tltis algorithm first employs a 2D cross-correlation, in 

Cartesian coordinates, to find the relative sltift between the two images to be matched. This translational difference 

is accounted for, a second cross-correlation is performed, this lime in polar coordinates, to determine the rotational 
difference, and tltis difference is accounted for. This process continues in an iterative fashion, alternately compensating 

for translational and rotational differences, until the compensations are smaller than a certain threshold value. 

The major drawback of tlus approach is that it does not deal with the coupling of the translational and rotational 

variables. Calculation of translation ill the presence of rotational differences results in an incorrect translation, and vice 

versa. These errors could impede or even prevent convergence of the algorithm, or cause convergence to a wrong 

result. In addition, the inherent inefficiency in this approach produces unnecessarily high computational expense. Each 

step in the iteration requires a total of six 2D-FFT's (two-dimensional fast Fourier transforms), that is, four forward 
and two inverse transforms. Thus, a registration that needed ten iterations would require sixty 2D-FFf's in addition 
to the numerous image manipulations and coordinate tran ... formations. 

A simple modification of lhis teclutique ha'i been proposed9 which correctly deals with the coupling of the 

translational and rotational variables. In this procedure, one image is rotated with respect to the other in small 

increments over some range, and the angle at wruch the correlation function reaches its maximum is cort"idered to be 

the best estimate of the rotation for proper registration, with the location of the maximum specifying the shift 
parameters. Though the algorithm correctly deals with the coupling of lramlatioll and rotation, it is very t'xpen"ive 

computationally, and does not include scale factor parameters. The inclusion of these parameters would increa"e the 

computational expense even more, as would expamion of the method to three dimensions. 

3. FAST CORRELATION I\IATCIIING 

Significant reductions in computational expense can be gained by taking advantage of some invariance properties 

of the Fourier Transform. The fa~t correlation approach to be described here was developed by reformulating previou.~ 

correlation approaches, taking these invariance properties into consideration. The alg()rithm efficiently de-couples the 

matching variables, yielding a fairly simple algorithm that is relatively fast and computationally inexpen<;ive. Each 

variable is determined individually and in sequence, without requiring iterations that involve multiple 2D or 3D FFf's. 
For the sake of simplicity, relevant concepts are described below in terms of two dimen."ions. The principles apply 

equally well in three dimensions. 

3.1 Cross-Correlation 

If I, (x,y) and 12(:x,y) are two spatial domain images, and F,(u,v) and F2(u,v) are the corresponding frequency 

domain representatIOns, then the cross· correlation R,,2(x,y) between these two images is given by 

R,,2(9) • FFT .,[ F,(u,v), CONJ(F,(u,v)) [, 

where CONJ refers to the complex conjugate operation., and FIT -, refers to the inverse fa<a Fourier transform 

operation. If It (x,y) and I2(x,y) represent similar images which differ only by a translalion, the amount of shift or 

~~~a~:~mbe ~~~I~~~~:r:~r:11r;~~ ;~:c~[:~si~~[:;::t:~~ ~~~;t?~~n~IJf~eo~~~~~7=:~~I;~~~W:~~ ~:ei~~= l~<;;e~ m) 
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- --- ----- -------------

31 Fourier Transform Relations a nd Principles or Invariance 

The basic principles of invdfiance are the Fourier relations thaI apply to the operations of translation, rotation and 

scaling. These principles are utilized initially to decouple the three matchi ng variables, and then \ 0 compute the 

differences in translation, rotation and scaling between lhe two data sets. 

3.2.1 Translation Tramlation in the spat ial domain corresponds 10 a pha<;e shift in the Fourier domain. ThaI i<; , if 

the image I(x,y) is translated by some distance (xl'Yl)' then 

FFTII(,-,l'Y-Y') I· F(u,v)e,p«-j2. /N)(u" +'1',))-

Computing the magnitude of both sides, 

I FFTII(,-" ,y-y,) II • I F(u,v)e,p«-j2./N)(u"+ Vj',)) I 

• I F(u,v) I - I e,p«-j2./N)(u" H Y ,)) I 

• I F(u,v) '-

This demonstrates thai the magnit ude spectrum, and thus Ihe power spectrum of an image is invar iant with respect to 

translation. That is, translation of an image in the spatial domain does not affect the image's power spectrum 

3.2.2 Rotation Rotat ion of an image in the spatial domain corresponds 
to a rotat ion of the spectrum by the same angle, as shown in Figure 2. 
That is, if an image I(x,y) and its Fourier transform F(u,v) can be 

transformed into the polar coordinate representations l(r,T)and F(w,P), 
respectively, where x= r cos(T), 

Y= r sin(T), 
u=w cos(P), 
v=w sin(P), 

then the relationship between an image that is rotated by an angle D 
and its corresponding Fourier transform is '0: 

FFTII(r,T+D) I . F(w,P+D )_ 
, :,'" ~/~~- ~,: , : .-' .::".,-::;( 
I __ , 

'. ' , -' , , , 
, - I _ 

, 

Rotation in polar coordinates can be thought of as a simple shift or 
translation of the angular coordinate. The power spectrum in polar 
coordinates will be invariant 10 such a "shift", and thus will be invariant 

to rotation. The polar-coordinate representation can not only be used 
to eliminate rotationaJ considerations by using the power spectrum of 

an image, it also enables one to easily determine rotational differences 
between a pair of similar images fro m the complex Fourier spectrum, 
since these differences manifest themselves as simple ' shifts" of the 
angular coordinate. To determine a difference in rota tion, one should Figure 2 : Demonstration that rotation of 

cross-corre late the two polar-coordinate representations of images that im ages in the spatial domai n (left panels) 
have already been made translation-invariant, and note the rotation corresponds to the same rotation of the 
angle at which the cross-correlation function R t lr,T) is a maximum. power speclra (right pane ls). 

!his angle will indicate the orientation difference belween the two 
Images. 
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3.2.3 Scaling Scaling in the spatial domain has two effects in the spatial­
fr equency domain: an inverse scaling of the frequency axes, and an adjust ment 
in thc amplitudes of the Fourier coefficients, a5 shown in Figure 3. If the x­
direction scale factor is given by A, and the y-direclion scal e factor is given by 
B, then the Fourier relationship pertaining to scaling is: 

FFI"II(Ax,By) J = (I / AB) F(u / A,v/ B)" 

A logarithmic transformation of the spatial domain coordinate system converts 
the mult iplicative scaling process to a shift!! , making it possible to create a 

scale-illvariant spectrum. This cOllversion of scale to a shift al so enables the 

dctection of scaling factors for image matching by cross-correlat ion, since the 
"shifts" (representing scale factors) can be detected in a manner similar to that 
for detecting rotational differences. 

33 New Algorithm 

The new algorithm, employing the Fourie r Transform invariance principles, 
is summarized in the nowchart shown in Figure 4. The short description given 
here is followed by more detailed informat ion regarding individual stages of 

the algor ithm. 

.. . ~ . . -. , 

_ i 'r~'~": 
., ~ ,i,':~'Wt·' 

I '\')~::..-_.-

~ _ a _!_-~ -. a: 
Figure 3 : Demons!rat ion of the 
effect of scaling of spat ial domain 
images (left) on the image spectra 
(right). 

Figure 4 : A flowchart illustrating the various steps in the fa'> t correlation image matching a1gorit hm. 
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The fi rst step in the image-matching process is to create translation-invariant information from the input images 
by computing their power spectra, These power spectra are then treated a<; new images to be matcbed ; they are 
converted to polar coordinates, and the power spectra of these polar coordinate representation<; are computed. These 
last power spectra are thus invariant to both rotation and translation. The relative scaling factors are conveniently 

de termined from these rotation- and translation-invariant power spectra, using the iogaritlunic transformation. The 
algorithm currently de termines a global scale factor. Solutions for the ca<;e in which scale factors differ with coordinate 
axes are currently being investigated. The polar coordinate versions of the power spectra of the equivalently-scaled 
images are then cross-correlated in order to determine the relative rotation between the two input sets of image data. 

After correcting for this rotation, the finaJ step is to determine the relative translation from a correlation analysis of 
the orientation-equivalent image data sets. 

As described above, the first step in the algorithm is the computation of the power spectra of the input images. 
If II (x,y) and 12(x,y) represent the input images, then the respective Fourier spectra 5,(u,v) and 52(u,v) are given by 

5,(u,v) = FFfII,(x,y)exp«-j2./N)(u"o+\Yo) 1 
5,(u,v) = FFfI ',(x,y)exp«-j2./N)(u"o+VYo) I, 

where Xc and YO represent shifts thai are eq ual to half of matrix size, or N/2. The phase shift resu lting frolll this 
exponent ial te rm thus cente rs the resulting spect ra so that the DC component is located at the center of the matrix. 
The power spectra P,(u,v) and P2(u,v) are given by 

P,( u,v) = 5,(u,v) - CON!I 5,(u,v) 1 
P,( u,v) = 5,<u,v) - CON!I 5,<u,v) 1_ 

As previously noted, these powe r spectra are translation-invariant, meaning that, at this stage, transla tion has been 
de-coupled from rotation . 

After converting each power spectrum to polar coordinates, integrations are performed along equal ly' distributed 
radial vectors. These integrations need only be performed in one half-plane, because of the inherent symmetry in the 
power spectrum. This series of integrations reduces the information contained in each 20 power spectrum to a 10 
series. The rotat ional difference between the two inpu t image data sets are then determined from aID cross· 
correlation of these two series. 

The intrinsic rotat ionaJ resolution of the algorithm, apart from interpolation, which will be considered later, is 
specified by the number of line integrals that are performed. If thirty- two line integrals are per formed, for example, 
the resulting rotat ionaJ resolution is 1800 divided by 32, or 5.6". In the authors' tests, one hundred and twenty-eight 

line integrals were per formed, yieldi ng a rotational resolution of 1.4°. Tlus simple descript ion of the rotational 
resolution, however does not conside r the act ual resolu tion of the input image data as specified by the number of 
projections and im age matrix size used in reconstruction. Additional ly, it should be noted that, because of symmetry 

in the power spectrum, rotations greater than 18(f are detected as rotations modulo IBCr. 

The line integrals through the power spectra need not begin at the DC component, nor do they need to continue 
to the Nyquist frequency. In fact, better resu lts can be achieved by ignoring the very Jaw frequency com ponents (which 
are mainly related to the image background) du ring the radial integration. Since the high-frequency information content 
of images from current imaging modali ties is very limited (depending on the image resolution), computations can be 

reduced by integrating only partway to the Nyquist fr equency. For optimum perfor mance, the li mits of integration 
should be determined from corner freq uencies of the transfer functions of the im aging modaJities involved. If two 
different modalities are involved, the integration should be performed only over those frequency bands which the two 
modalities have in common, since spect ral components outside these bands do not contribute to the correlational 
matching process. 

The rotational difference be tween two images is sometimes conside red to be the differe nce in angular orientation 
when the two objects in the images are translationally al igned at their respective centers of mass. This object-oriented 
approach to rotation, however. is not always clinically relevant. In addition, it is easier, fro m a computational \iewpoint, 
to eliminate the need for ce nler-of-mass calculations by choosing the image fr ame itse lf as the rotational reference. 
For these reasons, the image-matching me thod described here determ ines the angle of rotation required to orient the 
images with respect to the center of the im age frame_ 
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The new algorithm has been implemented within the Asyst 12 software package running on an IBM PS/2 Model 60 

computer. The algorithm was validated by computing the relalive orientation and shift between two 20 scale-equivalent 

images. Data size limitations imposed by the Asyst software required that the data be reduced to 64x64 matrices. 
Wilh this matrix size, the algorithm required three minutes of computation: ninety seconds to compu te the rotational 

difference, sixty seconds to apply this rotation (a lolal of 2 1/2 minutes [ 0 compensate for rotation), and thirty seconds 
10 compute and compensate for translational differences. The use of special -purpose software and hardware would 
certainly reduce this calculation time. Inlegration of this algorithm with image reconst ruction software typically available 

on tomographs would allow direct access to the projection data and thus greatly increase the speed and precision of the 
rolation computat ions. Regardless of implementat ion-specific computation times, the algorithm is inherently faster than 
previous correlation approaches8,9. As previously noted, one approach required as many as sixty 2-D FIT's and ten 

image rotations to solve the 2-D matching problem, whereas the algorithm presented here requires three 2- 0 FFT's 

and only one image rotation. 

Whi le the fast correlation matching algorithm produced good resul1.~ with synthetic 
data., initial tests with clinical single- and multi-modality images resulted in 

unsatisfactoril y large e rrors in the estimation of the rolation angle. To eliminate these 
errors, and achieve the theoretically-predicted resul1.~, some processing, prior to the 

matching process, is required. 

The basic problem stems from the "window effect"" of the rectallgular image frame. 

T he spectrum of the image is effectively convolved with the spect rum of the 
rectangular image frame, and the spectrum of the rectangular shape, which is shown 
in Figure 5, does not rotate along with the spectrum of the image within the rectangle. 

H not removed, this stationary artifact will obviously have an adverse innuence on the 

rotational cross-correlation. 

The above concepts are illustrated in Figures 6-8. Figure 6 shows two PET images 

which differ in rotation by 20". Figure 7 represents contour views of the 
corresponding spectra. For purposes of illustratio n, only the low-frequency range of 
the spectra is shown. It can be seen that, although there is some differe nce between 

the two spect ra, the di fference does not represent a real rotat ion. The obvious 

distortion is a direct result of the un-rotated power spectrum of the rectcmgular image 
fr ame. One can see the inappropriate similarity in features between the power spectra 

shown in Figure 7 and that shown in Figure 5. The application of a Hanning window 
effectively removes the unwanted spectral components, allowing a lrue expression of 
the rotation, as illustrated in Figure 8. These spectra are easily identifiable ao;; rotated 

ve rsions of one another. 

Figure 5 : The power 

spectrum of a rectangular 

image frame, in 3D form 
(above) and in contour view. 

Figure 6 : Two PET images which dirrer in rotation by 200
• 
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Figure 7 : The corresponding power spectra of the two PET images shown in Figure 6, 

illustrat ing the detri me ntal infl ue nce of the reCla.ngular image frame on rotation. 

Figure 8 : The corresponding power spectra of the two PET images shown in Figure 6 a ft er 

removal of the unwanted spectral components of the rectangular im age frame. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of the new image-matching algorithm was evaluated for two general classes of problems. The first 

was the single-modality case, in which an image wa<; matched against a rotated, translated, and noisy version of itself. 
Single modaJily experim ents were perform ed with synthetic data and with images from either PET or MRI lomographs. 

The second test category was the multi-modality calie, in which im ages from difFerent modaliti es, or images obtained 

with the same modality with different acquisi tion parameters, were matched against each other. 

Each single-modality experiment required the choice of a reference image and the creation of a les t image by 

rotating and translating the re ference image. Images were intentionally corrupted by adding Gaussian noise ctt three 
different levels. as specified by the variance of the noise. The three different values of variance used were: 0 (no noise), 

5 and 10. Since the mean value of the pixe ls in the 8-bit images was approximately 40, litis las t noise leve l (variance 

- 10) represented approximately 25% of the mean value of the image. The nine images shown in Figure I were chosen 
as reference images for these experiments. Each reference image was rotated by am ounts of _6°, -3°,0°, +3° and +6°, 

and. for each case of rotation., Gaussian noise with variances of either 0, 5 or 10 was added, yield ing a total of 15 test 

images for each of the nine reference images. A bi-linear interpolation algorithm 13 was used to perform rotations. 

Test images, paired with the prope r reference images, were submined to the matching algorithm, and the results 

are shown in Table I. Results are presented as a function of rolation angle and Gaussian noise leve l. Each entry 
corresponds to a single rotation angle and a single variance vaJue, and represents the ave rage result of al l nine refere nce 
images as each was matched against its particular class of lest image. 
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Ta hle I: Computed rotation angles for s ingle-moda lity les t images 

Actual Rotation (0) 

Noise 

-5.28 -2.79 0.00 2.64 4.97 

-5.28 -2.79 0.15 2.79 5.13 

iO -5.44 -2.33 0. 17 2.64 4.97 

It can be seen Ihat the resu lts in Table I show some errors in the computed values of ro tation. One source of 

these errors was the quantil..ation due to the 104° rotational resolution of the algorithm. Since the lest images were 

nOl rotated by angles that were exact multiples of 104°, some quant izat ion e rror occurred. Another source of error 

was the b i-linear interpolation algorithm used ill the rotation, which tended to degrade an image in the process of 

rotating it. It should also be nOled that the fairly coarse (64x64) image mat r ix used for these tests further limi ted the 

rotational precision. The effective resolution of the algorithm under these circum stances is probably no better than 2.8°. 
Smaller pixe ls and better interpolation sc hemes would certainly have reduced the errors shown in Table I. 

For multi-modality testing, pairs of PET and MRI im ages that had 

been determined (by an expert observer) to represent the same image 

plane were given to the matching algorithm. The matching parameters 

were computed and used 10 fe-orient the MRI image so as \0 match the 

PET image. Figure 9 illu strates the result of Ihe algorithm's applicat ion 

to a parti cular PET-MR I image pair. The un-registered image pair is 

shown in Figure 9a. Figure 9b shows the two 1D se ries resulting from 

the radial integrations (at bOllam), and the resulting ID cross­

correlation. Figure 9c shows the 20 cross-correlati on which indicates 

translational shifts, and Figure 9d shows the properly registered PET· 

MRI image pair. 

The results of the matching were evaluated by an expert observer, 

using all inte ractive graphics device. After re·ori entation of the image, 

the two images were displayed side by side. Expert medical observers 

then posit ioned boxes within the PET images to mea<iure the metabolism 

within the corresponding rectangular regions. The boxes were 

automatically positioned within the registered MR I image, allowing the 

expert observer to determine how well the metabolism measurements 

corresponded to the anatomy, thus giving a qualitative evaluation of the 

resu lts. The results shown in Figure 9 were judged to be sat isfactory. 

A second multi -modality test involved a test object that was scanned 

by both tomographs. In both the PET and MRI scans, the object was 

posi tioned so that the rota tion angle was (f. The MRI image of the 

test object was then rotated to _6°, -3", +3° and +6°, and each rotated 

image was submitted, along with the original PET image, to the 

matching algorithm. The results of these tests are shown in Table II. 

Tahle II:ColU!)lIted rotation angles for dual-modalitv phantom images 

Actual Rotation _6.00· _3.00· 0.00· 3.00" 6.00" 

Computed Rotation: -5.60" _2.75° 0.00" 4.2Y 7JXl' 

These resu lts again show that the algori thm is correctly com puting the 

rotation angle, with the expected precision. Primary sources o f error 

(a) 

8-/----' . . ..:"~ ,·v,:' .... ·\./\ /,_.:'~,: . . 

i \_/", __ r,.j:\,/",,,,,/\. 

(b) 

(d) 

Figure 9 : lIIustrat ion of the matching 

process fo r a parlicular PET -MR I image 

pair. 
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are presumably the same as those in the first multi-modal ity test case, namely, the low resolution of the image matrix 
and the weakness of the rotati on algori thm. It shoul d be noted that the rotation algorithm's delrimeillal effect is 
relevant only because the a1goritlun was used to generate test images. The computation of rotat ional registration 

parameters in a real application will be unaffected by rotat ion algorithms. 

Additional matching difficulties arise in those applications where, in COlltrast to the above described MRI/ PET image 
combinations, one of the images represents only a partial area of the second image. In such cases, the algorithm must 

be able to perform object recognition, that is, those body parts in the image with the smaller view area must be 
identified in the image with the "whole-bod! view. The recognition process is impeded, however, by the fact that 
differences in the imaging parameters can lead to considerable differences in the appearance of the object. The 
performance of the fast correlation algorithm on such an im age combinat ion is demons trated in Figure to. The 
translational parameters required to position the par tial pattern shown in Figure lOb within the whole-\iew image shown 
in Figure lOa are determined from the correlati on function shown in Figu re lOc. 

(a) (b) Ce) 
Figure 10 : A case of image matching in which one image (b) represents a partial area of the other image (a). The 
20 cross-correlation of the two images is shown in (c). These images represent syntheti c data. 

Real images. of course, are normally corrupted by some amount of noise, ar tifacts and imperfections of the imaging 
modalities, so that the detection process often requires some pre-processing (e.g. , contra,,( enhancement ) of the images 
prior to the correlation analysis. Figure 11 shows an image combination in which a phantom is shown in two projection 
photographs, a normal projection radiograph (Figure 11a), and an image produced by a linear acce lerator used for 
cancer treatment (Figure llb). In spite or the poor image quality, the described matching a1gari llun determines the 

registration parameters with the predicted precision. Figure 12, which, for purposes of demon"tration, ill ustrates only 
the method for determining translational differences, shows the 2D cross-correlation of the two images. The cross­
corre lation function has a well-defined peak at the x- and y·coordinates thaI are Ihe re quired registration parameters. 

Ca) (b) (e) 

Figure 11 : An example of a clinical case of image matching in which one image represents a partial 
area of the other. In this case, a linear accelerator image (b) is to be matched against an 
x-ray image. The 20 cross-correlation of the two images is shown in (c). 
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--------- ----------------------------------------------------------

5. CONCLUSIONS AND FUTURE WORK 

The authors have developed a general -purpose matching a lgorithm which provides for precise comparison of medical 

images obtained at different lim es or willI difrerenl modalities. This algorithm is faster and more reliable than previous 
techniq ues, and it can be practically implemented o n 10w-cOSI computer systems, giving it the potent ial for wide clinical 

acceptance. Experiments to date indicate thaI the algorithm can be successfully applied to a wide variety of applie,al ions 

of image matching. 

With this algorithm, the reliability and quality o f image matching are completely determined by the properl ies of 

the input data. limitations in the final result are im posed only by the quality, information content and comparability 

of the two sets of data . Low-resolu tion images, for example. do not al low high-resolution matching. In sit uations 

involving images of different resolutions, the image wi th the lowest resolution will determine the precisio n of the 

matching. Agai n, this restriction results, 1I0t from the algoritlun , but from the quality of the data. The results presented 

here were certainly adversely affected by the reduction of im ages to 64x64 mat rices. Implementation of the algorithm 

with higher-resolution matrices would be expected to improve the resolut ion of the matching. Similarly. resu lts that 

involved only high-resolution modalities would be expected to be bette r than results with low-resolut ion PET images. 

Future work will include the determination of the algorithm 's reliability and precision as a function of image 

parameters such as resolution, noise level and bandwidth. Formal guidelines for application of the correlation algorithm 

to m ulti-modality images should also be established . These should include cri te ri a for image comparability, so that users 

do not attem pt to match incomparable data (apples and oranges) and rely on meaningless, formal correlatiOrt,). Furthe r 

work will also include the ex tension of the algoritlml to three dime ns ions, and compu tation of the scale factor for all 

three coordinate axes. 

ACKNOWLEDGEMENTS 

This project was supported by BRSG S07 RR07022-20 awarded by the Biomedical Research Support Program, 

Division of Research Resources. National Institutes of Heal th, and also by a student fellowship to Ant hony Apicella 

from the Education and Research Foundat ion, Society of Nuclear Medicine . 

REFERENCES 

[ I] S. Shalev. Personal communicat ion. 

12] M. Bergstrom and T. Gri etz, "St ereotaxic Computed Tomography, American Journal of Roenlgenology. 

127;ppI67-170, 1976. 
131 M . K. H u, "Visual Pallern Recognilion by Mom ent Invariant s", IEEE Transactiort<i on Informatio n Theory. Volume 

IT- 8, ppI79·187. February 1%2. 
(41 J . Winte r, "Discrete Contou r Representation of Image Mat r ices", IEEE Transactions on Medical Imaging, Volume 

Ml·3. ppI49·154, 1984. 
IS) B. Bhan u and 0 .0. Faugeras, "Shape Matching o f Two- Dimensional Objects", IEEE rAMI-6, No.2, pp137·156, 

March 1984. 
16) T. Pavlidis and S.L Horowit7.., "Segmentation of Plane Curves", IEEE Transactions on Computers, Volume C-23, 

No. 8, pp860-870, Augus t 1974. 
171 J .L Mo ham med, R.A.Hummel, and S.W.Zucker. "A Gradient ProjeCi ion Algorithm for Relaxation Me thods", IEEE 

PAM I·5, No.3, May 1983. 
18) L.S . Hibbard, J .5.McG lo ne, D.W.Davis, and R.A .Hawkins, "Three Dime nsional Representation and AnaJysis of 

Brain Energy Metabolism", Science, Vol.236. J une 26, 1987, ppl641- 1646. 
[9] E. De Castro and C. Morandi, "Regist ration of Translated and Rotated Images Using Finite Fourier Transforms", 

IEEE PAMI·9. No. 5, pp700·703, Seplember 1987. 
(10) R.C. Gonzalez. D igital Image Processing, Addison-Wesley, 1986. 
[ l1J J . Altmann and HJ. Reitbock, "A Fast Correlation Method fo r Scale- and Translat ion-Invariant Patte rn 

Recognition", IEEE- PAM I-6, No.1 , pp46-57. January 1984. 
11 21 Asyst User's Manual. MacMillan Software Company, 866 T hird Ave nue. New York, New York, 10022. 

(13] T. Pavlidis, Algori thms for Graphics and Image Processing, Rockville, Maryland:Computer Science Press, 1982, 

pp299·316. 

SPfE Vol. 1092 Medica/Imaging 1If. Image Processing (1989) I 263 


