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Abstract We present a new approach using a multi-scale

joint bilateral filter for upsampling the synthesized texture

generated by optimization-based methods. Our method is

based on the following motivation: if the available exem-

plar texture is used as a priority to upsample the synthesized

texture, a high resolution result that prevents image blurring

can be obtained. Our multi-scale joint bilateral upsampling

applies a spatial filter on each multi-scale layer of the syn-

thesized texture, and jointly applies a similar range filter on

exemplar texture, which guides the interpolation from low

to high resolution, by magnifying and combining the up-

sampled information; the details of the upsampled texture

are progressively enhanced, and the image blurring artifacts

can be effectively avoided. We offer an accelerated joint bi-

lateral filter, which enables our upsampling method to inter-

actively generate a large texture. In addition, we propose a

detail-aware texture optimization approach that incorporates

image detail in texture optimization to improve the quality

of the synthesized texture, on which the multi-scale joint

bilateral filter works to generate a more convincing result.

We show results for upsampling image and video textures
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and compare them to traditional upsampling methods, by

this demonstrating that with low computational and mem-

ory costs, our method achieves better results.

Keywords Texture synthesis · Global optimization · Image

upsampling · Bilateral filter

1 Introduction

Texture synthesis is a useful technique in computer graph-

ics and computer vision, which synthesizes a large texture

based on a small input sample while exhibiting the same

stochastic features of the exemplar. A great deal of existing

works synthesize texture using either parametric [1, 2], non-

parametric [3–5], or patch-based [6–9] approaches. Among

these methods, optimization-based methods [10, 12, 13],

which belong to a kind of patch-based methods, have been

proved very successful in terms of the quality of the syn-

thesized results, and have been efficiently applied in image

and video synthesis [10, 12], solid texture synthesis [13],

inverse texture synthesis [18], and geometry-surface tex-

ture synthesis [11]. However, the synthesis procedure of

these optimization-based methods is done by minimizing a

global texture energy function, which is a time and memory

consuming process, and it limits the wider applications of

optimization-based methods.

To efficiently synthesize a large and high resolution tex-

ture using optimization-based methods [10, 12], an intu-

itive approach is to first synthesize a relative small and low

resolution texture, then upsample this generated texture to

the high one (Fig. 1). When the exemplar texture is large,

especially for video exemplar texture for which it is time

and memory consuming to construct tree-based accelera-

tion structure for nearest neighbor search [10, 12], in this
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case, an alternative method is to first downsample the ex-

emplar texture to a lower resolution one, then synthesize a

low resolution texture using this low resolution texture as

an input, and then the synthesized low resolution texture

is finally interpolated to generate a high resolution texture

(Fig. 3). This interpolation operation is also called an up-

sampling procedure. To upsample the low resolution to a

high one, many methods have been proposed, while most

methods, such as the commonly-used Gaussian and bicu-

bic interpolation, generally assume a smoothness priority for

the interpolation and the results usually suffer from blurring

edges, as illustrated in Figs. 2(b) and 4(b). Thus, a better

interpolation method should not only require low computa-

tional and memory costs, but also achieve good interpolation

result from the synthesized texture.

To address these problems, inspired by joint bilateral fil-

tering techniques [23–25], we develop a novel algorithm

for texture upsampling using multi-scale joint bilateral fil-

tering. Our method is based on the following observation:

if the available exemplar texture is used as a priority to

upsample the synthesized texture, a high resolution result

which prevents the image blurring can be obtained. We use

joint bilateral filter to perform the upsampling: a spatial

filter is applied to the synthesized texture, while a similar

range filter is jointly applied on the exemplar texture. Using

these techniques, the image blurring artifacts in upsampling

process can be effectively prevented (Figs. 2(c) and 4(c)).

When the features of the exemplar are relatively weak, the

optimization-based methods [10, 12] do not work well to re-

construct the texture details. In this situation, to further im-

prove the upsampling results, we maximize the multi-scale

details of the synthesized texture, and propose a multi-scale

joint bilateral upsampling method which progressively en-

hances the details of the upsampled texture (Fig. 6) using

the exemplar texture as the priority. Applying the original

input exemplar as the guide reference, our work addresses

this deficiency of the existing interpolation methods such as

bicubic and Gaussian interpolation which suffer from blur-

ring edges.

Because the joint bilateral filter is a non-linear operator, a

direct implementation of the 2D convolution costs O(k2N2)

operations, where k is the width of the spatial filter kernel

and N is the width of the image. To make our joint bilat-

eral upsampling procedure more efficient, the joint bilateral

upsampling has to be accelerated. Although many meth-

ods have been proposed to accelerate the bilateral filtering

[29–31], these methods are difficult to be adapted directly

to our joint bilateral texture upsampling. We presented an

acceleration technique which enables the joint bilateral fil-

tering to perform in constant time, that is, the computation

time of filtering remains unchanged even if the filter size be-

comes very large. This acceleration technique enables our

upsampling method to interactively generate a large tex-

ture.

The traditional approach in texture synthesis is to com-

pare an image patch with that of an exemplar. For textures

with strong structures, feature maps can be particularly help-

ful. It has been shown that some textures can be better syn-

thesized with the aid of feature maps which provide fea-

ture information. In our method, differently from the bi-

nary feature maps used in [14–16], we extract the detailed

layer of the exemplar as an extra channel for patch similar-

ity computing. Then, a detail-aware texture optimization is

applied, which combines both texture optimization and his-

togram matching of the image detail to furthermore improve

the quality of the synthesized results. When our multi-scale

joint bilateral upsampling operation performs on these bet-

ter synthesized textures, we can receive more conceiving re-

sults.

Overall, this paper presents the following three main con-

tributions:

Multi-scale joint bilateral upsampling: we propose a

multi-scale joint bilateral upsampling approach, which uti-

lizes the exemplar texture as a priority to progressively in-

terpolate the synthesized texture from low resolution to high

resolution for producing a larger and better texture.

Accelerated joint bilateral filter: we present an acceler-

ated joint bilateral filter, which enables the joint bilateral fil-

tering to be performed in constant time, that is, the compu-

tation time of filtering remains unchanged even if the filter

size becomes very large.

Detail-aware texture optimization: we incorporate the

high frequency detail of the texture and its spatial variation

into the texture optimization to further improve the synthe-

sized results.

The rest of our paper is organized as follows. Section 2

reviews related work. Section 3 gives a brief description

for the texture optimization, on which our upsampling al-

gorithm is based. In Sect. 4, multi-scale joint bilateral tex-

ture upsampling algorithm is presented. In Sect. 5, we pro-

pose a fast joint bilateral texture upsampling approach, and

in the subsequent Sect. 6, a detail-aware texture optimiza-

tion method is presented. We extend our methods to video

texture upsampling in Sect. 7. In Sect. 8, we give the ex-

perimental results and discussions. Finally, we conclude our

paper in Sect. 9.

2 Related work

Our work is built on recent literature in texture synthesis and

image upsampling. Numerous approaches have been pro-

posed for both topics, and an exhaustive survey is beyond

the scope of this paper. In the following, we review some

recent and most related works.

The texture synthesis methods have shifted from para-

metric methods [1], to non-parametric methods [3], in-

cluding pixel-based methods [4, 5], patch-based methods
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[7, 9], and most recently to appearance-space texture syn-

thesis [15], and optimization-based methods [10, 12, 13].

Parametric methods attempt to construct a parametric model

of the texture based on the input sample, which have been

proven to be a challenging task, and are mostly successful

for homogeneous and stochastic textures. Non-parametric

methods have demonstrated the ability to handle a much

wider variety of textures, by growing the texture one

pixel/patch at a time. Appearance-space method improves

the quality by replacing pointwise color neighborhoods with

appearance vectors that incorporates non-local information

such as feature- and radiance-transfer data. We refer the

reader to [13] and [15] and references therein for more com-

plete surveys of texture synthesis.

Optimization-based methods [10, 12, 13] evolve the tex-

ture as a whole, further improving the quality of the results

and making the synthesis more controllable. By defining a

Markov Random Field (MRF) based similarity metric for

measuring the quality of synthesized texture with respect to

a given input sample, the synthesis problem is formulated as

minimization of an energy function, which is optimized us-

ing an algorithm similar to Expectation Maximization (EM).

Wexler et al. [12] defined an energy function for the comple-

tion of missing information of the video. Kwatra et al. [10]

defined global texture optimization for image texture syn-

thesis. More recently, Kopf et al. [13] extended global tex-

ture optimization method [10, 12] to the task of solid texture

synthesis; in addition, Kopf et al. [13] integrated histogram

matching the texture optimization, which improved the con-

vergence of the synthesis process and partially addressed the

issue that the optimization process could get stuck in a lo-

cal minimum. More recently, differently from the traditional

texture synthesis, Wei et al. [18] presented an inverse texture

synthesis method, which used an optimization framework to

produce a small texture compaction that best summarized

original large globally varying texture.

It has been shown that some textures can be synthesized

better with the aid of feature maps, which provide non-local

feature information [13–16]. Texture synthesis guided by

feature maps gives rise to more satisfactory results by re-

ducing the number of feature discontinuities and artifacts.

Zhang et al. [16] used binary texton mask as a control

channel for color synthesis, and the mask extraction [16]

needed manual intervention. Wu and Yu [14] use binary im-

age which is obtained automatically to guide the synthesis

with the feature matching and alignment operations. Lefeb-

vre and Hoppe [15] also applied binary feature mask that

encodes the signed feature distance to better preserve se-

mantic texture structures. Instead of using the binary fea-

ture maps, in this paper, we incorporate detailed layer to the

texture optimization, which generates more convincing re-

sults.

Image upsampling is a fundamental processing opera-

tion in the computer graphics and image processing. Many

techniques have been proposed [19–21]. For example, the

classical approaches such as the Nearest-Neighbor, Bilinear,

Bicubic, Hamming, and Lanczos interpolation kernels, are

very popular in commercial software. The construction of

these kernels relies strongly on the assumption that the im-

age data is either spatially smooth or band-limited. While,

as is well known, these assumptions are not true for most

images, and the solutions obtained using these methods tend

to produce visual artifacts such as aliasing, ringing, block-

ing, and blurring. A more detailed survey of these techniques

and their shortcomings is given in [22]. To reduce the blurri-

ness and other artifacts, Su et al. [20] adjusted the interpola-

tion weights locally by choosing three out of the four nearest

pixels to reduce the number of variables that are averaged,

while Fattal [19] proposed an image upsampling technique

which was based on the edge characteristic. For more image

upsampling methods please refer to the related work section

in [19].

Differently from the existing methods which rely on the

smoothness assumptions, more recently, based on the joint

bilateral filters [23, 24], Kopf et al. [25] presented a joint

bilateral upsampling method (JBU) which applied the avail-

able high resolution input image as a priority to produce a

better high resolution image and which received satisfactory

results. Inspired by the joint bilateral filter [23–25] tech-

niques, we upsample the synthesized texture using the high

resolution exemplar texture as a priority. Compared with tra-

ditional upsampling methods, our method achieves convinc-

ing results. As will be shown in the related section, the adap-

tion is not trivial and our method is novel for texture upsam-

pling.

3 Texture optimization using EM

Optimization-based texture synthesis methods [10, 12] work

as follows. The optimization process begins with a context

region where the value of each pixel is randomly chosen

from the exemplar. The goal is to iteratively increase the

similarity between the synthesized texture on the context re-

gion and the exemplar by minimizing an energy function

that measures the differences between the two. For simplic-

ity, we take the case of 2D image texture synthesis as an

example.

Formally, let X denote the context region over which we

want to synthesize the texture and Z the input exemplar. Let

Xp be the vectorized neighborhood of pixel p in X, and Zp

be the vectorized pixel neighborhood in Z whose appear-

ance is most similar to Xp under the Euclidean distance.

Then, the texture energy over X is defined as

Et

(

X; {Zp}
)

=
∑

p

‖Xp − Zp‖r . (1)
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Using iteratively re-weighted least squares (IRLS) [10] to

minimize the energy, the right term of the energy function

(1) can be rewritten as follows:

‖Xp − Zp‖r = ‖Xp − Zp‖r−2

︸ ︷︷ ︸
‖Xp − Zp‖2

= ωp‖Xp − Zp‖2

and minimize the following quadratic function:

Et

(

X, {Zp}
)

=
∑

p

∑

u∈N(p)

ωp,u(Xp,u − Zp,u)
2, (2)

here, N(p) denotes the neighborhood of the pixel p and

ωp,u = ωp , Zu,p denotes the exemplar pixel in the neigh-

borhood Zu (the nearest neighborhood of Xu in Z) that

corresponds to p . Assuming that the weights ωp,u are con-

stant during the optimization phase, and setting the deriv-

ative of (2) with respect to p to zero, yields the following

solution:

p =

∑

u∈N(p) ωu,pZu,p
∑

u∈N(p) ωu,p

. (3)

Thus, the optimal value of each pixel is simply a

weighted average of a collection of pixels from different

exemplar neighborhoods. Similar energy function can be

defined for solid texture synthesis [13] and video comple-

tion [12].

The energy function (1) is minimized similarly to Expec-

tation Maximization (EM) [26]. The estimation of X is ob-

tained by minimizing the texture energy in (1), which cor-

responds to the E-step, while finding the set of closest input

neighborhoods, {Zp}, corresponds to the M-step.

4 Multi-scale joint bilateral texture upsampling

Optimization-based texture synthesis methods [10, 12, 13]

are time-consuming and large memory is required using

tree-based acceleration structure such as ANN [27] for near-

est neighbor search. Sometimes, the large data may make the

computation untractable, especially for video texture syn-

thesis. Thus, to produce a large and high resolution tex-

ture, it is an intuitive idea to upsample from the synthe-

sized texture computed in a smaller one. The traditional

methods, such as bilinear interpolation or Gaussian inter-

polation, usually assume smoothness prior to the interpola-

tion, and may suffer from blurred images. Inspired by the

joint bilateral methods [23–25], we upsample the synthe-

sized texture to a large and higher resolution one using the

original exemplar image as the priority to produce better re-

sults.

Fig. 1 Overview of the texture interpolation using joint bilateral up-

sampling method

4.1 Joint bilateral texture upsampling

Let Ẽ be the input exemplar texture, image S being the syn-

thesized texture for applying optimization algorithm [10].

To upsample the solution S to a higher resolution texture S̃,

we use Ẽ as the priority for upsampling operator, as illus-

trated in Fig. 1. The joint bilateral filter applies a spatial filter

on the small texture S, while a similar range filter is jointly

applied on the high resolution exemplar Ẽ. More specifi-

cally, let p be a pixel in S̃, p↓ be its corresponding pixel in

the image S, and q↓ be the neighboring pixel of p↓. Let p′
↓

and q ′
↓ be pixels in Ẽ that contribute to the value of pixel

p↓ and q↓ during texture optimization procedure, respec-

tively, then the value of pixel p in the upsampled solution S̃

is computed as:

S̃p =
1

kp

∑

q↓∈Ω

Sq↓f
(

‖p↓ − q↓‖
)

g
(∥
∥Ẽp′

↓
− Ẽq ′

↓

∥
∥
)

, (4)

where kp =
∑

q↓∈Ω f (‖p↓ − q↓‖)g(‖Ẽp′
↓

− Ẽq ′
↓
‖) and Ω

is the neighborhood of p↓ in S, and Ẽp′
↓

and Ẽq ′
↓

are the

values of pixels p′
↓ and q ′

↓. Note that q↓ takes only integer

coordinates in S, so the guidance image Ẽ is only sparsely

sampled. This joint bilateral texture upsampling operator (4)

is almost identical to standard bilateral filter [28], except that

a high resolution texture is constructed by operating at two

different images simultaneously, rather than filtering a single

image.

Note that in texture optimization, as shown in (3), the op-

timal value of each pixel p↓ and q↓ is a weighted average

of a collection of pixels from different exemplar neighbor-

hoods in Ẽ, that is:

Sp↓ =
∑

u∈N(p↓)

ωu,p↓Ẽu,p′
↓

/
∑

u∈N(p↓)

ωu,p↓, (5)

Sq↓ =
∑

v∈N(q↓)

ωv,q↓Ẽv,q ′
↓

/
∑

v∈N(q↓)

ωv,q↓, (6)



Fast multi-scale joint bilateral texture upsampling

Fig. 2 (a) The exemplar (64 × 64) is synthesized to texture

(128×128). (b, c) The synthesized texture (128×128) is upsampled to

the images (512 × 512) using Gaussian interpolation and joint bilateral

upsampling, respectively

where Sp↓ and Sq↓ are the texture values of pixels p↓ and

q↓, respectively. So in (4), we have to process Ẽp′
↓

and Ẽq ′
↓

with more techniques.

To efficiently compute this non-linear problem, we use

the following strategy. We compute the final value S̃p in the

following two steps.

In the first step, we fix Ẽp′
↓
, and replace Ẽq ′

↓
in (4) with

Sq↓ , a weighted average of pixels Ẽv,q ′
↓

computed in (6); we

obtain

S̃u,p =
1

k′
p

∑

q↓∈Ω

Sq↓f
(

‖p↓ − q↓‖
)

g
(∥
∥Ẽu,p′

↓
− Sq↓

∥
∥
)

, (7)

where k′
p is a normalizing factor. The joint bilateral texture

upsampling operator (7) is called JBTU.

In the second step, according to (3), the optimal value

of each pixel p↓ is a weighted average of a collection of

pixels from different exemplar neighborhoods in Ẽ, and we

compute the final value of pixel p in S̃ as:

S̃p =

∑

u∈N(p↓) ωu,p↓ S̃u,p
∑

u∈N(p↓) ωu,p↓

. (8)

The above ideas can also be described as the following:

we first perform the weighted average for q↓ in the inner

loop, and then perform the joint bilateral operation, and fi-

nally, we perform the weighted average step for p↓. By us-

ing this technique, the final upsampled value of pixel can

be computed efficiently. As shown in Fig. 2, using the pro-

posed method, the blurring artifacts are better avoided and

the sharp edges are successfully preserved.

Note that p↓ is an integer coordinate, while p↓ possibly

be fractional coordinates in S, so it does not correspond to

an integer coordinate in Ẽ, which makes it difficult to apply

(4) directly. In this case, we let p↓ be its closest integer co-

ordinate pixel. Notice also that the weights ωu,p↓ and ωv,q↓

in (5) and (6) have been computed during the optimization

step of the last optimization iteration, so they do not need to

be recomputed at the upsampling step.

Fig. 3 Overview of the texture interpolation using hierarchical joint

bilateral upsampling methods

4.2 Hierarchical joint bilateral texture upsampling

When the exemplar texture is large, especially for large

video exemplar texture, it is usually time and space con-

suming to work directly on the original exemplar texture. In

the M-step of texture optimization, we have to find a near-

est neighborhood in the exemplar texture for each patch of

the context region. Even using acceleration methods such as

tree-construction of approximate nearest neighbors [27] and

dimensionality reduction (PCA) [13], the time and memory

requirements remain the bottleneck of optimization-based

texture synthesis, preventing them from attaining desirable

speeds. To accelerate texture synthesis as well as to gen-

erate good results, we propose a hierarchical joint bilateral

texture upsampling (hierarchical JBTU) method: producing

high resolution texture results by upsampling the texture

synthesized using the low resolution exemplar texture, while

using the original exemplar texture as the priority, as illus-

trated in Fig. 3. More technical details are described in the

following.

Let E be the low resolution version of the exemplar tex-

ture Ẽ (e.g. Gaussian downsampling), the texture S being

synthesized using E as the exemplar. To upsample the tex-

ture S to a higher resolution texture S̃, we use Ẽ instead

of E as the priority for upsampling, as illustrated in Fig. 3.

The joint bilateral filter applies a spatial filter to the low res-

olution texture S, while a similar range filter is jointly ap-

plied to the original exemplar Ẽ. More specifically, let p be

a pixel in S̃, p↓ be its corresponding pixel in the image S,

and q↓ be the neighboring pixel of p↓. As described in the

EM optimization process, the value of each output pixel is

a weighted average of a collection of pixels from different

exemplar neighborhoods. For simplicity, let p′
↓ and q ′

↓ be

pixels in E that contribute to the value of pixels p↓ and q↓,

respectively, pixels p′′
↓ and q ′′

↓ be the corresponding pixels of

p′
↓ and q ′

↓ in the Ẽ. Similarly as in the previous subsection,

the upsampled solution S̃ is obtained as:

S̃p =
1

k′′
p

∑

q↓∈Ω

Sq↓f
(

‖p↓ − q↓‖
)

g
(∥
∥Ẽp′′

↓
− Sq↓

∥
∥
)

(9)
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Fig. 4 (a) The exemplar (256 × 256) is downsampled to an exemplar

(64 × 64), and a small texture (128 × 128) is synthesized using the

small exemplar as input. (b, c) The synthesized texture is upsampled to

the images (512 × 512) using Gaussian interpolation and hierarchical

joint bilateral upsampling, respectively

where k′′
p is the normalizing factor. Note that q↓ takes only

integer coordinates in the low resolution solution, so the

guidance image Ẽ is only sparsely sampled. Similarly to the

JBTU method described in Sect. 4.1, the final value of pixel

p can be computed efficiently in two steps.

As illustrated in Fig. 4, using the proposed hierarchical

JBTU method, compared with the Gaussian upsampling, our

method prevents the image deblurring artifacts. We synthe-

size the texture S from the low resolution exemplar E which

makes the synthesis procedure much faster, while using the

original texture as the priority for upsampling; the upsam-

pling result is satisfying. One difference from JBTU method

is that, using the hierarchical JBTU, if the proportion that the

exemplar is downsampled to coarse exemplar is the same as

that of the synthesized texture is upsampled to the final im-

age, the texture feature scale of the upsampled texture can

be the same as in the original full resolution exemplar. Us-

ing JBTU, however, as shown in Fig. 2, the texture feature

scale of the JBTU results is larger than the exemplar texture.

4.3 Multi-scale joint bilateral upsampling

Although the joint bilateral sampling method generates sat-

isfactory results, in some situations, when the detail features

of the exemplar are relatively weak, the details of the upsam-

pled texture may not be well-reconstructed as expected. Fur-

thermore, since the joint bilateral filter is an edge-preserving

operator, the upsampling results may not be smooth enough.

To further enhance the texture details of upsampled texture

as well as keeping the result smooth, we present a multi-

scale joint bilateral texture upsampling technique (multi-

scale JBTU). We compute a multi-scale decomposition for

the synthesized low resolution texture S using the bilateral

filter, and then extract the progressive detailed layers of S.

Guided by the exemplar image Ẽ, we upsample each layer

of the synthesized low resolution, and reconstruct a final

enhanced upsampled texture image that combines all the

upsampled information of each scale across the texture S.

More technique details are given as follows.

Fig. 5 Image multi-scale decomposition, the image (a) is decomposed

into detailed layers (b, c, d) and base image (e)

The multi-scale bilateral decomposition of input image S

is to build a series of filtered images Sj that preserve the

strongest edges in S while smoothing small changes in in-

tensity. At the finest scale j = 0, we set S0 = S and then

iteratively apply the bilateral filter to compute

S
j+1
p↓

=
1

k
j+1
p↓

∑

q↓∈Ω

S
j
q↓gσs

(

‖p↓ − q↓‖
)

× gσr

(∥
∥S

j
q↓

− S
j
p↓

∥
∥
)

, (10)

with k
j+1
p↓ the normalizing factor. Inspired by [29], we com-

pute a set of detail images as differences between succes-

sive levels of these bilateral filtered images dj = Sj−1 − Sj

for j = 1, . . . ,m. Thus, the Sj retains the strongest edges

in the image and the detailed layers dj contain the smaller

changes in intensity. We can reconstruct the image from this

decomposition as S =
∑m

j=1 dj + Sm. Figure 5 illustrates

the multi-scale decomposition of an image.

The multi-scale decomposition of the synthesized texture

S can be used to progressively enhance the upsampled tex-

ture S̃. We enhance the details of S̃ by combining the mag-

nified upsampled details S̃Detail across entire scale of the de-

tailed layers of image S and the upsampled base image S̃Base

of image S. We generate the enhanced output texture image

S̃Result as

S̃Result = S̃Detail + β · S̃Base, 0 < β ≤ 1. (11)

The parameter β is the trade-off between detail image and

base image.

The base image S̃Base sets the coarsest level image of

S̃Result and retains the strongest edges, which has a strong ef-

fect on the overall appearance of the resulting image S̃Result.

Image S̃Base is computed as follows:

S̃Base =
1

kB
p

∑

q↓∈Ω

Sm
q↓f

(

‖p↓ − q↓‖
)

g
(∥
∥Ẽp′↓ − Sm

q↓

∥
∥
)

.

The upsampled detail S̃Detail maximizes each upsampled

detail Dj of the dj . We compute S̃Detail as a weighted sum
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of the upsampled difference images Dj ,

S̃Detail =

m
∑

j=1

U jDj

/ m
∑

j=1

Dj ,

where D
j
p = 1

kD
p

∑

q↓∈Ω d
j
q↓

f (‖p↓ − q↓‖)g(‖Ẽp′↓ − d
j
q↓

‖),

and U j is the weight for different layer Dj . Since we wish to

maximize small changes in intensity, the weight U j rewards

pixels with large Dj , the weight is computed as U j = gσd
∗

e|Dj |, the spatial convolution with a Gaussian gσd
is used to

locally smooth the weight and reduce the noise. There are

also other methods to determine the weight U j in [29]. In

our method, we find the above weight works well.

Our experiments show that multi-scale JBTU can ef-

fectively enhance and exaggerate details of the upsampled

texture. Figure 6 shows one comparison results between

JBTU and multi-scale JBTU. A close examination reveals

that, compared with the original exemplar texture, many

of the edges of the result generated using JBTU are not

clear enough; in contrast, the edges in multi-scale JBTU ap-

pear much clearer. Figure 7 gives the upsampled results us-

ing proposed multi-scale JBTU with different scales. Other

Fig. 6 (a) The exemplar (128 × 128) is downsampled to coarse exem-

plar (32 × 32), which is used to synthesize a small texture (64 × 64).

(b, c) The synthesized texture is upsampled to the images (512 × 512)

using hierarchical JBTU and multi-scale JBTU, respectively

comparisons are shown in Fig. 10, where we demonstrate

that we can generate highly enhanced detail even from the

synthesized low resolution texture using multi-scale JBTU.

5 Fast joint bilateral texture upsampling

The joint bilateral filter is non-linear, a coarse-force imple-

mentation of the 2D convolution costs O(k2N2) operations,

where k is the width of the spatial filter kernel and N is the

width of the image. Many methods have been proposed to

accelerate the bilateral filtering [29–31], while these meth-

ods are difficult to be adapted to our joint bilateral tex-

ture upsampling operator (7), (9). To make our multi-scale

joint bilateral upsampling operator more efficient, inspired

by [17], we present a constant time 0(1) joint bilateral filter,

which enables the joint bilateral filtering to perform in con-

stant time, that is, the computation time of filtering remains

even if the filter size become very large. This acceleration

method makes our upsampling process interactive to gener-

ate a large texture.

The joint bilateral texture upsampling operator (7) can be

rewritten into the following formula:

S̃p =
1

k′
p

∑

k∈Ω

f (k)Sp↓+kg
(∥
∥Ẽp′

↓
− Sp↓+k

∥
∥
)

, (12)

where we choose the spatial filter f to be polynomial fil-

ters, and the range filter g to be Gaussian filters. We apply

the Taylor series expansion of the Gaussian function g to

approximate the bilateral filters. Gaussian filters are differ-

entiable and can be expressed in terms of linear transforms.

Let filter g be Gaussian range filter g = exp(−a[Ẽp′
↓

−

Sp↓+k]
2), then g can be rewritten as

g = exp
(

−aẼ2
p′

↓

)

exp
(

−aS2
p↓+k − 2Ẽp′

↓
Sp↓+k

)

, (13)

Fig. 7 Multi-scale joint bilateral upsampling. (a) The exemplar (256×

256) is downsampled to small exemplar (64 × 64), and a small tex-

ture (128 × 128) is synthesized using small exemplar as input; (b) the

synthesized texture is upsampled to the image (512 × 512) using hi-

erarchical JBTU; (c, d) the synthesized texture is upsampled applying

multi-scale JBTU, using 2 and 4 levels of upsampling, respectively
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where the first term exp(−aẼ2
p′

↓
) does not depend on the

range kernel. This term also appears in the normalizing term

k′
p , thus it does not have to be computed separately.

By applying the second-order Taylor expansion to the

Gaussian range filter (13), we obtain

S̃p = (k′
b)

−1
[

y1 + 2aRy2 + a
(

2aR2 − 1
)

y3

− 2a2Ry4 + 0.5a2y5

]

, (14)

where R = Ẽp′
↓
, R2 = Ẽ2

p′
↓
, yi =

∑

f (k)Si
p↓+k , the normal-

izing terms k′
b have similar forms. Therefore, a bilateral filter

can be interpreted as the weighted sum of the spatial filtered

responses of the powers of the original image.

Using the polynomial filters f (k) = 1 − kn, the term yi

can be computed in constant time 0(1) using a set of integral

image [17]. For squire distance norm, we get

y1(p↓) =
∑

k∈Ω

f (k)Sp↓+k

=
∑

z∈Ωz

f (z − p↓)Sz

=
[

1 − p2
↓

]

(A + B − C),

where A =
∑

z∈Ωz Sz, B = 2p↓

∑

z∈Ωz zSz, and C =
∑

z∈Ωz z2Sz, Ωz is the new kernel around z−p↓. The sums
∑

Sz,
∑

zSz,
∑

z2Sz can be computed directly from the

corresponding integral images. The other terms yi can be

computed in a similar way.

An integral image is the accumulated sum of original im-

age intensities. The sum of any region
∑

Sz can be com-

puted by three arithmetic operations involving the values

of the integral image at the corners of the region. Integral

image takes advantage of the overlapping kernels to avoid

redundant computing, it enables fast computation of sum

if image pixel intensities in a rectangular region. The nor-

malizing factor k′
p can be efficiently computed in a similar

way; more details refer to [17]. Since these sums require

only fixed number of operations at the corner points of the

rectangular regions in integral images, the total computation

time is independent of the region size.

The introduced Gaussian range and arbitrary spatial joint

bilateral filters (12) are expressed by Taylor series, which re-

sults in a linear filter decompositions without any noticeable

degradation; we call this method (14) a Fast JBTU. The pro-

posed methods drastically decrease the computational time

by cutting it down constant times (0.1 s for 1 MB image).

The complexity is O(1), which makes our JBTU operator

fast even the filter size becomes very large, while achiev-

ing satisfying results. The Fast JBTU also can be directly

used to accelerate the multi-scale JBTU since each upsam-

pled detailed layer and the upsampled based image can be

computed using Fast JBTU.

Fig. 8 (a) Original image, (b) intensity, (c) large-scale, (d) detailed

layer

6 Detail-aware texture optimization

It has been shown that some textures can be synthesized

better with the aid of feature maps [14, 15] by preventing

the feature breaking at the boundary of adjacent patches. To

handle textures with strong large structures, and to reduce

the number of feature discontinuities, we also provide a fea-

ture map as an extra channel. Differently than in the previ-

ous methods [14, 15] that use binary image as the feature

maps, we consider the feature maps as detailed layer Gd of

the texture obtained using the non-linear decomposition, as

described in [30].

The detailed layer Gd extraction is similar to that in

Sect. 4.3, but has some difference. More formally, let Go

be the original image, and Gi be the intensity of Go, by

filtering Gi using the bilateral filter results in large-scale

layer Gf . The detailed layer Gd of Go is deduced by a di-

vision of the intensity Gi by the large-scale layer Gf , that

is Gd = Gi/Gf . Then, Gd is used to describe the feature of

the exemplar, as illustrated in Fig. 8. In practice, we perform

the detail calculations on the logs of pixel intensities, which

yields a more uniform treatment of the whole range, then the

detailed layer Gd corresponds to pixel differences.

Once the detailed layer texture is extracted, each of its

pixels encodes both color and feature value, which is more

effective for neighborhood matching than binary image.

These detailed layer components are scaled into [0,255]

and added to the RGB measurements to obtain a four-

dimensional representation for each pixel (R,G,B, αD),

where D is the detailed layer value of the image, α is the

importance weight and is set between 1 and 2 in our pa-

per. We apply an L2-norm (SSD) to this 4D representation

in order to capture color-feature similarities between texture

neighborhoods.

On the other hand, the histogram built on detailed

layer can capture detail information of the image better

than the binary image. For many textures the optimiza-

tion process [10] may converge to a wrong local mini-

mum, because the energy function measures only the sim-

ilarity of local neighborhoods, without accounting for any

global statistics. To address this issue, inspired by Heeger
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Fig. 9 (a) Exemplar, (b) result using [10], (c) result using EM involving histogram matching [13], (d) result involving the texture detailed layer

and Bergen’s work [1], Kopf et al. [13] introduced a re-

weighting scheme to make the result preserve the global

statistics of the exemplar. More specifically, they adjust

the weights in (3) so as to effectively ensure that cer-

tain histograms of the synthesized texture match the exem-

plar.

We also construct and keep track of histogram H for

each of the texture’s four channels (R, G, B and de-

tailed layer D). Let Hs,j and He,j denote the j th his-

togram (R, G, B, and D) of the synthesized texture S and

the exemplar texture E, respectively, and let H(b) de-

note the value of bin b in a histogram H . Similarly to

re-weighting method [13], we modify the weights for (3)

as follows: ω′
(u,j) = ωu/(1 +

∑K=4
j=1 αj max[0,Θ]), where

Θ = HS,j (bj (Eu))−HE,j (bj (Eu)) and weights α1 = α2 =

α3 = 1, α4 is a parameter that can be tuned by the user. In

our experiments, we set α4 = 1 and receive good results. To

receive better results, the histograms must be kept up to date

as the synthesis progresses, we employ the fast bilateral fil-

ter [31] to compute the detailed layer for the exemplar and

synthesizing result in real time, which makes it fast to con-

struct histogram for detailed layer.

As illustrated in Fig. 9, compared with the existing meth-

ods [10] and [13], using our method, the feature structures

are better synthesized. In Fig. 12, we present video comple-

tion results; similarly, the proposed detail-aware completion

method further improves the completion result. We upsam-

ple the completed low resolution result using hierarchical

JBTU and receive convincing results.

7 Extension to video texture upsampling

Our multi-scale joint bilateral image texture upsampling can

be easily extended to upsample the synthesized video texture

using optimization [10, 12]. To allow for a uniform treat-

ment of dynamic and static video texture information, we

treat video sequences as space–time volumes. The main dif-

ference between 2D image texture synthesis and 3D video

texture synthesis is that the 2D neighborhood Xp and Zp in

(1) are replaced with 3D space–time neighborhood. Com-

pared with image texture synthesis, the computational time

and memory requirements in 3D video synthesis increased

accordingly.

As shown in Fig. 11, in our hierarchical multi-scale joint

bilateral video texture upsampling, as the data in the exem-

plar video is large, to synthesize a large video texture using

the original example as input is time and memory consum-

ing. Similarly to image texture upsampling case, we down-

sample the original example into a smaller one, using this

as input, we synthesize a low resolution video texture, then

guided by the original high resolution example, we generate

a better and high resolution video texture. Note also that to

receive a smaller exemplar video texture, we only downsam-

ple original video in space dimension, not in time dimen-

sion, and we apply the Gaussian downsamping operator.

The real time detail extraction of the video sequence is

the main consideration for multi-scale joint bilateral video

upsampling. To filter the video in real time to receive the

video texture detailed layer, we apply the Bilateral Grid
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Fig. 10 (a) The exemplar (256 × 256) is downsampled to small ex-

emplar (64 × 64), and a small texture (128 × 128) is synthesized using

small exemplar as input. (b) The synthesized small texture is upsam-

pled to the image (512 × 512) using Gaussian interpolation. (c) Up-

sampled result using bicubic interpolation. (d) Upsampled result using

hierarchical JBTU. (e) Upsampled result using multi-scale JBTU

Fig. 11 Hierarchical video upsampling. (a) The exemplar (96 × 96 ×

32) is downsampled to a small exemplar (48 × 48 × 32), which is

used as input to synthesized a video (150 × 70 × 90), the synthesized

video is upsampled to video (b) using Gaussian interpolation, video

(c) using hierarchical JBTU, and video (d) using multi-scale JBTU

(350 × 170 × 90)

Fig. 12 Video completion. The 85th frame of the video (240 × 180 ×

119). (a) The original video, (b) masked video and its downsampled

video (80 × 60 × 119), (c) completion result and its upsampled result

using (a) as the priority, (d) completion result that incorporate the de-

tailed layer, and the result is upsampled using original full solution

masked video as the priority

techniques presented in [31], then we can apply our Fast

JBTU to efficiently perform upsampling.

Our detail-aware patch similarity matching can also be

used in video texture synthesis, as illustrated in Fig. 12.

Similarly to the image case, the 3D patch matching also

incorporates the detail channel, and histogram matching

is also implied in the video texture optimization proce-

dure.
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8 Experimental results and discussions

We give the experimental results of our methods and com-

pare with the popular upsampling method such as Gaussian

upsampling. The results include image and video synthe-

sis upsampling, video completion upsampling. We imple-

mented our approach in C++ on a 2.8 GHz Pentium 4 PC

with 1 GB of RAM.

In the M-step of the texture optimization, it has to find the

best matching exemplar neighborhood for each neighbor-

hood in the context region. This is a standard nearest neigh-

bor search in a high-dimensional space, and it dominates the

running time of the texture optimization. For neighborhood

with large data (e.g. 3D neighborhood for video texture syn-

thesis) we apply a PCA projection to the neighborhood vec-

tors in the exemplar [15]. We keep only the number of co-

efficients sufficient to preserve 95 percent of the variance;

thus, the dimensionality reduction drastically improves per-

formance for nearest neighbor search. In all the results, we

use the ANN approximate nearest neighbor library [27] for

the nearest neighbor search.

In Fig. 9, we present the texture optimization results that

incorporate detailed layer, and compare our method with the

latest texture method [10, 13] using optimization. In Fig. 9,

the result of [13], which employs color histogram match-

ing, looks quite similar to the exemplar, but neither of these

two methods [10, 13] is good at maintaining the continu-

ity of structural features as well as the shapes of individual

objects in the textures. In bottom row of Fig. 9, it shows

that if the color information of the exemplar is similar, the

color histograms matching [13] do not work well, while our

detail-aware patch similarity matching and detail histograms

matching generate better results.

In Fig. 10, we compare our hierarchical JBTU method

and multi-scale JBTU with the Gaussian upsampling and

bicubic upsampling. Notice that compared with our method,

Gaussian upsampling produces much more blurred results.

In our experiments, we generally set the domain filter’s

Gaussian σd of the joint bilateral filtering operator to 0.5

with 5 × 5 support. The range filter Gaussian σr is strongly

application-dependent. For the images with color values

normalized to the [0,1] interval, setting σr to the standard

deviation of the values has always given good results. In

Fig. 10, it takes about 0.6 s to upsample the synthesized tex-

ture (128 × 128) to the result (512 × 512) using the multi-

scale JBTU.

We give multi-scale joint video texture upsampling re-

sults in Fig. 11. As the exemplar video texture is large,

we downsample it into a smaller one, then we apply the

hierarchical video texture upsampling to generate a large

video texture. Compared with image texture upsampling

case, video upsampling is much more time consuming, it

takes about 2 min to upsample the low resolution video tex-

ture (150 × 70 × 90) to a larger one (350 × 160 × 90). As

illustrated in Fig. 11, compared with the upsampled results

using Gaussian interpolation, video blurring artifact is better

prevented using JBTU method, and video texture is further

enhanced applying multi-scale JBTU.

We also present a video completion example with large

data set (Fig. 12). This example is difficult to process by

traditional texture optimization method due to memory and

computation constraints. In Fig. 12, we first downsample

the masked video, and complete the low resolution video

using the optimization-based space–time video completion

method [12], then the completed video is upsampled to

the full solution video using the original masked video as

the priority. In addition, in this example, we also present a

low resolution video completion result that incorporates the

video detailed layer; as show in Fig. 12(d), the salient struc-

ture is better reconstructed.

Limitation: Our multi-scale JBTU applies base-detail de-

composition technique which is based on the bilateral fil-

tering. However, the currently used bilateral filtering is lim-

ited in its ability to extract detail at arbitrary scales, which

makes it difficult to capture all the high-frequency content of

the image. Recently, Farbman et al. [32] proposed an edge-

preserving smoothing operator based on a weighted least

squares optimization framework. This method is well suited

for progressive coarsening of image and for multi-scale de-

tail extraction; however, this method is time consuming, es-

pecially for large data video. The second limitation is that,

although our accelerated JBTU is fast to upsampling the im-

age texture, to upsample the video texture, especially for

large data video texture, the results cannot be interactively

generated.

9 Conclusion and further work

In this paper, we propose a novel technique for upsampling

synthesized texture using multi-scale joint bilateral filter,

which is an efficient method for both image and video tex-

ture to better prevent image blurring. To accelerate the up-

sampling process, we present an accelerated joint bilateral

filtering method, which makes our upsampling operator in-

teractive even for large images. We also propose a detail-

aware texture optimization approach to improve the opti-

mization process.

In the future, more sophisticated work can be performed

to further improve the quality and the speed of the texture

upsampling. Instead of using uniformed joint bilateral filter-

ing, to upsampling the video with moving objects, we can

use the adaptive bilateral filter, that is, using dynamic func-

tion of both the spatial neighborhood and temporal history

at each pixel, which makes a smoother result for consequent

frames. We would like to find a more effective detail delayer

extraction method that can control the spatial variation of
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detail for better video texture synthesis and upsampling, es-

pecially for video with moving objects. Finally, we would

extend our texture upsampling to texture synthesis methods.
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