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ABSTRACT Design of contemporary antenna structures needs to account for several and often conflicting 
objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., 
footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective 
formulations are most often employed, through either a priori preference articulation, objective aggregation, 
or casting all but one (primary) objective into constraints. Notwithstanding, the knowledge of the best 
possible design trade-offs provides a more comprehensive insight into the properties of the antenna structure 
at hand. Genuine multi-objective optimization is a proper way of acquiring such data, typically rendered in 
the form of a Pareto set that represents the mentioned trade-off solutions. In antenna design, the fundamental 
challenge is high computational cost of multi-objective optimization, normally carried out using population-
based metaheuristic algorithms. In most practical cases, the use of reliable, yet costly, full-wave 
electromagnetic models is imperative to ensure evaluation reliability, which makes conventional multi-
objective optimization procedures prohibitively expensive. The employment of fast surrogates (or 
metamodels) can alleviate these difficulties, yet, construction of metamodels faces considerable challenges 
by itself, mostly related to the curse of dimensionality. This work proposes a novel surrogate-assisted 
approach to multi-objective optimization, where the data-driven model is only rendered in a small region 
spanned by the selected principal components of the extreme Pareto-optimal design set obtained using local 
search routines. The region is limited in terms of parameter ranges but also dimensionality, yet contains the 
majority of Pareto front, therefore surrogate construction therein does not incur considerable costs. The 
typical cost of identifying the Pareto set is just a few hundred of full-wave analyses of the antenna under 
design. Our technique is validated using two antenna examples (a planar Yagi and an ultra-wideband 
monopole antenna) and favorably compared to state-of-the-art surrogate-assisted multi-objective 
optimization methods.  

INDEX TERMS Antenna design; multi-objective optimization; surrogate modeling; domain confinement; 
principal components; dimensionality reduction. 

I. INTRODUCTION 

Design of modern antenna structures faces several serious 
challenges. These arise from the necessity of satisfying 
stringent requirements pertinent to electrical and field 
characteristics (e.g., broadband operation [1], pattern stability 
[2], circular polarization [3]), implementation of various 
functionalities (e.g., multi-band operation [4], band notches 
[5], pattern diversity [6]), demands pertinent to emerging 

application areas (5G [7], internet of things [8]), but also small 
physical size [9], [10], critical for wearable [11] or implantable 
devices [12]. A fulfilment of such demands leads to the 
development of topologically complex antenna structures 
described by a large number of geometry parameters [13]-
[15]. Their design, in particular, parameter tuning, is hindered 
by the necessity of handling several objectives and constraints 
over highly-dimensional parameter spaces. For reliability 
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reasons, antenna evaluation needs to be carried out through 
full-wave electromagnetic (EM) analysis, which creates an 
even more serious bottleneck. Furthermore, the design 
objectives are often conflicting so that it is not possible to 
improve all of them simultaneously, and compromise (trade-
off) solutions have to be sought. Design of compact antennas 
provides a representative example. Reduction of the radiator 
size leads to a variety of issues, in particular, difficulties in 
ensuring sufficient matching (especially for broadband 
antennas) as well as degradation of other characteristics 
including gain, efficiency, and pattern stability [16], [17]. 
Depending on the designer’s priorities, antenna performance 
with respect to some of these figures may be compromised in 
exchange for the improvement of others. 

Needless to say, traditional simulation-based design 
methods, largely relying on supervised parameter sweeping, 
are unable to handle multiple goals and constraints. This can 
only be realized through rigorous numerical optimization [18]. 
However, most of widely used algorithms, including 
conventional methods (e.g., gradient-based [19] or pattern 
search [20]) or computational-intelligence-based techniques 
(e.g., evolutionary algorithms [21], particle swarm optimizers 
[22], or differential evolution [23]) are single-objective 
routines that can only process scalar cost functions. 
Controlling several objectives requires either aggregation 
(e.g., by means of a weighted sum method [24]), or turning 
most of the objectives (typically, all but one) into constraints 
and assigning appropriate acceptance levels. Regardless of the 
approach, single-objective optimization yields a design that 
corresponds to the designer’s priorities concerning the 
considered goals.  

Obtaining more comprehensive information about available 
design trade-offs requires genuine multi-objective 
optimization (MO), the outcome of which is typically a Pareto 
set pertinent to the design task at hand [25]. Although single-
objective routines may be used to yield the Pareto set, e.g., 
through multiple minimization of an aggregated cost function 
with varying weighting factors [24], the most popular 
techniques these days are multi-objective versions of 
population-based metaheuristics [26]-[29]. Their advantage is 
a capability of producing the entire Pareto set within a single 
algorithm run. In antenna design, the algorithms belonging to 
this group are most often utilized for antenna array synthesis 
to adjust the array element spacing and determine the 
excitation tapers. The optimization is normally executed at the 
level of analytical array factor models. The numerous 
examples include artificial bee colony algorithm [30], 
grasshopper optimizer [31], ant lion algorithm, cat swarm 
optimizer, and whale optimizer [32], dragonfly algorithm [33], 
invasive weed algorithm [34] and particle swarm optimization 
[35]. The application of the latter for design optimization of 
antenna structure simulated in time-domain can also be found 
in [36], yet, the antenna structure was a simple one, and 
comprised a limited number of predefined segments. 

Comprehensive reviews and juxtaposition of the 
aforementioned algorithms can be found in [37]-[42]. 

A disadvantage of population-based methods is high 
computational cost, which often turns prohibitive when full-
wave EM analysis needs to be employed to evaluate antenna 
characteristics. Therefore, number of practical applications of 
metaheuristics for solving directly EM-based optimization 
tasks is scarce and the reported overall optimization costs are 
high: from few hours [43] to several hundred hours [44]. 

Among available means of alleviating the aforementioned 
difficulties, in particular, making EM-based multi-objective 
optimization practical in computational terms, utilization of 
surrogate modeling techniques seems to be the most promising 
[45]. In particular, surrogate methods are used in conjunction 
with methaheuristic methods for design of antennas and 
microwave devices [46]-[50]. Applicability of surrogates very 
much depends on the particular problem. As long as the 
parameter space dimensionality is low and the system 
responses are not highly nonlinear, it might be possible to 
construct a global metamodel as an overall replacement of EM 
simulations [51]-[53]. As a matter of fact, it should be 
observed that in the aforementioned works [46]-[50], only  
low-dimensional problems were considered, with the 
structures under design described by few parameters (from 
two to six). Unfortunately, design of modern antennas often 
requires handling at least medium number of parameters 
(>10), where rendering reliable surrogate within the entire 
space is not possible. A viable alternative is an appropriate 
confinement of the search space along with the employment 
of variable-fidelity EM simulations [54], [55]. The keystone 
here is an identification of the region encapsulating the Pareto 
front and a construction of the replacement model therein. This 
approach demonstrably yields significant computational 
benefits [55] despite the fact that the space reduction 
techniques usually provide only a rough approximation of the 
Pareto front. 

Constructing the surrogate model only in the region 
containing the Pareto front allows for a partial alleviation of 
the dimensionality problem and for improving the 
computational efficiency of the multi-objective optimization 
process. In [25], the encapsulation of the Pareto front has been 
achieved based on the extreme Pareto-optimal designs 
produced through single-objective optimization runs (one 
objective at the time), which gives an idea about the span of 
the front. More involved methods such as constrained 
modeling techniques (e.g., [56]) allow for more precise front 
allocation, and further computational advantages. This paper 
proposes a novel framework for multi-objective design 
optimization of antenna structures that capitalizes on 
performance-driven surrogate modeling concept [57], as well 
as explicit reduction of the parameter space dimensionality 
based on the principal component analysis (PCA) [58] of the 
extreme Pareto-optimal designs. The main purpose and the 
scope of the work is to yield further advantages over the 
methods involving the surrogates set up in constrained 
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domain, specifically [25] and [56]. Here, the surrogate is 
constructed in the region containing the Pareto set and permits 
low-cost identification of the best trade-off designs, further 
refined using local routines (also surrogate-assisted). 
Excellent accuracy of the replacement model obtained using 
small training data sets ensures efficiency without involving 
variable-fidelity EM simulations. Our methodology is 
demonstrated using a planar quasi-Yagi antenna designed for 
best matching and maximum gain, as well as an ultra-
wideband monopole designed for best matching, minimum in-
band gain variability, and minimum footprint area. The Pareto 
sets are rendered at the cost of a few hundred of EM analyses 
of the respective antenna structures. The computational 
savings compared to the benchmark surrogate-assisted 
technique exceeds 80 percent. The originality and major novel 
contributions of this work include: (i) development of 
computationally-efficient procedure for multi-objective 
antenna optimization, (ii) incorporation of the performance-
driven modeling concept and PCA-based dimensionality 
reduction mechanisms into surrogate-assisted multi-objective 
design framework that allows for initial approximation of the 
Pareto set (this includes introduction of a rigorous 
formalism), as well as (iii) demonstration of the efficacy of the 
resulting MO procedure when handling real-world antenna 
design tasks as well as its superiority over state-of-the-art 
surrogate-assisted procedures. 

II.  SURROGATE-ASSISTED MULTI-OBJECTIVE 
ANTENNA OPTIMIZATION WITH DIMENSIONALITY 
REDUCTION 
This section formulates the proposed multi-objective 
optimization (MO) methodology. First, some background 
material is discussed, in particular, a generic procedure for 
surrogate-assisted MO (Section II.A), followed by the concept 
of parameter space confinement (Section II.B). Section II.C 
presents a construction of surrogate model constrained to a 
reduced-dimensionality domain, defined using the principal 
components of the extreme Pareto-optimal design set. The 
overall operation of the proposed MO procedure is explained 
in Section II.D and illustrated using a flow diagram. 

A.  SURROGATE-BASED MULTI-OBJECTIVE DESIGN: 
GENERIC PROCEDURE 
Let us denote the design goals as Fk, k = 1, …, Nobj, with Nobj 
being the overall number of the objectives. In this work, the 
purpose of multi-objective optimization (MO) is understood 
as an identification of a globally non-dominated set of 
solutions (a so-called Pareto set) [59]. A formal definition of 
a dominance relation can be found in [25] but loosely 
speaking, a non-dominated design (also referred to as a 
Pareto optimal point) has the following property: within the 
considered parameter space there is no other design that 
would be simultaneously better with respect to all objectives. 
Hence, all elements of the Pareto set are equally good in the 
MO sense and represent the best possible trade-offs with 
respect to the objective vector [F1  F2  …  FNobj]T. 

The output of the computational model of the antenna 
will be denoted as R(x), where x represents adjustable 
parameters (most often, selected antenna dimensions). In 
most practical cases, full-wave EM analysis is employed for 
antenna evaluation, therefore, conducting MO directly at the 
level of R entails significant computational expenses. This is 
especially when MO is realized using population-based 
metaheuristic algorithms. Perhaps the most promising 
approach to mitigating this issue is surrogate-assisted 
approach [45], [51]-[53] (see also Section I), where the 
computational burden is shifted towards a faster 
representation of the antenna at hand, the surrogate model Rs. 
Typically, it is a data-driven model, for example kriging [60], 
Gaussian process regression (GPR) [61], or neural network 
[45]. Because the evaluation cost of the surrogate is 
negligible as compared to EM analysis, Rs can be optimized 
directly using, for example, multi-objective evolutionary 
algorithms [62] or MO version of any of popular 
metaheuristics. At this point, it should be mentioned that 
several surrogate-based techniques that do not rely on 
population-based methods to yield a Pareto set have been 
recently developed (e.g., [63], [64]). 

Additional reduction of the computational cost can be 
obtained by using variable-fidelity EM simulations. One of 
possible realizations is to construct the surrogate at the level 
of coarse-discretization EM model [54], [55]. This renders 
considerable savings (acquisition of the training data is the 
single most expensive component of the optimization 
procedure) but requires an additional refinement step in 
order to account for the misalignment between the low- and 
high-fidelity models. The refinement process can be 
conducted by means of output space mapping (OSM) [65]. 
More specifically, the high-fidelity designs are found as  
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In (1), xf
(k) and xs

(k) denote the high- and low-fidelity Pareto 
optimal designs, k = 1, …, Nobj, respectively, and R(xs

(k)) – 
Rs(xs

(k)) represents the OSM term. The process is executed 
for low-fidelity Pareto-optimal designs xs

(k) selected from the 
initial Pareto set generated using Rs. In (1), the OSM term 
R(xs

(k)) – Rs(xs
(k)) ensures zero-order consistency [66] 

between the surrogate Rs and the high-fidelity model at xs
(k). 

An alternative way of realizing the refinement process has 
been proposed in [67] using co-kriging, where the high-
fidelity data sparsely sampled along the Pareto front is 
directly incorporated into the surrogate model. It should also 
be emphasized that—due to limited accuracy of the surrogate 
model—the refinement procedure may be required even if 
single-fidelity simulations are used in the MO process. 

B.  INITIAL PARAMETER SPACE CONFINEMENT 
Except some simple cases (e.g., antenna described by a few 
parameters within narrow ranges thereof), a construction of 
surrogate model in the entire parameter space is most often 
hindered by the curse of dimensionality. At the same time, it 
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is not necessary as the Pareto-optimal designs normally 
occupy a small portion of the space. A reasonable way of 
reducing parameter ranges is to consider the extreme Pareto-
optimal points, corresponding to single-objective optima 
 

 *( ) arg min ( )k
kF

x
x R x                           (2) 

 
In (2), x*(k) refers to the extreme design, i.e., design 
optimized with the use of single-objective optimization 
algorithm in the reduced parameter space, defined as an 
interval [l*,u*] that normally contains the majority of the 
Pareto front. The narrowed lower l* and upper u*bands are 
defined as: l* = min{x*(1),…, x*(Nobj)} and u* = max{x*(1),…, 
x*(Nobj)}, respectively [25]  (see Fig. 1). Hence, it is sufficient 
to set up the surrogate model therein. More involved 
reduction techniques may provide even better confinement. 
An example is the parameter space reduction by means of 
nested kriging [68]. 

 
C.  SURROGATE MODEL DOMAIN SETUP USING 
PRINCIPAL COMPONENTS 
In this work, as a way of further improving computational 
efficiency of the MO process, the aim is to establish the 
domain of the surrogate model that provides more efficient 
parameter space confinement than the reduction technique 
described in Section II.B. The domain should contain a 
possibly large portion of the Pareto front and it should exhibit 
simple geometry so that identification of the Pareto set 
therein is straightforward.  

The initial information about the Pareto front allocation 
is provided by the extreme designs x*(k) of (2). Additional 
data, necessary to account for the front curvature, may be 
obtained by considering the designs 
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where xw denotes the supplemental design obtained for the 
weight vector W = [w1 … wNobj]T , with wk, k = 1, …, Nobj,  
being the weighting factors forming the convex combination 
of the objectives, i.e.,  
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Clearly, the extreme designs x*(k) are solutions of (3) for 

W = [0 … 1 … 0]T with 1 on the kth position. The design 
obtained for W = [1/Nobj 1/Nobj  …  1/Nobj]T corresponds to 
(more or less) the front center. Let us denote as {xwk}, k = 1, 
…, p, the set of all designs generated for the purpose of 
surrogate model establishment. 

The model domain is defined using spectral analysis of 
the set {xwk} according to the description below. Let also 
denote as xm = p–1k = 1,…,pxwk the center of gravity of {xwk}. 
Let also C refer to the covariance matrix of the set 
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Let us also introduce as vk the eigenvectors of the set {xwk} 
and as k their counterpart eigenvalues. The pairs {vk,k}, k 
= 1, …, p – 1, comprise the eigenvectors (i.e., the principal 
components) of {xwk} and their corresponding eigenvalues. 
The latter are the variances of {xwk} in the eigenspace. The 
eigenvalues are assumed to be ordered, i.e., 1  2  …  
p–1  0. The matrix VK = [v1 … vK] consists of the first K 
eigenvectors as columns, K being the selected number of the 
principal directions. 

The information carried by the matrix VK will be used to 
define the surrogate model domain XS. In particular, the 
domain is to be spanned with the use of the most dominant 
principal components, the number of which can be 
determined through the analysis of the eigenvalues. 
Typically, the eigenvalues are quickly decreasing so that it is 
sufficient to use K = 3 or 4 without missing any important 
information about the antenna at hand. The details will be 
provided in Section III when discussing specific application 
examples. 

The process of defining the model domain involves 
expansion of the vectors xwk with respect to the principal 
components 
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where the bar indicates that the left-hand-side of (6) is the 
part of xwk that is contained in the affine space spanned by xm 
and V. The coefficients bkj are calculated as bkj = vj[vj

T(xwk – 
xm)]. The following notation is used 
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In (9), b0 is the coefficient matrix whose entries are given by 
(8). Whereas the entries of the matrix b are defined as bj = 
(bj.max – bj.min)/2 (cf. (7)).  The domain XS of the surrogate 
model is determined w.r.t. the center point  

 
xc = xm + Vb0                                                       (11) 
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FIGURE 1. Parameter space reduction using single-objective optima x*(k) 
(cf. (2)). 
 
Using the above, one can define  
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It should be noted that XK, i.e., the constrained domain of the 
dimensionality K, contains the entire set {xwk} (in the 
directions v1 through vk). The surrogate model domain is 
defined as XS = XK for a specific value of K selected by the 
user. As mentioned before, due to high correlation between 
optimum sets of antenna geometry parameters across the 
objective space, K equal to 3 or 4 is usually sufficient. 
Increasing this number does not bring much of useful 
information while being detrimental to the computational 
benefits achieved by dimensionality reduction. A graphical 
illustration of the concepts discussed in this section can be 
found in Fig. 2. 

Having the domain XS, the surrogate model is obtained 
using kriging interpolation [69]. Design of experiments is 
arranged as follows. In order to achieve uniform allocation 
of the training data, an improved Latin Hypercube Sampling 
(LHS) procedure is used [70], with the samples z = [z1 … zK]T  
initially distributed in a normalized interval [0 1]  …  [0 
1], i.e., 0  zj  1, j = 1, …, K. Subsequently, the samples are 
mapped into XS using the transformation  
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where bj are the coefficients defined in (10), and vj are the 
eigenvectors of the set {xwk}. Whereas h refers to the 
surjective transformation from the unity hypercube into the 
constrained domain XS. 
 
D.  PROPOSED MULTI-OBJECTIVE DESIGN FRAMEWORK 
The operation of the proposed MO framework can be 
summarized as follows. The first stage of the optimization 
process is identification of the extreme Pareto optimal 
designs using single-objective optimization runs as 
described in Section II.C (equations (3) and (4)). Using the 
spectral analysis of this data, the domain of the surrogate 
model is established (cf. (12)), and the model is constructed 
upon acquiring the training data {xB

(j),R(xB
(j))}, j = 1, …, NB. 

x1

x3

x2

{xwk}

xc

x*(2)

Initially reduced 
space [l*,u*]v1

v2
Surrogate model 
domain X2

 
FIGURE 2. Graphical illustration of the surrogate model definition (here, 
two-dimensional X2) for the purpose of constructing the surrogate model 
with the MO framework. The domain is spanned by the two most 
dominant principal components of the set {xwk}. 
 
Subsequently, the initial approximation of the Pareto set is 
found using multi-objective evolutionary algorithm (MOEA) 
[62] operating directly on the surrogate model. Finally, 
selected Pareto-optimal designs are refined as described in 
Section II.A (eq. (1)). The flow diagram of the procedure has 
been shown in Fig. 3.  

A few comments should be made concerning 
optimization of the surrogate model. The surrogate is defined 
over the domain XS and all operations (including 
identification of the initial Pareto set using MOEA) should 
be carried out within XS. For the sake of convenience, the 
optimization is formally conducted in the unity interval [0,1] 
 …  [0,1], whereas evaluation of the model is carried out 
using the auxiliary mapping  h : [0,1]K  XS (cf. (13)). 

It should be mentioned that the overall multi-objective 
optimization framework proposed in this work does not 
really have any control parameters that would have to be 
tuned by the user. The particular stages of the optimization 
process (acquisition of the reference points, surrogate model 
domain definition, surrogate model construction, rendering 
initial Pareto set, design refinement) are uniquely 
determined. For example, the reference points are obtained 
through single-objective optimization runs and there is 
nothing here that the user might want to interfere with. The 
surrogate model is constructed to ensure good predictive 
power; say, around 5-percent of relative root mean square 
(RMS) error, and the number of training data samples is 
adjusted accordingly. The MOEA setup is made redundant 
to ensure that the variance of approximating the initial Pareto 
set is low (see the comments in the second paragraph of 
Section III). Thus, assuming that all algorithmic building 
blocks of the overall procedure are set up in a reasonable 
manner, there is nothing for the user to set up about the entire 
procedure, other than the number of Pareto-optimal points 
he/she might want to produce as the final outcome of the 
algorithm.  

III.  VERIFICATION STUDIES AND BENCHMARKING 
For demonstration purposes, the proposed multi-objective 
optimization procedure has been validated using two antenna 
examples, a planar Yagi and an ultra-wideband (UWB) 
monopole. The structures were optimized for two and three 
objectives, respectively. In the case of Yagi antenna, the 
objectives are improvement of the in-band matching and 
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maximization of the average end-fire gain. Whereas for the 
monopole, the goals are matching improvement, reduction of 
the in-band gain variability, and reduction of the antenna 
footprint. The benchmark algorithm was a generic surrogate-
assisted framework described in Section II.A with the initial 
parameter space reduction of Section II.B. Here, all 
algorithms were exclusively using high-fidelity EM 
simulations (no variable-fidelity models involved). It should 
be emphasized that the very setup of all considered methods 
(the proposed one and the benchmark) ensures that that 
comparison is fair: all technique share the same reference 
designs, MOEA algorithm setup, as well as the refinement 
scheme. The only, yet fundamental, difference is the way of 
constraining and defining the surrogate model domain. 
 The results presented below were obtained based on 
single runs of the optimization algorithm. This is because 
most of the stages of the algorithm are deterministic, 
including identification of the reference designs for surrogate 
model domain definition, the domain definition itself, as well 
as the design refinement procedure (1). The only optimization 
stage that has a stochastic nature is multi-objective 
evolutionary algorithm (MOEA) used to generate the initial 
approximation of the Pareto set. However, MOEA operates 
on the fast surrogate and it is set up to use a large population 
(here, 1,000 individuals) and run for a few hundred iterations, 
both to minimize possible front deviations due to stochastic 
component of the search process. As indicated in [25] 
(Chapter 10.2), this setup allows for obtaining very small 
deviations of the Pareto front between algorithm runs (at the 
level of a small fraction of dB for the reflection or gain 
characteristics), which virtually eliminates the need for 
repeating the runs in practical application of the method. 

A.  EXAMPLE 1: PLANAR YAGI ANTENNA 
Our first test case is a planar Yagi antenna [71]. The geometry 
of the structure has been shown in Fig. 4 and contains a driven 
element and a microstrip balun. The antenna is implemented 
on RT6010 substrate (r = 10.2, h = 0.635 mm). There are eight 
designable parameters: x = [s1 s2 v1 v2 u1 u2 u3 u4]T. Other 
parameter are fixed: w1 = w3 = w4 = 0.6, w2 = 1.2, u5 = 1.5, s3 = 
3.0 and v3 = 17.5. All dimensions are in millimeters. The EM 
simulation model R is implemented in CST Microwave Studio 
(~600,000 mesh cells, simulation time 4 minutes) and 
evaluated using its time domain solver. 

The operating frequency range of the antenna is 10 GHz 
to 11 GHz. The design objectives are minimization of in-band 
reflection (F1) and maximization of the average end-fire gain 
(F2), both within the operating bandwidth. 

There are two extreme Pareto-optimal designs obtained to 
set up the surrogate model domain, xw1 = x*(1) = [4.43 3.85 
8.77 4.28 4.09 4.76 2.08 1.63]T, xw2 = x*(2) = [5.19 6.90 7.10 
5.08 3.54 4.78 2.23 0.93]T, and two additional points: xw3 = 
[4.56 4.38 8.56 4.50 3.89 4.93 2.01 1.57]T, xw4 = [4.84 5.00 
8.09 4.64 3.98 4.89 2.00 1.50]T. These designs correspond to 
following weighting factors [w1 w2] of (3), (4): [1 0], [0 1], 
[2/3 1/3], and [1/3 2/3]. 
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FIGURE 3. Flow diagram of the proposed multi-objective optimization 
procedure. 

The surrogate model was constructed using only 60 
training samples and its relative RMS error is 1.5% and 0.8% 
for the reflection and gain characteristics, respectively. The 
model domain dimensionality is K = 3, which is the maximum 
number given four designs xwk. For comparison, the surrogate 
was also constructed in the initially reduced domain (cf. 
Section II.A), i.e., the interval [l* u*] with l* = min{x*(1), x*(2)} 
and u* = max{x*(1), x*(2)}. The error levels for this surrogate is 
much higher: 9% and 3% for reflection and gain, respectively, 
even though 1600 training samples were employed. For 
additional comparison, the surrogate was constructed using 
the nested kriging framework [56], one of the recent 
performance-driven modeling methods. Its domain was based 
on the same designs x*(k), k = 1, …, 4, and exhibits the error of 
5% and 1% for the reflection and gain, respectively. 

Figure 5 shows the initial Pareto set obtained by means of 
optimizing the surrogate model using multi-objective 
evolutionary algorithm [62]. The picture also shows ten 
designs selected along the Pareto front before and after their 
refinement. Table 1 shows the antenna dimensions for the 
refined designs. The reflection and gain characteristics for a 
few designs have been illustrated in Fig. 6. Finally, Table 2 
provides detailed information about the computational cost of 
the optimization process. Two benchmark methods are 
included in the table as well, both surrogate-assisted 
procedures: (i) the approach with surrogate model constructed 
in the initially reduced space, and (ii) the method involving the 
surrogate constructed with the nested kriging framework. 
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FIGURE 4. Geometry of the planar Yagi antenna. The ground plane 
extends until the dashed vertical line marked GND. Metallization marked 
using the yellow color. 

 
FIGURE 5. Planar Yagi antenna of Fig. 4: Pareto set identified using the 
proposed methodology: (o) initial set found by means of MOEA executed 
on the PCA-based surrogate, ()designs selected from the initial Pareto 
set (EM simulation data), (O) refined Pareto-optimal designs (EM 
simulation data). 
 
 

Table 1.  Planar Yagi Antenna: Geometry Parameter Values for Pareto-
Optimal Designs 

Design 
Design Variables [mm] max |S11| 

[dB] 
Gain* 
[dB] s1 s2 v1 v2 u1 u2 u3 u4 

1 4.43 3.85 8.79 4.30 4.07 4.79 2.06 1.64 –25.8 5.6 

2 4.45 3.91 8.79 4.35 4.01 4.88 2.01 1.66 –24.1 5.7 

3 4.42 3.89 8.84 4.36 3.97 4.90 2.00 1.66 –23.5 5.8 

4 4.56 4.40 8.56 4.50 3.88 4.92 2.02 1.56 –20.9 6.0 

5 4.74 4.80 8.27 4.60 3.93 4.92 2.00 1.52 –18.2 6.2 

6 4.82 5.05 8.09 4.65 3.93 4.88 2.03 1.46 –16.9 6.4 

7 4.88 5.31 7.95 4.72 3.88 4.89 2.04 1.40 –15.2 6.5 

8 4.97 5.64 7.76 4.80 3.83 4.88 2.06 1.32 –14.0 6.7 

9 5.08 6.12 7.48 4.90 3.76 4.83 2.12 1.19 –13.0 6.9 

10 5.17 6.68 7.26 5.09 3.54 4.92 2.12 1.05 –11.0 7.0 
* End-fire gain averaged over the 10-to-11 GHz bandwidth. 
 

  

 
FIGURE 6. Planar Yagi antenna of Fig. 4: reflection (top) and end-fire gain 
(bottom) characteristics for the selected Pareto designs of Table 1: x(1) (—), 
, x(4) (), x(7) (- - -), and x(10) (-o-). 

 
Table 2.  Yagi Antenna: Optimization Cost and Benchmarking 

Cost item 
Surrogate model domain 

XS (this work) XS (nested   
kriging [56]) 

Hypercube 
[l*,u*] 

Extreme points 280  R 280  R 160  R 

Data acquisition for 
kriging surrogate 60  R 100  R 1600  R 

MOEA optimization* N/A N/A N/A 

Refinement 22  R 30  R 30  R 

Total cost# 362  R (23 h) 410  R (27 h) 1790  R 
(118 h) 

* The cost of MOEA optimization is negligible compared to other stages of the process. 
# The total cost is expressed in terms of the equivalent number of EM simulations. 
 
 

It can be observed that for the method operating within the 
initially reduced space, the major component of the overall 
cost is training data acquisition, which is greatly reduced for 
performance-driven modeling methods (from 1600 to 100 for 
the nested kriging and to only 60 samples for the proposed 
approach). Furthermore, due to very good accuracy of the 
surrogate model constructed as proposed in this work, the 
refinement process is considerably cheaper (for most designs 
it stops immediately as no improvement can be made). The 
overall cost is only 362 EM simulations. 

It should be emphasized that the proposed approach 
allows for more accurate identification of the initial Pareto 
set, which is a result of a significantly smaller domain of the 
surrogate model. Figure 7 shows some comparative results. 
In particular, it can be observed that the Pareto front span 
obtained with the surrogate established in the initially reduced 
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space is much smaller and the discrepancy between the initial 
and refined Pareto sets is significant. The latter is a result of 
limited accuracy of the surrogate model itself. The proposed 
approach renders the Pareto set of the same quality as that 
obtained using the nested kriging model, whereas the 
computational cost of the optimization process is smaller (362 
versus 410 EM simulations, which give 12 percent speedup; 
however, if the cost of finding the extreme points is not 
included, the speedup becomes almost 40 percent). 

B.  EXAMPLE 2: ULTRA-WIDEBAND MONOPOLE 
ANTENNA 
The second verification case study is the ultra-wideband 
monopole [72]. The antenna is implemented on RF-35 
substrate (εr = 3.5, h = 0.762 mm). Its geometry, shown in Fig. 
8, is described by eleven parameters x = [L0 dR R rrel dL dw Lg 
L1 R1 dr crel]T. The EM model is implemented in CST 
Microwave Studio and evaluated using its transient solver 
(~840,000 mesh cells, simulation time 5 minutes). For 
reliability, the EM model incorporates the SMA connector. 

The operating frequency range of the antenna is 3.1 GHz to 
10.6 GHz. Three design objectives are considered: 
minimization of the in-band reflection (F1), reduction of the 
realized gain variability within the operating frequency range 
(F2), and reduction of the antenna footprint (F3). 

The domain of the surrogate model is established using 
seven designs. The first three are extreme Pareto-optimal 
designs corresponding to single-objective minima (best 
matching, minimum gain variation, and minimum size): x*(1) 
= [10.64 0.0 6.00 0.10 1.46 6.20 10.46 4.26 2.00 0.73 0.49]T, 
x*(2) = [8.74 1.55 5.81 0.51 0.016 5.65 8.95 5.47 2.60 0.99 
0.84]T, x*(3) = [9.51 0.19 4.46 0.27 4.33 1.17 10.05 6.00 2.94 
0.99 0.90]T.  

These points correspond to following weighting factors 
[w1 w2 w3] of (3), (4): [1 0 0], [0 1 0], and [0 0 1]. There are 
four more points that correspond to [w1 w2 w3] = [0.5 0 0.5], 
[0.5 0.5 0], [0 0.5 0.5], and [1/3 1/3 1/3]: x*(4) = [10.04 0.43 
5.85 0.26 0.0 6.46 10.01 5.49 2.14 1.00 0.83]T, x*(5) = [9.58 0.0 
5.05 0.28 3.37 4.14 9.68 5.26 2.37 0.85 0.89]T, x*(6) = [8.76 0.0 
5.62 0.69 2.24 2.92 8.93 5.94 2.58 0.99 0.27]T, x*(7) = [9.52 0 
.37 5.08  0.16 2.61 4.85 9.55 5.39 2.25 0.91 0.88]T. 

The proposed surrogate has been set up using only 100 
training samples. The domain dimension was set to K = 4 
because of the eigenvalues of {xwk}, which are 1 = 1.00, 2 = 
0.22, 3 = 0.04, 4 = 0.03, 5 = 0.01, and 6 = 0.0007 
(normalized values). Thus, the last two principal directions are 
insignificant as compared to the dominant ones. The average 
RMS error of the surrogate is 5.2% and 4.5% for the reflection 
and gain characteristics, respectively. Similarly as for the 
previous example, the surrogate was also set up in the initially 
reduced space, i.e., the interval l* = min{x*(1), x*(2), x*(3)} and 
u* = max{x*(1), x*(2), x*(3)}, using 1600 training samples. The 
error of this model is 15% (reflection) and 11% (gain). It 
should be emphasized that reliable modeling is hindered here 
by the parameter space dimensionality (eleven variables) but 
also relatively broad parameter ranges.  
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FIGURE 8. Ultrawideband monopole antenna [52]: structure geometry with 
the ground plane marked using the light gray shade. 

Additionally, the nested kriging model was set up using the 
designs {x*(j)}j = 1,…,7, as the reference points [56]. Despite 
involving 200 data samples, the model error was 7.5% 
(reflection) and 5% (gain), which is not as good as for the 
proposed approach, mainly due to the dimensionality issues.  

 

 
 
FIGURE 7. Planar Yagi antenna of Fig. 4. Initial Pareto sets obtained using: 
the surrogate-assisted procedure using initial design space reduction 
(surrogate constructed within the interval [l*,u*]) (black circles);  the nested 
kriging surrogate (gray crosses); the proposed PCA-based surrogate (gray 
circles). EM-evaluated Pareto designs: refined points found in the interval 
[l*,u*] (large stars ), refined Pareto designs found using the nested kriging 
(large black crosses ), refined Pareto designs found using the proposed 
PCA-based surrogate (large blue circles). It should be noted that the span of 
the Pareto set obtained using performance-driven surrogates is considerable 
larger than for the surrogate constructed in the interval [l*,u*] and the 
consistency between the initial and refined sets is improved (cf. Fig. 5). Also, 
the refined Pareto sets obtained using the nested kriging surrogate and the 
proposed surrogate are comparable, yet the proposed method offers reduced 
computational cost (cf. Table 2). 
 

The initial Pareto set found by optimizing the proposed 
surrogate using multi-objective evolutionary algorithm, as 
well as the EM simulation data for the selected designs 
(before and after the refinement) has been illustrated in 
Fig. 9. The numerical data, including the geometry 
parameter values of the refined designs, has been gathered in 
Table 3. Figure 10 shows the reflection and realized gain 
characteristics for the selected designs from Table 3. Finally, 
the cost of the optimization process and its breakdown can 
be found in Table 4.  
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FIGURE 9. Ultrawideband monopole antenna of Fig. 8. Pareto-optimal 
solutions found using the proposed procedure: (o) initial Pareto set 
identified using multi-objective evolutionary algorithm executed on the 
proposed PCA-based surrogate, () EM-evaluated designs selected from 
the initial Pareto set, (O) EM-simulated refined Pareto designs. 
 
Table 3.  Ultrawideband Monopole Antenna: Geometry Parameter Values 

for Pareto-Optimal Designs 

Design 1 2 3 4 5 6 7 8 9 10 11 12 

max |S11|   
[dB] –15.3 –10.0 –10.3 –10.7 –11.7 –13.1 –11.1 –11.0 –13.7 –10.2 –10.9 –12.4 

Gain 
variab. 
[dB] 

4.5 3.0 4.6 3.3 3.7 3.9 5.5 4.4 4.4 3.3 4.2 4.4 

Footprint 
[mm2] 555 474 287 512 481 538 352 423 497 427 402 433 

D
es

ig
n 

va
ria

bl
es

 

L0 10.0 9.25 8.93 9.21 9.74 9.40 9.03 9.26 9.74 8.72 8.89 9.37 

dR 0.49 0.20 0.12 0.49 0.55 0.88 0.12 0.00 0.29 0.68 0.36 0.20 

R 5.77 5.94 4.67 6.02 5.42 5.83 4.82 5.65 5.44 5.44 5.21 5.15 

rrel 0.18 0.55 0.43 0.51 0.22 0.34 0.36 0.53 0.21 0.52 0.45 0.28 

dL 0.86 1.15 4.22 0.58 1.59 0.33 4.04 2.41 2.11 1.81 2.82 3.07 

Dw 6.50 4.75 1.77 5.61 5.31 6.42 2.99 3.67 5.50 4.37 3.84 4.42 

Lg 9.93 9.26 9.32 9.17 9.83 9.39 9.23 9.31 9.71 8.88 9.03 9.43 

L1 4.91 5.44 5.98 5.35 5.27 5.23 5.56 5.48 5.01 5.69 5.57 5.22 

R1 2.10 2.35 2.74 2.30 2.31 2.26 2.53 2.40 2.19 2.53 2.49 2.33 

dr 0.87 0.94 0.97 0.94 0.92 0.93 0.89 0.81 0.84 0.97 0.92 0.85 

crel 0.81 0.37 0.77 0.48 0.89 0.81 0.79 0.33 0.81 0.71 0.71 0.80 

 
Table 4.  Ultrawideband Monopole Antenna: Optimization Cost  

and Benchmarking 

Cost item 
Surrogate model domain 

XS (this work) XS (nested kriging 
[56]) 

Hypercube 
[l*,u*] 

Extreme points 750  R 750  R 440  R 
Data acquisition for 
kriging surrogate 100  R 200  R 1600  R 

MOEA optimization* N/A N/A N/A 
Refinement 36  R 36  R 36  R 

Total cost# 886  R (73 h) 986  R (82 h) 2076  R 
(173 h) 

* The cost of MOEA optimization is negligible compared to other stages of the process. 
# The total cost is expressed in terms of the equivalent number of EM simulations. 

 

 
 
FIGURE 10. Ultrawideband monopole antenna of Fig. 8: reflection (top) and 
realized gain (bottom) responses for the selected Pareto-optimal designs of 
Table 3: x(1) (—), , x(3) (), x(5) (- - -), and x(10) (-o-). 
 

 
 

FIGURE 11. Ultrawideband monopole antenna of Fig. 8. Initial Pareto sets 
obtained using the approach proposed in this work (black circles) and with 
the surrogate model established in the initially reduced design space (the 
interval [l*,u*]) (gray circles). It should be noted that the Pareto front span is 
similar in both cases (slightly larger for the initially reduced space due to its 
considerably larger volume). 
 
 

As it can be observed, acquisition of the training data is the 
largest contributor to the overall optimization cost for the 
benchmark method using the surrogate established in the 
initially reduced parameter space. The proposed approach 
reduces this part by the factor of sixteen, which leads to the 
overall speedup of almost 60 percent. This is achieved without 
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compromising the quality of the Pareto front as shown in Fig. 
11. The proposed approach also offers a certain cost reduction 
as compared to the approach involving the nested kriging 
surrogate (about 10 percent), however, the reduction is over 
forty percent when the cost of finding the extreme Pareto 
optimal designs is excluded. 

C.  DISCUSSION 
The numerical results obtained in Section III.A and III.B can 
be summarized as follows: 
 The performance of the proposed MO procedure is 

consistent for both considered antenna structures 
different by the dimensionality of the parameter space 
and the number of objectives. In terms of variable and 
objective space complexity, these cases are 
representative for real-world situations and more 
complex than normally considered in the research 
papers on similar topics. 

 The quality of the results is very similar for the 
proposed and the benchmark methods in terms of the 
Pareto set rendered during the optimization process. 
This allows for concluding that dimensionality 
reduction of the surrogate model domain does not have 
any detrimental effects on reliability. 

 The methods selected as benchmark are state-of-the-art 
approaches for the class of algorithms considered 
within the scope of the paper (cf. Section I). The 
computational cost of the various stages of the MO 
process are therefore the same or comparable, except 
the surrogate modeling step, expediting of which was 
the very motivation for this work. Here, the proposed 
method offers a significant speedup of 40 and 50 
percent with respect to nested kriging approach and 
well over 90 percent over the technique of [25]. This 
translates into significant acceleration of the entire 
procedure. 

 The particular way of confining the surrogate model 
domain does not only result in reducing the number of 
training data samples required to construct reliable 
surrogate but also improves the model scalability, i.e., the 
relationship between the number of samples and the model 
predictive power. This allows for yielding the surrogates 
of excellent quality (a few percent of relative RMS error) 
using very small number of data samples. This can be 
viewed as an additional advantage of the approach. 

 All considered methods (the proposed and the 
benchmark ones) employ the reference points in order 
to approximate the region of the parameter space 
containing the Pareto front. It requires certain initial 
investment in terms of the computational cost. It should 
be reiterated that this sort of investment is imperative 
for the test problem of this level of complexity, i.e., 
rendering the surrogates of any level of design utility 
without some sort of confinement (e.g., to the 
hypercube [l*,u*]) would not be possible.  

The above comments allow us to draw the conclusion that 
the proposed approach fulfills the very purpose it was 
designed for, i.e., reduces the computational cost of one of 

the most expensive stages of the surrogate-assisted MO 
procedure of the class considered in this work, i.e., 
acquisition of the training data for surrogate model 
construction. The level of computational savings obtained by 
incorporating performance-driven modeling with 
dimensionality reduction is considerable and allows for 
accelerating the entire procedure without compromising the 
design quality.  

The proposed multi-objective optimization framework is 
intended to be employed for real-world applications. 
Therefore, its implementation is made as simple as possible. 
This especially pertains to the fact that it does not require 
setting or adjusting any control parameters. The optimization 
process comprises the following deterministic stages: 
acquisition of the reference points (by means of single-
objective optimization), defining the surrogate domain and 
constructing the model therein, rendering initial Pareto set 
and its refinement. In fact, the sole option that is left up to 
the user’s discretion is the choice of the number of Pareto-
optimal designs that are to be rendered as the final outcome 
of the algorithm.  

IV.  CONCLUSION 
In the paper, a novel surrogate-based approach to multi-
objective design optimization of antenna structures has been 
proposed. Our methodology involves a surrogate model 
constructed in a confined domain that is established using a set 
of Pareto-optimal designs obtained through single-objective 
optimization runs, and, more specifically, their principal 
components. This allows for identifying the parameter space 
region containing the Pareto front as well as reducing the 
domain dimensionality. The latter has a profound effect on the 
predictive power of the surrogate and a reduction of the 
computational cost of training data acquisition. The proposed 
approach has been comprehensively validated using two 
antenna examples, a planar Yagi antenna and a wideband 
monopole. In both cases, the 10- and 12-element Pareto sets 
have been rendered at the cost of a few hundred of EM 
simulations of the respective antenna structures, which yields 
a considerable savings as compared to the benchmark 
surrogate-assisted procedure (80 percent for the Yagi antenna 
and almost 60 percent for the monopole). At the same time, 
the presented approach has been demonstrated to produce the 
Pareto sets of the quality comparable to those obtained using 
the surrogate constructed within the recent nested kriging 
framework, which provides further cost reduction (up to 
twelve percent of the overall costs and forty percent of the 
surrogate modelling process). Our methodology can be 
considered a viable alternative for performing multi-objective 
design procedures in the cases where construction of 
conventional surrogates is hindered by the dimensionality and 
parameter range issues. Perhaps the most serious limitation of 
the approach is related to the dimensionality of the parameter 
space and the number of design objectives considered in the 
optimization process. Increasing either of them will have a 
detrimental effect on the quality of the surrogate model and 
will lead to the increase of the number of training data samples 
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required to render reliable surrogate. This means, that for a 
sufficiently large number of parameters, the cost contribution 
of the training data acquisition will again become dominant 
(w.r.t. the overall cost). Also, the approach would may not 
work efficiently if the Pareto front is not connected, i.e., 
consists of several disjoint subsets. In such a case, the 
efficiency of the space reduction normally achieved using 
domain confinement will not be as advantageous as in the case 
of the (set-theory) connected Pareto front. Notwithstanding, 
the aforementioned issues are also pertinent to other surrogate-
assisted approaches, and the proposed technique allows for 
extending the range of application of surrogate-based 
optimization concept in terms of parameter space 
dimensionality as compared to conventional methods. 
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